Research

IEOR researchers investigate the latest mathematical tools, approaches, and methodologies to make new theoretical discoveries and innovations that touch nearly every industry, making them more efficient and profitable in areas such as supply chain, logistics, manufacturing, data science, energy system, energy systems, robotics, and management.

Selected Publications

Simulating Polyculture Farming to Tune Automation Policies for Plant Diversity and Precision Irrigation

Simulating Polyculture Farming to Tune Automation Policies for Plant Diversity and Precision Irrigation. Yahav Avigal, William Wong, Jensen Gao, Kevin Li, Mark Theis, Mark Preston, Grady Pierroz, Fang Shuo Deng, Ken Goldberg. Winner of Best Student Paper Award. 2020 IEEE Conference on Automation Science and Engineering (CASE), Online (Hong Kong) Aug 20-21, 2020. [Paper] [Presentation Video (15 mins)]

Simulating Nonstationary Spatio-Temporal Poisson Processes using the Inversion Method

Zhang, Haoting and Zheng, Zeyu, Simulating Nonstationary Spatio-Temporal Poisson Processes using the Inversion Method (July 27, 2020). Available at SSRN: https://ssrn.com/abstract=3661101 or http://dx.doi.org/10.2139/ssrn.3661101

When Demands Evolve Larger and Noisier: Learning and Earning in a Growing Environment

Feng Zhu, Zeyu Zheng. When Demands Evolve Larger and Noisier: Learning and Earning in a Growing Environment. International Conference on Machine Learning (ICML) 2020. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3637905.

On Projection Robust Optimal Transport: Sample Complexity and Model Misspecification

Tianyi Lin, Zeyu Zheng, Elynn Y. Chen, Marco Cuturi, and Michael I. Jordan. On Projection Robust Optimal Transport: Sample Complexity and Model Misspecification. International Conference on Artificial Intelligence and Statistics (AISTATS) 2021. https://arxiv.org/abs/2006.12301.

Method of Moments Estimation for Lévy-driven Ornstein-Uhlenbeck Stochastic Volatility Models

Zeyu Zheng, Xiangyu Yang, Yanfeng Wu, and Jian-Qiang Hu. Method of Moments Estimation for Lévy-driven Ornstein-Uhlenbeck Stochastic Volatility Models. Probability in the Engineering and Informational Sciences. https://doi.org/10.1017/S0269964820000315.

Posted in

ABC-LMPC: Safe Sample-Based Learning MPC for Stochastic Nonlinear Dynamical Systems with Adjustable Boundary Conditions

ABC-LMPC: Safe Sample-Based Learning MPC for Stochastic Nonlinear Dynamical Systems with Adjustable Boundary Conditions. Brijen Thananjeyan*, Ashwin Balakrishna*, Ugo Rosolia, Joseph E. Gonzalez, Aaron Ames, Ken Goldberg. Workshop on the Algorithmic Foundations of Robotics (WAFR), Oulu, Finland, July 2021. [paper]