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Abstract. A fundamental challenge in manipulating fabric for clothes
folding and textiles manufacturing is computing “pick points” to effec-
tively modify the state of an uncertain manifold. We present a super-
vised deep transfer learning approach to locate pick points using depth
images for invariance to color and texture. We consider the task of bed-
making, where a robot sequentially grasps and pulls at pick points to
increase blanket coverage. We perform physical experiments with two
mobile manipulator robots, the Toyota HSR and the Fetch, and three
blankets of different colors and textures. We compare coverage results
from (1) human supervision, (2) a baseline of picking at the uppermost
blanket point, and (3) learned pick points. On a quarter-scale twin bed,
a model trained with combined data from the two robots achieves 92%
blanket coverage compared with 83% for the baseline and 95% for hu-
man supervisors. The model transfers to two novel blankets and achieves
93% coverage. Average coverage results of 92% for 193 beds suggest that
transfer-invariant robot pick points on fabric can be effectively learned.
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1 Introduction

Fabric manipulation remains challenging for robots, with real-world applications
ranging from folding clothing to handling tissues and gauzes in robotic surgery. In
contrast to rigid objects, fabrics have infinite dimensional configuration spaces.
In this work, we focus on computing suitable pick points for blankets that facil-
itate smoothing and coverage.

Designing an analytic model is challenging because a blanket is a complex
manifold that may be highly deformed, wrinkled, or folded. We present an ap-
proach based on deep learning to find pick points from exposed blanket corners,
where the blankets are strewn across a flat surface (Figure 1). We use depth
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Fig. 1. System overview: the depth image from the robot’s head camera sensors is
passed as input to the grasp neural network. The output is the pixel-space pick point
(x, y), marked by the red circle in the depth and RGB image pair. The robot grasps at
the blanket location corresponding to the pick point, and pulls it towards the nearest
uncovered bed surface corner (to the lower right in this example).

images as the input modality for invariance to different colors and patterns
(Figure 2).

Consider bed-making with a mobile manipulator. Bed-making is a common
home task which is rarely enjoyed and can be physically challenging to senior
citizens and people with limited dexterity. Surveys of older adults in the United
States [1, 7], suggest that they are willing to have a robot assistant in their homes,
particularly for physically demanding tasks. Bed-making is well-suited for home
robots since it is tolerant to error and not time-critical [2, 8]. While prior work
has designed robotic beds equipped with pressure sensors to anticipate patient
pose [28] or to lift people in and out of bed [23], we apply deep transfer learning
to train a single-armed mobile robot with depth sensors to cover a bed with
a blanket, without relying on sophisticated bed-related sensors or mechanical
features.

The contributions of this paper include: (1) a deep transfer learning approach
to selecting pick points that generalizes across robots and blankets, and (2) a
formalization of robot bed-making based on pick points and maximizing blanket
coverage. We present experimental data from two robots, three blankets, and
three pick point methods, demonstrating that learned pick points can achieve
coverage comparable to humans. Code and data are available at https://sites.
google.com/view/bed-make.

2 Related Work

Fabric manipulation has been explored in a variety of contexts, such as in assis-
tive and home robotics through sewing [26], ironing [18], dressing assistance [13,
5], and folding of towels and laundry [22, 29].

Early research in manipulating fabric used a dual-armed manipulator to hold
the fabrics in midair with one gripper, using gravity to help expose borders and
corners for the robot’s second gripper. Osawa et al. [24] proposed the pick point
technique of iteratively re-grasping the lowest hanging point as a subroutine to
flatten and classify clothing. Kita et al. [15, 16] used a deformable object model
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to simulate hung clothing, allowing the second gripper to grasp at a desired
point.

