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Abstract— This paper presents LQG-MP (linear-quadratic
Gaussian motion planner), a new approach to robot motion
planning that takes into account the sensors and the controller
that will be used during execution of the robot’s path. LQG-
MP is based on the linear-quadratic controller with Gaussian
models of uncertainty, and explicitly characterizes in advance
(i.e., before execution) the apriori probability distributions of
the state of the robot along its path. These distributions can
be used to compute the probability of avoiding collisions, the
amount of uncertainty along the path, the likelihood of arriving
at the goal, or other measures defining the quality of the path.
Many methods can be used to generate the needed ensemble
of candidate paths from which the optimal path is selected; in
this paper we report results using the RRT-algorithm. LQG-
MP is generally applicable. It applies to holonomic and non-
holonomic robots, static and dynamic environments, works in
high-dimensional state spaces, and naturally handles kinematics
and dynamics constraints. We study the performance of LQG-
MP with simulation experiments in three scenarios involv-
ing a kinodynamic car-like robot, multi-robot planning with
differential-drive robots, and a 6-DOF manipulator.

I. INTRODUCTION

Motion uncertainty, i.e. the fact that the motion of the

robot unpredictably deviates from what a dynamics model

predicts, and imperfect state information due to partial or

noisy measurements of the robot’s state, arise in many real-

world robotic tasks ranging from guiding mobile robots over

uneven terrain to performing robotic surgery with high-DOF

manipulators. The amount of motion and sensing uncertainty

may depend on the particular motion that is executed and the

state the robot is in, so different paths for the robot will have

different uncertainties associated with them. Because safety

and accuracy are of critical importance for many robotic

tasks, these uncertainties will have significant influence on

which path is best for the task at hand. The challenge

we discuss in this paper is to precisely quantify these

uncertainties in advance, such that an optimal path can be

planned for the robot.

Many traditional path planners assume deterministic mo-

tion and full knowledge of the state [16], [12], and leave

issues of uncertainty to the control phase in which the

path may be executed using a feedback controller [14].

Planning and control are related but distinct fields. While

recent work on path planning has addressed motion and/or

sensing uncertainty (see Section II), most planning methods

do not account for control during execution and most control

methods take the path as given. LQG-MP builds a bridge

between these disciplines and draws from results in both.

The key insight of LQG-MP is that the apriori knowledge
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Fig. 1. (a) The maximum factor ct by which the ellipse containing the
positions within one standard deviation can be scaled before it intersects
obstacles gives an indication of the probability that collisions are avoided
(top). ct is computed as the Euclidean distance to the nearest obstacle in the
environment transformed such that the ellipse becomes a unit disc (bottom).
(b) The ellipses show the apriori distributions as computed by LQG-MP
along the optimal path for Scenario A. The samples result from performing
100 simulations.

of the sensors and controller that will be used during the

execution of the path can be used to optimize the path in the

planning phase. We base our approach on the linear-quadratic

controller with Gaussian models of the motion and sensing

uncertainty (LQG-controller), as it provides optimal control

for guiding a robot along a planned path [4]. We will show

that for a given stochastic model of the motion dynamics,

and a stochastic model of the sensor measurements obtained

during execution, it is possible to derive in advance (i.e.

before execution) the apriori probability distributions of the

states and the control inputs of the robot along a given path.

These distributions can be used to compute, for example,

the probability that collisions will be avoided, the expected

amount of uncertainty along the path, the likelihood that the

robot will arrive at the goal, or any other measure defining

the quality of the path. We can then use any motion planning

method to generate a large set of candidate paths, and select

the path that is optimal with respect to the chosen planning

objective.

Our approach is generally applicable to both holonomic

and non-holonomic robots with state spaces of arbitrary

dimension, and naturally deals with kinematics and dynamics

constraints. We assume that the stochastic dynamics model

of the robot and the stochastic observation model are given

explicitly, and that their stochasticity can be modeled by

Gaussian noise. Our approach is designed for linear models,

but can also be applied to non-linear models if they are

locally well approximated by their linearizations.

We implemented our approach using the RRT motion



planning algorithm [16] for representative path planning

problems involving holonomic and non-holonomic robots in

both 2-D and 3-D workspaces, and validated our approach

using simulation experiments. We will show that the quality

of candidate paths can differ starkly based on the uncertainty,

even if traditional planning criteria such as path length or

clearance from obstacles are similar, and that the type of

sensors used during execution of the path has a significant

influence on which path is optimal. A path planner that is

unaware of the sensors, the controller and their uncertainties

would not be able to make this distinction, and may produce

sub-optimal paths.

The remainder of this paper is organized as follows. We

start by discussing related work in Section II. We formally

define the problem addressed in this paper in Section III.

In Section IV we show how LQG-MP computes the apriori

probability distributions for a given path. In Section V, we

discuss application examples and simulation results of LQG-

MP for several motion and sensing models and planning

objectives. We conclude in Section VI.

II. RELATED WORK

A substantial body of work has addressed uncertainty in

motion planning. The uncertainty typically originates from

three sources: (i) motion uncertainty, (ii) sensing uncertainty

and partial observations, and (iii) uncertainty about the

environment. Our approach focuses on the first two, but is

to some extent also applicable to the latter, as we will show

in one of our experiments.

