Machine Learning and Data Science Research
Data plays a critical role in all areas of IEOR, from theoretical developments in optimization and stochastics to applications in automation, logistics, health care, energy, finance, and other areas. Much of the recent interest in data science and machine learning has been spurred by the growing ability to apply vast computational power to large scale datasets in nearly every application domain. Faculty and students in the UC Berkeley IEOR department are engaged in cutting edge and interdisciplinary research in ML/DS, including topics like developing scalable and memory-efficient learning algorithms, integrating prediction and optimization models, sparse learning models, addressing fairness concerns, reinforcement learning and control, clustering and learning with network data, as well as applications of ML/DS to various domains.
Faculty
Selected Publications
On Projection Robust Optimal Transport: Sample Complexity and Model Misspecification
Tianyi Lin, Zeyu Zheng, Elynn Y. Chen, Marco Cuturi, and Michael I. Jordan. On Projection Robust Optimal Transport: Sample Complexity and Model Misspecification. International Conference on Artificial Intelligence and Statistics (AISTATS) 2021. https://arxiv.org/abs/2006.12301.
Stochastic In-Face Frank-Wolfe Methods for Non-Convex Optimization and Sparse Neural Network Training
Paul Grigas, Alfonso Lobos, Nathan Vermeersch. “Stochastic In-Face Frank-Wolfe Methods for Non-Convex Optimization and Sparse Neural Network Training”. arXiv:1906.03580
Sharp Restricted Isometry Bounds for the Inexistence of Spurious Local Minima in Nonconvex Matrix Recovery
Richard Zhang, Somayeh Sojoudi, and Javad Lavaei. Sharp Restricted Isometry Bounds for the Inexistence of Spurious Local Minima in Nonconvex Matrix Recovery. Journal of Machine Learning Research, 2019. https://jmlr.org/papers/v20/19-020.html.
A comparative study of the leading machine learning techniques and two new optimization algorithms
Philip Baumann, Dorit S. Hochbaum and Yan T. Yang. A comparative study of the leading machine learning techniques and two new optimization algorithms. European Journal of Operational Research, Volume 272, Issue 3, 1 February 2019, Pages 1041-1057. Online version
Machine Learning and Data Mining with Combinatorial Optimization Algorithms
Dorit S. Hochbaum. Machine Learning and Data Mining with Combinatorial Optimization Algorithms. Tutorials in Operations Research, pages 109-129. INFORMS, 2018. Available online.
Sparse and Smooth Signal Estimation: Convexification of L0 Formulations
Alper Atamturk, Andres Gomez and Shaoning Han. “Sparse and Smooth Signal Estimation: Convexification of L0 Formulations”. Journal of Machine Learning Research.
Evaluating Machine Learning–Based Automated Personalized Daily Step Goals Delivered Through a Mobile Phone App: Randomized Controlled Trial
M. Zhou, Y. Fukuoka, Y. Mintz, K. Goldberg, P. Kaminsky, E. Flowers, and A. Aswani (2018), Evaluating machine learning-based automated personalized daily step goals delivered through a mobile phone app: Randomized controlled trial, JMIR Mhealth & Uhealth, vol. 6, no. 1: e28.
Spectral Algorithms for Computing Fair Support Vector Machines
M. Olfat and A. Aswani (2018), Spectral algorithms for computing fair support vector machines, In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS): 1933-1942.
- « Previous
- 1
- 2
- 3
- 4
- Next »