Follow-up work generalized to manipulating unseen articles of clothing and
handling a wider variety of initial cloth configurations. For example, Maitin-
Shepard et al. [19] identified and tensioned corners to enable a home robot to
fold laundry. Their robot grasped the laundry fabric in midair and rotated it to
obtain a sequence of images, and used a RANSAC [9] algorithm to fit corners
to cloth borders. The robot then gripped any corner with its second gripper,
let the cloth settle and hang, and gripped an adjacent corner with its original
gripper. Cusumano-Towner et al. [3] followed-up by improving the subroutine
of bringing clothing into an arbitrary position. They proposed a hidden Markov
model and deformable object simulator along with a pick-point strategy of re-
grasping the lowest hanging point. Doumanoglou et al. [4] extended the results
by using random forests to learn a garment-specific pick point for folding. These
preceding papers rely on gripping the fabrics in midair with a dual-armed robot.
In contrast, we focus on finding pick points on fabric strewn across a horizontal
surface. Furthermore, the fabrics we use are too large for most dual armed robots
to grip while also exposing a fabric corner in midair.

Recently, pick points for fabric manipulation have been learned via reinforce-
ment learning in simulation and then conducting sim-to-real transfer. Thanan-
jeyan et al. [31] developed a tensioning policy for a dual-armed surgical robot
to cut gauze. One arm pinched the gauze at a pick point and pulled it slightly.
The resulting tension made it easier for the second arm, with a scissor, to cut
the gauze. Pick points were selected by uniformly sampling candidates on the
gauze and identifying the best one via brute force evaluation. Matas et al. [21]
benchmarked a variety of deep reinforcement learning policies for grasping cloth
in simulation, and showed transfer to physical folding and hanging tasks. Their
policy outputs a four dimensional action, where the first three are gripper ve-
locities and the last one represents the opening or closing of the gripper for
finalizing pick points. Running pure reinforcement learning on physical robots
remains difficult due to wear and tear. Thus, these approaches for learning pick
points often rely on having accurate environment simulators, but these are chal-
lenging to design and not generally available off-the-shelf for robotics tasks.

Additional fabric manipulation techniques include trajectory transfer and
learning from image-based wrinkles. Schulman et al. [27] propose to adapt a
demonstrated trajectory (including pick points) from training time to the geome-
try at test time by computing a smooth, nonrigid transformation. This technique,
however, assumes that a nonrigid transformation is possible between two point
clouds of the deformable object, which is not generally the case for two different
blanket setups. Jia et al. [12] present a cloth manipulation technique which learns
from image histograms of wrinkles. While they showed impressive human-robot
collaboration results in flattening, folding, and twisting tasks, their dual-armed
robot grasped two cloth corners at initialization and kept the grippers closed
while moving the arms. Thus, the pick point decision is pre-determined, whereas
we learn pick points using deep learning on depth maps.
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Fig. 2. Quarter-scale bed with blue bottom sheet and three different blankets: white
(left), multicolored yellow and blue (Y&B) pattern (middle), and teal (right). The
system is trained on depth images (bottom row).

3 Methodology

Problem Statement We assume a mobile robot with an arm, a gripper, and
color and depth cameras. We assume the robot can position itself to reach any-
where on the half of the bed closest to its position. Let πθ : R640×480 → R2 be
a function parameterized by θ that maps a depth image ot ∈ R640×480 at time
t to a pick point ut = πθ(ot) for the robot. We are interested in learning the
parameters θ such that the robot grasps at the pick point and pulls the blanket
to the uncovered bed frame corner nearest to it.

We represent the resulting blanket configuration with an occupancy function
ξ : R3 → {0, 1} to determine if a point is part of the blanket or not. Let c : ξ → R
be a function representing a desired performance metric. We define c(ξ) as blanket
coverage, and measure it from a top-down camera as the percentage of the top
bed plane covered by blanket ξ.