Planners that specifically take into account motion un-

certainty include [13], [19]. These planners plan paths that

avoid rough terrain, but do not consider partial observability

and sensing uncertainty. In [10], the probability of collisions

is minimized for the specific case of a manipulator with

base pose uncertainty. The sensing uncertainty is taken into

account in the planner of [25], which aims to optimize the

information content along a path. Planners in [5], [7], [18]

assume that landmark regions exist in the environment where

the accumulated motion uncertainty can be “reset”.

Other approaches blend planning and control by defining

a global control policy over the entire environment. MDPs,

for instance, can be used with motion uncertainty to opti-

mize probability of success [1], [26]. However, they require

discretization of the state and control input spaces. The MDP

concept can be extended to POMDPs to also include sensing

uncertainty [11], but these suffer from issues of scalability

[22]. The method of [15] also provides a global control policy

in case of motion and sensing uncertainty.

Another class of planners considers the uncertainty about

the environment and obstacles, rather than motion and sens-

ing uncertainty [6], [9], [20], [21]. They typically aim to plan

paths for which the probability of collisions is minimal.

Existing planners that are most directly related to LQG-

MP take into account the available sensing capability to

maximize the probability of arriving at the goal or to

minimize expected cost [8], [23], [24]. However, these al-

gorithms implicitly assume to receive maximum-likelihood

measurements from the sensors, which does not result in

the true probability distributions of the state of the robot,

but rather a measure of how well one will be able to infer

the state. In addition to the sensors, LQG-MP also takes into

account the controller the will be used for executing the path,

and computes the true apriori probability distributions of the

state of the robot along its future path.

III. PROBLEM DEFINITION

Let X = R
n be the state space of the robot, and let U =

R
m be the control input space of the robot. We assume that

time is discretized into stages of equal duration, and that

applying a control input ut ∈ U at stage t brings the robot

from state xt ∈ X at stage t to state xt+1 ∈ X at stage t+1
according to a given stochastic dynamics model:

xt = f(xt−1,ut−1,mt), mt ∼ N (0,Mt), (1)

where mt is the process noise at stage t drawn from a zero-

mean Gaussian distribution with variance Mt that models the

motion uncertainty. We assume that the function f is either

linear or locally well approximated by its linearization.

Let us be given a start state xstart ∈ X where the robot

begins and a goal region X goal ⊂ X where the robot needs to

go. A path Π for the robot is defined as a series of states and

control inputs (x⋆
0,u

⋆
0, . . . ,x

⋆
ℓ ,u

⋆
ℓ ), such that x⋆

0 = xstart,

x⋆
ℓ ∈ X goal, and x⋆

t = f(x⋆
t−1,u

⋆
t−1,0) for 0 < t ≤ ℓ,

where ℓ is the number of stages of the path. That is, a path

connects the start state and the goal region, and is consistent

with the dynamics model if there were no process noise.

During execution of the path, the robot will deviate

from the path due to motion uncertainty. To compensate

for unexpected motions, we assume that the path will be

executed using a feedback controller that aims to keep the

robot close to the path by minimizing the cost function

E
(

ℓ
∑

t=0

((xt−x⋆
t )

TC(xt−x⋆
t )+(ut−u⋆

t )
TD(ut−u⋆

t ))
)

, (2)

which quadratically penalizes deviations from the path. C
and D are given positive-definite weight matrices.

We assume that noisy sensors provide us with partial

information about the state during execution of the path

according to a given stochastic observation model:

zt = h(xt,nt), nt ∼ N (0, Nt), (3)

where zt is the measurement obtained at stage t that relates

to state xt through function h, and nt is the measurement

noise drawn from a zero-mean Gaussian with variance Nt.

We assume that the function h is either linear or locally well

approximated by its linearization.

We define our problem in two parts; (i) given the stochastic

dynamics model, the stochastic observation model, and the

cost function, compute the apriori distributions of the state

and control input along a given path, and (ii) given a planning

objective based on the probability distributions, find the

optimal path.



IV. APRIORI PROBABILITY DISTRIBUTIONS

In this section we describe how to compute the apriori

probability distributions of the state and control input of the

robot along a given path Π. For this, we use the fact that

we know in advance what controller will be used to execute

the path: for linear dynamics and observation models with

Gaussian noise and a quadratic cost function, the optimal

approach for executing the path is to use an LQR feedback

controller in parallel with a Kalman filter for state estimation,

which is called linear-quadratic Gaussian (LQG) control [4].

A Kalman filter provides the optimal estimate of the state

given previous state estimates, measurements and control

inputs, and an LQR controller provides the optimal control

input given the estimate of the state.

We will first discuss how to linearize the dynamics and ob-

servation model (Section IV-A), and then review the Kalman

filter (Section IV-B) and LQR controller (Section IV-C).

From these, we compute the apriori probability distributions

of the states and the control inputs of the robot along the

path (Section IV-D).

A. Linear(ized) Dynamics and Observation Model

In principle, our approach applies to linear dynamics and

observation models f and h. However, since the robot is

controlled to stay close to the path during execution, we

can approximate non-linear models with local linearizations

(i.e. first-order Taylor expansions) around the path Π. This

gives the following linear(ized) stochastic dynamics and

observation model:

xt = f(x⋆
t−1,u

⋆
t−1,0) +At(xt−1 − x⋆

t−1) + (4)

Bt(ut−1 − u⋆
t−1) + Vtmt,

zt = h(x⋆
t ,0) +Ht(xt − x⋆

t ) +Wtnt, (5)

where

At =
∂f

∂x
(x⋆

t−1,u
⋆
t−1,0), Bt =

∂f

∂u
(x⋆

t−1,u
⋆
t−1,0),

Vt =
∂f

∂m
(x⋆

t−1,u
⋆
t−1,0), Ht =

∂h

∂x
(x⋆

t ,0), Wt =
∂h

∂n
(x⋆

t ,0)

are the Jacobian matrices of f and h along path Π.

It is convenient to express the control problem in terms of

the deviation from the path. By defining

x̄t = xt − x⋆
t , ūt = ut − u⋆

t , z̄t = zt − h(x⋆
t ,0), (6)

as the state deviation, control input deviation and measure-

ment deviation, respectively, we can formulate the dynamics

and observation model of Equations (4) and (5) as

x̄t = Atx̄t−1 +Btūt−1 + Vtmt, mt ∼ N (0,Mt), (7)

z̄t = Htx̄t +Wtnt, nt ∼ N (0, Nt), (8)

and the cost function of Equation (2) as

E
(

ℓ
∑

t=0

(x̄T
tCx̄t + ūT

tDūt)
)

. (9)

This is the standard formulation of an LQG-control problem.

B. Kalman Filter for Optimal State Estimation

The Kalman filter keeps track of the estimate x̃t and

variance Pt of the true state x̄t during the execution of the

path. It continually performs two steps; a process update to

propagate the applied control input ūt, and a measurement

update to incorporate the obtained measurement z̄t:

Process update:

x̃−
t = Atx̃t−1 +Btūt−1 (10)

P−
t = AtPt−1A

T
t + VtMtV

T
t , (11)

Measurement update:

Kt = P−
t HT

t (HtP
−
t HT

t +WtNtW
T
t )−1 (12)

x̃t = x̃
−
t +Kt(z̄t −Htx̃

−
t ) (13)

Pt = (I −KtHt)P
−
t . (14)

These are the standard Kalman filter equations for optimal

estimation given the dynamics and observation model of

Equations (7) and (8) [27]. Note that the Kalman-gain matri-

ces Kt can be computed in advance (i.e. before execution)

given the initial variance P0, without knowledge of the actual

control inputs ūt and measurements z̄t.

C. LQR for Optimal Control

The control inputs ūt that are optimal to apply during

execution of the path are determined by the control policy

that minimizes the cost function of Equation (9). For the

dynamics model of Equation (7), the cost function is minimal

when ūt = Ltx̄t, where Lt is the feedback matrix, which is

computed in advance for all t ∈ 0, . . . , ℓ− 1 using:

Sℓ = C (15)

Lt = −(BT
t+1St+1Bt+1 +D)−1BT

t+1St+1At+1 (16)

St = C +AT
t+1St+1At+1 +AT

t+1St+1Bt+1Lt. (17)

These are the standard equations for a finite-horizon discrete-

time LQR controller [4].

As the true state x̄t is unknown, the estimate x̃t of the state

which is obtained from the Kalman filter is used to determine

the control input ūt at each stage t during execution of the

path. Hence, the control policy is:

ūt = Ltx̃t. (18)

After application of the control input, the Kalman filter

produces the estimate of the next state from which in turn a

new control input is determined. This cycle repeats until the

execution of the path is complete.

D. Apriori Distributions of State and Control Input

Given the LQR control policy and the Kalman filter,

we can analyze in advance how the true state x̄t and the

estimated state x̃t will evolve during execution of the path

as functions of each other. The evolution of the true state

x̄t is dependent on the estimated state through the LQR

control policy (Equation (18)) and the evolution of the

estimated state x̃t is dependent on the true state through the



measurement obtained in the Kalman filter (Equation (13)).

This gives the following equations:

x̄t = Atx̄t−1 +BtLt−1x̃t−1 + Vtmt, (19)

x̃t = Atx̃t−1 +BtLt−1x̃t−1 +Kt

(

z̄t − (20)

Ht(Atx̃t−1 +BtLt−1x̃t−1)
)

= Atx̃t−1 +BtLt−1x̃t−1 +Kt

(

Htx̄t +Wtnt −

Ht(Atx̃t−1 +BtLt−1x̃t−1)
)

= Atx̃t−1 +BtLt−1x̃t−1 +Kt

(

Ht(Atx̄t−1 +BtLt−1x̃t−1 + Vtmt) +Wtnt −

Ht(Atx̃t−1 +BtLt−1x̃t−1)
)

= Atx̃t−1 +BtLt−1x̃t−1 +KtWtnt +

KtHtAtx̄t−1 +KtHtVtmt −KtHtAtx̃t−1.