3.1 Setup

Figure 1 shows an overview of the system. A depth image is presented to a grasp
network (described in Section 3.2) which estimates the location of a suitable pick
point. The robot then moves its gripper to the location, closes it, and pulls in the
direction of the nearest uncovered corner of the bed frame. Due to the stochastic
nature of the task, the robot may not be able to achieve sufficient coverage in a
single attempt. For example, the blanket may slip out of the robot’s grip during
pulling. The robot uses a bed coverage heuristic to decide if it should attempt
another grasp and pull at the same side. In this work, we limit the robot to four
attempts at each of the two sides of the bed.
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Fig. 3. The grasp network architecture. From a (448 × 448 × 3)-sized input image,
we use pre-trained weights to obtain a (14 × 14 × 1024) tensor. The input is resized
from the original (640× 480) depth images. We triplicate the depth image along three
channels for compatibility with pre-trained weights. The notation: “-s2” indicates a
stride of two, and two crossing arrows are a dense layer.

3.2 Grasp Network for Pick Points

The robot captures the depth image from its head camera sensors as observation
ot. We define a grasp network πθ as a deep convolutional neural network [17]
that maps from observation ot to a pixel position ut = (x, y) where the robot
will grasp (i.e., the pick point). We project this point onto the 3D scene by first
measuring the depth value, z, from the corresponding depth image. We then
project (x, y, z) using known camera parameters, and set the gripper orientation
to be orthogonal to the top surface of the bed.

The network πθ is based on YOLO [25], a single shot object detection network
for feature extraction. We utilize pre-trained weights optimized on Pascal VOC
2012 [6]. We call this network YOLO Pre-Trained, and show its architecture in
Figure 3. We fix the first 32 million parameters from YOLO and optimize two
additional convolutional layers and two dense layers.

Since YOLO Pre-Trained has weights trained on RGB images and we use
depth images with the single channel repeated three times to match RGB di-
mensions, we additionally tested full training of YOLO without fixing the first
32 million parameters. This, however, converged to a pixel error twice as large.

4 Data and Experiments

We use two mobile manipulator robots, the HSR [11] and the Fetch [32] (see
Figure 4) to evaluate the generality of this approach. The HSR has an omni-
directional base and a 3 DoF arm. The Fetch has a longer 7 DoF arm and a
differential drive base. Both robots have PrimeSense head camera sensors with
RGB and depth sensors. The robot’s task is to make a quarter-scale bed with
dimensions W = 67 cm, H = 45 cm, and L = 91 cm. The bed consists of one
blanket with area slightly larger than the top surface so that a human can com-
fortably cover it. One end of the blanket is fixed to one of the shorter sides of
the bed frame to simulate two corners being tucked under a mattress. Figure 4
shows a third-person view of the experimental setup with both robots.
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Fig. 4. The HSR (left) and Fetch (right) performing the bed-making task with a white
blanket. The goal is to cover the (dark blue) top bed surface under the blanket. The
yellow arrows indicate the direction of the arm motion.

Fig. 5. Examples of initial states. The grasp network is trained with depth images (top
row). To avoid background noise, we black out regions beyond the validation-tuned
depth value of 1.4 meters. We also show the corresponding RGB images (bottom row).
The training data is automatically labeled with the red marker from the RGB image.
During testing, a network trained on the white blanket is sometimes applied on the
Y&B and the teal blankets shown in the last two columns.

4.1 Data Collection and Processing

To facilitate automatic labeling, we used a white blanket with a red mark at its
corner to define the pick point. The red mark is solely used for training labels,
as the grasp network does not see it in the depth images on which it is trained.

To sample initial states, the human supervisors (the first two authors) fixed a
blanket end to one of the shorter edges of the bed and tossed the remaining part
onto the top surface. If the nearest blanket corner was not visible or unreach-
able from the robot’s position, the supervisors re-tossed the blanket. Figure 5
demonstrates examples of initial states as viewed through the robot’s head cam-
era sensors. From the initial state, the human supervisors performed short pulls
of the blanket and recorded the robot’s depth camera image and the pick point
after each pull. We took 1028 and 990 images from the camera sensors of the
HSR and Fetch, respectively, which we oriented at roughly the same position
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Fig. 6. Left: validation set L2 errors (in pixels) when training the grasp network on
depth data, averaged over 10-fold cross validation with one standard deviation shaded.
Middle: scatter plot showing the distribution of corners (i.e., pick points) in the com-
bined data of 2018 images. Right: heat map of the L2 error in pixel space. The second
and third subplots are overlaid on top of a representative image of the bed to aid
visualization; see Section 5.1 for details. We report results for the model with best
validation set performance.

to keep the viewing angle consistent. The resulting dataset D = {(oi,ui)}Ni=1

is used for training the grasp network with N = 2018. Labels ui correspond to
pixel coordinates of the red marked location in oi.