Equation (19) follows from substituting Equation (18) into

Equation (7). The first equality of Equation (20) follows

from substituting Equation (18) into Equation (10) and Equa-

tion (10) into Equation (13); the second and third equalities

follow after substituting Equations (8) and (19), respectively,

and the fourth equality follows after expanding the terms.

Combining Equations (19) and (20) gives the matrix form:
[

x̄t

x̃t

]

=

[

At BtLt−1

KtHtAt At +BtLt−1 −KtHtAt

] [

x̄t−1

x̃t−1

]

+

[

Vt 0
KtHtVt KtWt

] [

mt

nt

]

,

[

mt

nt

]

∼ N (0,

[

Mt 0
0 Nt

]

),

which we write shorthand (for the appropriate definitions of

yt, qt, Ft, Gt and Qt) as:

yt = Ftyt−1 +Gtqt, qt ∼ N (0, Qt). (21)

From this, we can compute the mean ŷt and the variance Rt

of yt =
[

x̄t

x̃t

]

for any stage t of the execution of the path:

ŷt = Ftŷt−1, ŷ0 = 0, (22)

Rt = FtRt−1F
T
t +GtQtG

T
t , R0 =

[

P0 0
0 0

]

. (23)

Note that the mean ŷt is zero for all stages t. Hence,
[

x̄t

x̃t

]

∼
N (0, Rt). As it follows from Equations (18) and (6) that

[

xt

ut

]

=

[

I 0
0 Lt

] [

x̄t

x̃t

]

+

[

x⋆
t

u⋆
t

]

, (24)

the apriori distribution of the state xt and the control input

ut at stage t of the execution of the path is:
[

xt

ut

]

∼ N (

[

x⋆
t

u⋆
t

]

,ΛtRtΛ
T
t ), Λt =

[

I 0
0 Lt

]

. (25)

The covariance between
[

xi
ui

]

and
[

xj

uj

]

is given by:

cov(

[

xi

ui

]

,

[

xj

uj

]

) = ΛiRiF
T
i+1F

T
i+2 · · ·F

T
j ΛT

j , i < j. (26)

Using the apriori distributions (and their covariances), the

quality of path Π can be computed with respect to the chosen

planning objective. We can then use any motion planner to

generate a large set of paths, and select the optimal path.

x
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Fig. 2. (a) The environment of Scenario A, in which a car-like robot
has to move between a start state and a goal region without colliding with
obstacles. Sensors can only measure the y-coordinate of the position of the
robot. The optimal path according to LQG-MP among the 1000 generated
by RRT is shown. (b) The state x of a car-like robot.

V. EXAMPLE APPLICATIONS AND RESULTS

In this section, we report simulation results for three

scenarios in which LQG-MP is used to plan an optimal path.

In each of the three scenarios, we use a different dynamics

model, observation model and planning objective, and pro-

vide comparative analysis with a brute-force approach. We

report results for an Intel P7350 2GHz with 4GB RAM.

For each scenario, we use the random rapidly-exploring

tree (RRT) algorithm [16] to generate a large set of candidate

paths. The RRT algorithm is well suited for our context as

it can handle any dynamics model (without process noise)

of the form of Equation (1) well. Even though it only plans

a single path between the start state and the goal region,

the path is generated randomly and will thus be different

each time the algorithm is run. Hence, to generate multiple

different paths, we run the RRT algorithm multiple times.

A. Car-Like Robot

In the first scenario, we apply LQG-MP to a non-holo-

nomic car-like robot with 2nd-order dynamics in a 2-D

environment with obstacles. The robot needs to move from

a start state xstart to a goal region X goal without colliding

with the obstacles in the environment (see Fig. 2(a)).

1) Dynamics model: The state x = (x, y, θ, v) of the

robot is a 4-D vector consisting of its position (x, y), its

orientation θ, and its speed v (see Fig. 2(b)). Its control input

u = (a, φ) is a 2-D vector consisting of an acceleration a
and the steering wheel angle φ, corrupted by process noise

m = (ã, φ̃) ∼ N (0,
[ σ2

a 0

0 σ2

φ

]

). This gives the following non-

linear dynamics model:

f(x,u,m) =









x+ τv cos θ
y + τv sin θ

θ + τv tan(φ+ φ̃)/d
v + τ(a+ ã)









, (27)

where τ is the duration of a stage (time step), and d the

distance between the front and rear axle of the car [17].

2) Observation model: The robot only receives feedback

on the y-coordinate of its position, for instance because

a monocular camera views the environment along the x-

direction. Hence, the measurement vector z is univariate and



consists of a measurement of the y-coordinate of the robot

corrupted by measurement noise n = ỹ ∼ N (0, σ2
y). This

gives the following linear observation model:

h(x,n) = y + ỹ. (28)

Even though the sensor feedback is very partial, informa-

tion about the other variables is still obtained through the

interplay with the dynamics model.

3) Planning objective: We aim to find the path for the

robot with a minimal probability of colliding with obstacles.