We performed several data pre-processing steps to better condition the op-
timization. To avoid noise from distant background objects, we set all depth
values beyond 1.4 meters from the robot’s head camera to zero. Then, depth
values are scaled into the range [0, 255] to form oi, matching the scale of pixels
in the RGB images used for pre-trained weights. We also apply the following
data augmentation techniques on oi: adding uniform noise in the range [−4, 4],
adding zero-mean Gaussian noise with standard deviation σ = 15, adding black
dots randomly to 0.4% of the pixels, adding black or white dots randomly (again,
to 0.4% of the pixels), and a flip about the vertical axis to simulate being on the
opposite side of the bed. These techniques result in 10x more training data.

The parameters of πθ are optimized via Adam [14] by minimizing the L2 loss.
The learning rate and L2 regularization strength hyperparameters are chosen
based on 10-fold cross-validation performance, where for each fold we train until
the validation L2 error stops decreasing. For deployment, we train the grasp
network using the combined data from all 10 folds, on the best hyperparameters.

5 Results

In this section, we present pick point prediction and blanket coverage results.

5.1 Grasp Network Training

To evaluate the accuracy of pick point estimation, we analyzed the L2 error
between the estimated pick point and the ground truth. Figure 6 (left) demon-
strates training results of the grasp network over the best hyperparameter set.
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Fig. 7. Average L2 pixel error on a held-out set of 205 testing images for five training
sets of different sizes. Data sizes range from 201 to 1813 images. Results are a function
of the cumulative number of data points consumed (and not epochs, which depend on
the overall data size) during training, so the curves also measure efficiency of reducing
the L2 pixel error. The results suggest diminishing returns on more data once we hit
around 2/3 (i.e., 1208 images) of the largest size here.

It shows the L2 pixel prediction losses as a function of training epoch, indicat-
ing that it converges to 27 pixel error. This pixel error for the grasp network
corresponds to the 93% and 89% coverage results for the network that we later
report in Section 5.3 and Figure 9.

Figure 6 also presents a scatter plot of the distribution of training points
(i.e., pick points) and a heat map of those points and their held-out L2 losses
in pixels for the best-performing validation set iteration. Not all the scatter plot
points are on top of the bed surface shown in Figure 6. The scatter plot and
heat map are only overlaid over a representative image that the robot might see
during the task. Though we set the robot to be at roughly the same position
each time we collect data or run the task, in practice there are variations due
to imperfections in robotic base motion so the precise pixel location of the bed
is not fixed. We observe that the heat map shows darker regions towards the
extremes of the dataset, particularly to the left and bottom. These correspond
to when blanket corners occur near the edge of the bed surface.

We next investigate the effect of training data size on L2 pixel error of the
pick points. We set aside a held-out set of 205 images, roughly the size of one
fold in 10-fold cross validation. We use the remaining 2018− 205 = 1813 images
for training, which we sampled to get 4 training datasets of increasing sizes:
1
9 ,

2
9 ,

4
9 ,

6
9 of the training dataset. Figure 7 plots a single training run for each

of the subsets, as a function of total training points consumed. The number of
points consumed is the number of Adam gradient steps multiplied by the batch
size, which was fixed at 32. The results suggest a clear benefit to having more
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Fig. 8. Three representative depth images, with blanket corner estimates overlaid from
the Harris Corner Detector (blue “X”) and the grasp network (red circle), along with
the ground truth (green “X”). The blue circle represents the bottom right corner from
the set of candidates found by the Harris Corner Detector. Left: no corners are detected
on the top surface. Middle: the detector finds many false positives, but some corners
are close to the ground truth. Right: all detected corners are false positives.

training data, with curves corresponding to larger datasets converging to lower
L2 error. Nonetheless, we observe diminishing returns at roughly two-thirds of
the full training set. While the largest training size gets around 30 L2 error,
using about two-thirds of it can attain almost the same test error. For the rest
of this paper, we report results with πθ trained on all the training data.