Instead of computing this probability exactly, we will use

an approximation that can be computed efficiently given the

probability distributions along the path. To this end, we look

at the number of standard deviations that one can deviate

from the path before the robot may collide with an obstacle.

Let this number be denoted ct for stage t along the path.

For a multivariate Gaussian distribution of dimension n, the

probability that a sample is within ct standard deviations is

given by Γ(n/2, c2t/2), where Γ is the regularized Gamma

function [28]. It provides a lower bound of the probability

of avoiding collisions at stage t. We now define the quality

of a path Π as:

ℓ
∏

t=0

Γ(n/2, c2t/2), (29)

which is indicative of the probability that collisions will be

avoided during execution. It is the planning objective to find

a path for which this measure is maximal.

The value of ct for stage t is computed as follows. For

simplicity, we approximate the geometry of the car by a

bounding disc, such that its orientation has no influence on

whether or not the car is colliding. Also its speed does not

influence its collision status. Hence, ct is determined by the

distribution N (pt,Σt) of the position of the car (i.e. n = 2),

which is the marginal distribution of the first two variables of

N (
[

x
⋆
t

u
⋆
t

]

,ΛtRtΛ
T
t ) as computed in Equation (25). Let Ut be

a matrix such that UtU
T
t = Σt. The set of positions within

one standard deviation is then an ellipse centered at the mean

pt obtained by transforming a unit disc by Ut, and ct is the

maximum factor by which the ellipse can be scaled such that

it does not intersect with obstacles (see Fig. 1(a)).

Computing ct can efficiently be implemented using a

collision-checker that is capable of performing distance cal-

culations and linear transformations on the geometry, for in-

stance SOLID [3]. Transforming the environment (including

the robot) by U−1
t (such that the uncertainty ellipse becomes

a unit disc, see Fig. 1(a)), and calculating the Euclidean

distance between the robot and the nearest obstacle in the

transformed environment gives the value of ct for stage t.
4) Results: We randomly generated 1000 paths using the

RRT algorithm, which took 56.8 seconds. For each of the

paths, we computed the apriori probability distributions and

the measure of Equation (29), which took in total 2.67

seconds. The optimal path among the 1000 is shown in Fig.

2(a). It can be seen that the “lower-right” passage is chosen

to get to the goal. This can be explained as the uncertainty

will mainly be in the x-coordinate given that the sensors

only provide feedback on the y-coordinate. The geometry

of the lower-right passage allows for more deviation in the

x-direction than the upper-left passage. Indeed, changing

the observation model such that only the x-coordinate is

measured, results in a path that takes the upper-left passage.

To validate our results, we used a brute-force approach

to estimate for each path the “ground-truth” probability

that it will be executed without collisions. We performed

10,000 simulations of executions of the path using the LQR-

controller and an extended Kalman Filter with artificially

generated process and measurement noise, and counted the

number of collision-free executions. This took in total 10440

seconds, which is almost 4000 times as much as the time

needed by LQG-MP to evaluate the paths. It turns out that

the path selected by LQG-MP has a 99% probability of

success. The average probability of success over the 1000

paths is 61%, and the worst path has a probability of success

of 13%. This is an indication of the typical and worst-case

success rate of paths planned by a planner unaware of the

uncertainties. Among the paths taking the upper-left passage,

the best one has a success rate of 88% (versus 99% for the

optimal path overall). This shows that the type of sensors

used during execution has a signigicant influence on which

path is optimal.

In Fig. 1(b) the samples of 100 simulations are shown

for the optimal path along with the uncertainty ellipses of

the apriori probability distributions as computed by LQG-

MP. As can be seen, the samples indeed follow the apriori

distributions computed by LQG-MP. This shows that any

error introduced into LQG-MP by the linearization of the

dynamics model is insignificant for this example.

B. Multi-Robot Planning with Differential-Drive Robots

In the second experiment, we apply LQG-MP to multi-

robot motion planning with disc-shaped differential-drive

robots (e.g. Roomba vacuum cleaners). Eight robots need

to move simultaneously to their antipodal position in the

environment without mutual collisions (see Fig. 3(a)). We use

a prioritized approach to the multi-robot planning problem:

the robots are planned for one by one in order of a priority

assigned to them, and aim to avoid collisions with robots of

higher priority, which are treated as moving obstacles [2].

This means that for each robot we apply LQG-MP to a

dynamic environment in which not only the robot itself is

subject to uncertainty, but also the obstacles (i.e. the robots

of higher priority).
1) Dynamics model: The state x = (x, y, θ) of each

robot is a 3-D vector consisting of its position (x, y) and its

orientation θ (see Fig. 3(b)). Its control input u = (vl, vr)
is a 2-D vector consisting of the speeds of the left and

right wheel, respectively, corrupted by process noise m =
(ṽl, ṽr) ∼ N (0, σ2

vI). This gives the following non-linear

dynamics model:

f(x,u,m) =





x+ 1
2
τ(vl + ṽl + vr + ṽr) cos θ

y + 1
2
τ(vl + ṽl + vr + ṽr) sin θ

θ + τ(vr + ṽr − vl − ṽl)/d



 , (30)
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Fig. 3. (a) The environment of Scenario B, in which eight robots have to
move to their antipodal position in the environment without mutual colli-
sions. The numbers indicate the priority rank assigned to each robot. Five
beacons b1, . . . , b5 send out a signal whose strength decays quadratically
with distance. (b) The state x of the differential-drive robot.

where τ is the time step and d the distance between the left

and right wheel of the robot [17].