5.2 Harris Corner Detector is Insufficient

We also investigated whether classical corner detection methods such as the
Harris Corner Detector (HCD) [10] can be used for selecting blanket corners as
pick points. We applied the HCD to get a set of candidates. Then, we selected
the corners lying on the bed surface, and picked the one closest to the bottom
right of the image. We used a detector tuned for high sensitivity3 on 202 depth
images of our dataset (Section 4.1). Figure 8 shows three representative depth
images with corner estimates from the grasp network, the HCD, and the ground
truth. In some instances HCD fails to detect any corners, and in others, it returns
many false positives. Overall, it failed to detect corners in 20 images (10%) and,
when a corner was detected, the average L2 pixel error was 175.0, about 6x worse
than the best-performing grasp network presented in Section 5.1. Based on these
results, we do not pursue the corner detection approach in the rest of this paper.

5.3 Physical Robot Deployment Evaluation

To evaluate the proposed system, we deployed the trained network on two robots.
We benchmark the results versus two alternative pick point methods: an analytic
highest-point baseline and a human supervisor. For each experimental condition,
we report average coverage before and after each rollout. To evaluate blanket

3 We used the OpenCV implementation with block size at 2, Sobel derivative aperture
parameter at 1, and free parameter k at 0.001.
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coverage, we measure the area of the bed’s top surface and the area of its uncov-
ered portion using contour detection on a top-down camera image. All images
used for coverage results in the following experiments are on the project website.

Bed-Making Rollout To start each rollout, the robot is positioned at one of
the longer sides of the bed. The robot determines a pick point on the blanket
based on one of three methods (analytic, human, or learned) then grasps and
pulls it to the nearest uncovered bed corner. The robot repeats the process on
the second side of the bed.

As stated in Section 3.1, the robot is allowed up to four grasp and pull
attempts per side. Thus, after each attempt, the robot visually checks if its action
resulted in sufficient coverage. We can use a variety of heuristics to measure
coverage and encode this behavior. For these experiments, we trained a second
deep neural network with the same architecture as the grasp network. We trained
it to detect, given the depth image, if the side closest to the robot is sufficiently
covered. This network was applied to all experimental conditions to allow us to
focus on comparing pick point methods.

Initialization and Pick Point Method Selection To ensure the evaluations
are fair with respect to the initial blanket state, the blanket is tossed on the
the bed frame, then one of the three pick point methods (analytic, human, or
learned) is selected at random. This was repeated until we achieved a minimum
of 24 and 15 rollouts per method for the HSR and Fetch, respectively.

Analytic Highest Point Baseline We benchmark with an analytic baseline
where the robot grips the highest reachable point on the blanket. Figure 9 shows
that the analytic baseline achieves 85± 8% and 81± 15% coverage for the HSR
and Fetch, over 24 and 15 rollouts, respectively.

The analytic method performs reasonably well, but has high variance. The
highest point may correspond to a corner fold, in which case the analytic method
will significantly increase coverage. When the pick point is not at a corner fold,
the analytic method tends to use multiple grasp and pull actions, which also in-
creases coverage. After the first attempt, however, the blanket corner frequently
gets folded under, limiting future coverage increases. Figure 10 shows the HSR
following the highest point baseline grasping procedure. After the robot grasps
and pulls the highest point, it attains significant coverage, but the blanket is at
a state that little further improvements can be made.