2) Observation model: The robots receive feedback on

their state from five beacons b1, . . . , b5 scattered around the

environment that each send out an identifiable signal of unit

strength that decays quadratically with the distance to the

beacon. Each beacon bi has a known location (x̌i, y̌i, 1).
Hence, the measurement vector z consists of five readings

of signal strengths, one from each beacon, corrupted by

measurement noise n = (b̃1, . . . , b̃5) ∼ N (0, σ2
b I). This

gives the following non-linear observation model:

h(x,n) =







1/((x− x̌1)
2 + (y − y̌1)

2 + 1) + b̃1
...

1/((x− x̌5)
2 + (y − y̌5)

2 + 1) + b̃5






. (31)

3) Planning objective: For each robot, we aim to mini-

mize the probability that it will collide with a robot of higher

priority along its path. In this experiment, we approximate

this probability more directly than we did for the first

scenario. Let us assume we are planning for robot j, and that

a path has already been planned for robots 1, . . . , j−1. As the

robots are disc-shaped, only their position influences whether

or not they collide. Let N (pi
t,Σ

i
t) be the marginal probability

distribution of the position of robot i at stage t along i’s
path as computed by LQG-MP. Then, the distribution of the

relative position of robot j and robot i (for i ∈ 1, . . . , j− 1)

is N (pi
t−p

j
t ,Σ

i
t+Σj

t ). The probability Pt(i⊗ j) that robot

j collides with robot i at stage t is then given by:

∫

‖p‖<2r

exp(− 1
2
(p−p

ij
t )

T (Σi
t+Σj

t)
−1(p−p

ij
t ))

2π det(Σi
t +Σj

t )
1/2

dp, (32)

where p
ij
t = pi

t − p
j
t . This is the integral over the set of

relative positions p for which the robots collide (that is

when ‖p‖ < 2r, where r is the radius of the robots) of

the probability density function of the distribution of relative

positions, and can be evaluated numerically. It follows that

the probability that robot j does not collide with any robot

TABLE I

RESULTS FOR SCENARIO B (1000 PATHS PER ROBOT)

Computation time Success rate
robot RRT LQG-MP Best path Avg. path

1 22.3s 0.23s 100% 100%
2 28.2s 0.99s 100% 70.3%
3 29.5s 1.75s 100% 69.2%
4 30.5s 2.79s 100% 60.9%
5 57.0s 2.92s 99.2% 10.6%
6 49.8s 3.90s 99.8% 21.0%
7 39.2s 5.26s 99.9% 24.8%
8 77.8s 6.85s 99.7% 13.0%

total 334s 24.7s 98.6% 2.13%

at any stage along its path is:1

ℓ
∏

t=0

j−1
∏

i=1

(1 − Pt(i⊗ j)). (33)

It is the planning objective for robot j to maximize this

probability.

As a secondary objective, we aim to minimize the un-

certainty around the robot’s path to leave maximal “space”

for the other robots. That is, in case of equal probabilities of

success, we aim to minimize the function
∑ℓ

t=0 tr(Σ
j
t ). This

is equivalent to maximizing the likelihood that the robot will

exactly follow the path Π during execution. The robot with

the highest priority does not need to avoid other robots, so it

will select its path purely based on the secondary objective.

4) Results: For each of the robots in turn, we planned

1000 paths using the RRT algorithm and selected the path

that is optimal according to the planning objective. Note that

the paths were planned such that, if there were no uncertainty,

they are collision-free with respect to the robots of higher

priority for which a path has already been selected. The result

is shown in Fig. 4, along with the uncertainty ellipses of the

apriori probability distributions along the paths. It can be

seen that the robots need to get close to the beacons to be able

to estimate their position accurately. Almost all of the robots

move through the region around the central beacons b3 and

b4. At the same time, the robots aim to stay far away from

each other, in order to minimize the probability of collisions.

Robot 2, for instance, makes a wide detour around robot 1.

Robot 3 first avoids robot 1 and then robot 2, causing its

path to have a wide S-shape.

The quantitative results are given in Table I. The second

column shows the time needed to plan 1000 paths for each

robot, and the third column shows the time needed by

LQG-MP to compute the probabilities of success for all

paths. It shows that these probabilities can be computed

efficiently. Per path, it takes an order of magnitude less time

than planning the path itself. The third column shows the

probability of success of the best path among the 1000 paths.

This is the path that LQG-MP selects for the particular robot.

The fourth column shows the average probability of success

of the 1000 paths. This provides an indication of what an

uncertainty-unaware planner would typically achieve. The

1Note that we assume here that the probabilities of avoiding collisions at
different stages along the path are independent. This is not the case, but it
will for practical purposes be a reasonable assumption.