Human Supervisor As another benchmark, we have humans (the first two
authors) select pick points via a click interface over a web-server application.
The human was only provided the usual depth image as input, to be consistent
with the input to the grasp network, and did not physically touch the robot or
the blanket. Figure 9 suggests that the human supervisor achieves 96± 4% and
93± 10% coverage for the HSR and Fetch, over 24 and 15 trials, respectively.
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Fig. 9. Bed coverage results with the HSR (blue) and Fetch (red) at the start and end
of each rollout, all applied on a bed with the white blanket. Human: human selecting
pick points via a click interface. Analytic: the highest reachable point baseline. Learned :
depth-based neural network, the pick point method we propose in this paper based on
depth images of the blanket. The error bars represent one standard deviation.

Learned Grasp Network Figure 9 shows that on the white blanket, the
learned grasp network πθ attains 93±7% and 90±9% coverage for the HSR and
Fetch, over 24 and 19 trials, respectively (with an average coverage of 92% for
both robots combined). This outperforms the analytic baseline, demonstrating
the feasibility of a learning based approach. Moreover, the trained grasp network
performs nearly as well as the human supervisor. These results are consistent
among the two robots, providing evidence of the robot-to-robot transfer capabil-
ity of the method. The accompanying video shows a rollout of the learned grasp
network deployed on both robots.

To test for statistical significance among different experimental conditions,
we use the Mann-Whitney U test [20]. The standard t-test is not used as the
coverage metric is not normally distributed. For the HSR, the Mann-Whitney U
test for the analytic versus learned network (when applied on the white blanket
setup) is p = 0.00034, a strong indicator of statistical significance. The same test
for the learned network versus a human results in a higher value of p = 0.0889,
suggesting that the learned grasp network’s performance more closely matches
the human supervisor than the analytic baseline.

Average Number of Grasps We analyzed the average number of grasp at-
tempts made by each method. Each rollout was limited to a maximum of eight
grasp attempts (four per side). The highest point baseline required an average
of 6.2 and 4.9 attempts for the HSR and Fetch, respectively, compared to 4.4
and 4.3 for the learned network, and 2.8 and 3.0 for the human supervisor. The
baseline method used more attempts because it often covered the blanket corner
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Fig. 10. The HSR following the analytic baseline. It grasps at the highest reachable
point and pulls in the direction of the yellow arrow, improving coverage.

during the first pull and failed to make progress in the remaining grasps before
reaching the limit of four attempts per side.

Depth-Based Grasp Network Generalization We tested the generalization
capability of the method to blankets with different colors and patterns: the
multicolored Y&B and teal blankets shown in Figure 2. We deployed the same
grasp network (trained on depth images of the white blankets) on the HSR with
24 rollouts for each of the two other blankets. The results in Figure 11 show that
the HSR attains 92± 5% and 93± 5% coverage for the Y&B and teal blankets,
respectively. The Mann-Whitney U tests for the depth-based grasp network on
white versus Y&B, white versus teal, and teal vs Y&B blankets (24 rollouts
for each comparison) are p = 0.227, p = 0.844, and 0.327, respectively. These
relatively high p-values mean we cannot reject a hypothesis that the coverage
samples in each group are from the same distribution, suggesting that the grasp
neural network trained on depth images (of the white blanket) directly transfers
to two other blankets despite slightly different material properties; the Y&B
blanket is thinner, while the teal blanket is less elastic and has a thin white
sheet pinned underneath it.

RGB-Based Grasp Network Generalization We trained a new grasp net-
work using the RGB images of the white blanket to compare with the depth-
based approach. Other than this change, the RGB-based network was trained
in an identical manner as the depth-based network. From Figure 11, we observe
that the RGB-based network obtains 86±8% and 86±8% coverage on the Y&B
and teal blankets, suggesting that the depth-based method generalizes better
to different colors and patterns. Empirically, we observe that the RGB-based
network consistently grasps the Y&B blanket close to the center of its area over
the bed’s top surface. For the teal blanket, it tends to pick anywhere along the
exposed white underside, or near the center if there is no white visible.
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Fig. 11. Results of generalization to blankets with different colors and patterns using
the HSR. RGB-to-Y&B and RGB-to-Teal : the RGB-based grasp network on Y&B and
teal blankets. Depth-to-Y&B and Depth-to-Teal : depth-based grasp network on Y&B
and teal blankets. The error bars represent one standard deviation.