Fig. 4. The paths resulting from consecutively applying LQG-MP to each of the robots in Scenario B (snapshots at t = 0, 3, 6, 9, 12, 16, 20, 28). The
numbers in the top-left image indicate the priority rank of the robots. The arrows show the movement with respect to the previous image. The robots
enlarged by the uncertainty ellipses of their apriori probability distributions are shown in green.

probability that all eight robots successfully reach their

goal is the product of the robot’s individual probabilities of

success, and is shown in the bottom row. This is 98.6% for

LQG-MP, whereas an uncertainty-unaware planner would on

average only have a 2.13% probability of success.

C. 6-DOF Manipulator

In the third experiment, we apply LQG-MP to a holonomic

6-DOF articulated robot in a 3-D environment. The robot

needs to move from its initial state xstart to a configuration

in which the end-effector is inside a goal region on the other

side of the environment.

1) Dynamics model: The state x = (θ1, . . . , θ6) of the

robot is a 6-D vector consisting of the angles of rotation

at each of the joints (see Fig. 5(a)). The control input

u = (ω1, . . . , ω6) is a 6-D vector consisting of the angular

speeds at each of the joints, corrupted by process noise m =
(ω̃1, . . . , ω̃6) ∼ N (0, σ2

ωI). Ignoring higher order dynamics,

this results in the following linear dynamics model:

f(x,u,m) =







θ1 + τ(ω1 + ω̃1)
...

θ6 + τ(ω6 + ω̃6)






. (34)

2) Observation model: The robot receives feedback from

a stereo camera that tracks the position of the end-effector

of the robot. Let p = g(x) be the function relating the set

of joint angles of the state x to the position p ∈ R
3 of the

end-effector. This point is projected on the imaging plane of

each camera i, which has a unit focal distance and a known

location (x̌i, y̌i, ži) (see Fig. 5(b)). Hence, the measurement z

is a 4-D vector consisting of the pixel coordinates of the end-

effector on the imaging planes of both cameras, corrupted

θ1θ6

θ5

θ4

θ2

θ3

x
z

y

p = g(x)

(x̌1, y̌1, ž1) (x̌2, y̌2, ž2)

x

z

(a) (b)

Fig. 5. (a) The state x of the articulated robot of Scenario C. (b) A stereo
camera tracks the position p of the end-effector of the robot.

by measurement noise n ∼ N (0, σ2
nI). Ignoring occlusions,

this gives the following non-linear observation model:

h(x,n) =









(gx(x)− x̌1)/(gz(x)− ž1)
(gy(x) − y̌1)/(gz(x)− ž1)
(gx(x)− x̌2)/(gz(x)− ž2)
(gy(x) − y̌2)/(gz(x)− ž2)









+ n. (35)

3) Planning objective: We aim to maximize the likeli-

hood that the end-effector arrives at its goal position. Let

N (pℓ,Σℓ) be the distribution of the position of the end-

effector at the last stage of the path, then this likelihood is

maximal when tr(Σℓ) is minimal. Σℓ can be approximated

from the variance Xℓ of the state xℓ computed by LQG-MP

as Σℓ = TℓXℓT
T
ℓ , where Tℓ =

∂g
∂x(x

⋆
ℓ ), i.e. the Jacobian of

function g at the goal position.

4) Results: We planned 1000 paths for the robot using

the RRT algorithm, and computed for each the likelihood of

arriving at the goal. Constructing the paths took 192 seconds,
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Fig. 6. The optimal paths for Scenario C when the cameras (blue squares)
are placed (a) next to the robot and (b) above the robot. The jaggedness of
the paths is due to the random nature of the RRT algorithm.

and evaluating them using LQG-MP took 1.16 seconds. The

path found optimal is shown in Fig. 6(a). Interestingly, the

robot chooses to move in the plane perpendicular to the

viewing direction of the camera while being fully stretched

out. In such configurations, the position of the end-effector

contains most information about the angles at the joints. This

apparently outweighs the benefit of more precise positioning

when the end-effector is closer to the camera. Indeed, an

experiment in which the camera is placed above the robot

results in a path with similar characteristics (see Fig. 6(b)).

VI. CONCLUSION AND FUTURE WORK

We have presented LQG-MP, a new approach to motion

planning for robots subject to motion and sensing uncer-

tainty. LQG-MP precisely characterizes the apriori proba-

bility distributions of the state of the robot along a given

path, based on which the path can be optimized for the

task at hand. We have shown that this considerably increases

the probability of a successful execution when compared to

uncertainty-unaware planners. The key of LQG-MP is that it

takes into account the apriori knowledge of both the sensors

and controller in the planning phase.

In the experiments we performed, we have not used the

apriori distributions of the control input that LQG-MP also

computes, nor the covariances between the states at different

stages along the path. We envision that these could be used

to compute the conditional distributions of the remainder of

the path after each application of a control input during the

execution. If the new distributions indicate that the quality

has dropped below a threshold, we might opt to replan.

Current planning times, though, do not allow for real-time

application of LQG-MP. It is a major objective of future

work to bring planning times down, for instance by devising

a focused planner such that planning a large set of candidate

paths using RRT is no longer required. Other limitations,

such as the fact that the candidate paths may not constitute a

representative sample in high-dimensional state spaces, and

the jaggedness of the paths that RRT produces, might then

also be resolved.

We plan to use LQG-MP in future work on optimizing

accuracy and safety in challenging robotic applications, such

as autonomous helicopter flight, needle steering for prostate

brachytherapy, and robotic-assisted surgery.
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[1] R. Alterovitz, T. Siméon, K. Goldberg. The stochastic motion road-
map: a sampling framework for planning with Markov motion uncer-
tainty. Proc. Robotics: Science and Systems, 2007.

[2] J. van den Berg, M. Overmars. Prioritized motion planning for multiple
robots. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
2005.

[3] G. van den Bergen. Collision detection in interactive 3D environments.
Morgan Kaufmann Publishers, 2004.

[4] D. Bertsekas. Dynamic programming and optimal control. Athena
Scientific, 2001.

[5] B. Bouilly, T. Simeon, R. Alami. A numerical technique for planning
motion strategies of a mobile robot in presence of uncertainty. Proc.

IEEE Int. Conf. on Robotics and Automation, 1995.
[6] B. Burns, O. Brock. Sampling-based motion planning with sensing

uncertainty. Proc. IEEE Int. Conf. on Robotics and Automation, 2007.
[7] T. Fraichard, R. Mermond. Path planning with uncertainty for car-like

robots. Proc. IEEE Int. Conf. on Robotics and Automation, 1998.
[8] J. Gonzalez, A. Stentz. Using linear landmarks for path planning with

uncertainty in outdoor environments. Proc. IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems, 2009.
[9] L. Guibas, D. Hsu, H. Kurniawati, E. Rehman. Bounded uncertainty

roadmaps for path planning. Proc. Workshop on Algorithmic Founda-

tions of Robotics, 2008.
[10] Y. Huang, K. Gupta. Collision-probability constrained PRM for a

manipulator with base pose uncertainty. Proc. IEEE/RSJ Int. Conf.

on Intelligent Robots and Systems, 2009.
[11] L. Kaelbling, M. Littman, A. Cassandra. Planning and acting in

partially observable stochastic domains. Artificial Intelligence 101(1-
2):99–134, 1998.

[12] L. Kavraki, P. Svestka, J.-C. Latombe, M. Overmars. Probabilistic
roadmaps for path planning in high dimensional configuration spaces.
IEEE Trans. on Robotics and Automation 12:4(566–580), 1996.

[13] G. Kewlani, G. Ishigami, K. Iagnemma. Stochastic mobility-based
path planning in uncertain environments. Proc. IEEE/RSJ Int. Conf.

on Intelligent Robots and Systems, 2009.
[14] Y. Kuwata, J. Teo, S. Karaman, G. Fiore, E. Frazzoli, J. How. Motion

planning in complex environments using closed-loop prediction. Proc.

AIAA Guidance, Navigation, and Control Conf. and Exhibit, 2008.
[15] S. LaValle, S. Hutchinson. An objective-based framework for motion

planning under sensing and control uncertainties. Int. J. of Robotics

Research 17(1):19–42, 1998.
[16] S. LaValle, J. Kuffner. Randomized kinodynamic planning. Int. Jour-

nal on Robotics Research 20(5):378–400, 2001.
[17] S. LaValle. Planning algorithms. Cambridge University Press, 2006.
[18] A. Lazanas, J. Latombe. Motion planning with uncertainty: a landmark

approach. Artificial Intelligence, 76(1-2):285–317, 1995.
[19] N. Melchior, R. Simmons. Particle RRT for path planning with

uncertainty. Proc. IEEE Int. Conf. on Robotics and Automation, 2007.
[20] P. Missiuro, N. Roy. Adapting probabilistic roadmaps to handle

uncertain maps. Proc. IEEE Int. Conf. on Robotics and Automation,
2006.

[21] A. Nakhaei, F. Lamiraux. A framework for planning motions in
stochastic maps. Proc. Int Conf. on Control, Automation, Robotics

and Vision, 2008.
[22] C. Papadimitriou, J. Tsisiklis. The complexity of Markov decision

processes. Mathematics of Operations Research, 12(3):441–450, 1987.
[23] R. Pepy, A. Lambert. Safe path planning in an uncertain-configuration

space using RRT. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems, 2006.
[24] S. Prentice, N. Roy. The belief roadmap: efficient planning in linear

POMDPs by factoring the covariance. Proc. Int. Symp. of Robotics

Research, 2008.
[25] N. Roy, W. Burgard, D. Fox, S. Thrun. Coastal navigation - mobile

robot navigation with uncertainty in dynamic environments. Proc.

IEEE Int. Conf. on Robotics and Automation, 1999.
[26] S. Thrun, W. Burgard, D. Fox. Probabilistic Robotics, MIT Press,

2005.
[27] G. Welch, G. Bishop. An introduction to the Kalman filter. Tech.

Report TR 95-041, University of North Carolina at Chapel Hill, 2006.
[28] Wikipedia. Chi-square distribution. http://en.wikipedia.org/wiki/Chi

square, 2010.