5.4 Timing Analysis

We performed experiments on a single workstation with an NVIDIA Titan Xp
GPU, and list timing results in Table 1 for the three major components of the
bed-making rollout: moving to another side of the bed, physical grasp execution,
and grasp network forward passes (if applicable). The reported numbers combine
all relevant trials from Figures 9 and 11, with 144 and 49 total rollouts for the
HSR and Fetch, respectively. The major bottlenecks are moving to another side,
which required 32± 2 s and 29± 22 s for the HSR and Fetch, respectively, and
grasp execution, which took 18±2 s and 88±19 s. In contrast, the fast single-shot
CNN required a mean time of just 0.1± 0.02 s.

6 Conclusion and Future Work

We presented a supervised learning approach to select effective pick points on
fabrics. The method uses depth images to be invariant to the color and pattern
of the fabric. We applied the method to a quarter-scale bed-making task, where
the robot grasps at a pick point and pulls the blanket to the edge of the bed
to increase coverage. We trained a grasp network to estimate pick points, and
deployed it on the HSR and Fetch. Results suggest that the proposed depth-based
grasp network outperforms an analytic baseline that selects the highest blanket
point, and better generalizes to different fabrics as compared to an RGB-based
network.

In future work, we will explore scalable representations for learning pick
points with Fog robotics [30]. We will also extend the bed-making task by re-
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Table 1. Timing results of bed-making rollouts for the HSR and Fetch, all in seconds,
and the number of times the statistic was recorded (“quantity”). Moving to a Side:
moving from one side of the bed to another, which happens once per rollout. Grasp
Execution: the process of the robot moving its end-effector to the workspace and pulling
to a target. Neural Network Pass: the forward pass through the grasp network, which
is not recorded for the analytic and human pick point methods.

Component Mean Time (Sec.) Quantity

HSR
Moving to a Side 32± 2 144
Grasp Execution 18± 2 706
Neural Network Pass 0.1± 0.2 491

Fetch
Moving to a Side 29± 22 49
Grasp Execution 88± 19 201
Neural Network Pass 0.1± 0.2 82

ducing the number of hard-coded robot actions and learning policies that can
handle a wider variety of blanket configurations. Such policies may be learned
using reinforcement learning in combination with cloth simulators to decrease
the number of real-world examples required. Finally, we plan to explore applica-
tion to manipulating furniture covers, table cloths, textiles, and other deformable
objects.

Acknowledgments

This research was performed at the AUTOLAB at UC Berkeley in affiliation with the
Berkeley AI Research (BAIR) Lab, Berkeley Deep Drive (BDD), the Real-Time Intelli-
gent Secure Execution (RISE) Lab, and the CITRIS “People and Robots” (CPAR) Ini-
tiative, and by the Scalable Collaborative Human-Robot Learning (SCHooL) Project,
NSF National Robotics Initiative Award 1734633. The authors were supported in part
by donations from Honda Research Institute Siemens, Google, Amazon Robotics, Toy-
ota Research Institute, Autodesk, ABB, Samsung, Knapp, Loccioni, Intel, Comcast,
Cisco, Hewlett-Packard and by equipment grants from PhotoNeo, NVidia, and Intu-
itive Surgical. We thank Ashwin Balakrishna, David Chan, Carolyn Chen, Zisu Dong,
Jeff Ichnowski, Roshan Rao, and Brijen Thananjeyan for helpful feedback. Daniel Seita
is supported by a National Physical Science Consortium Fellowship.

References

[1] Jenay M Beer et al. “The Domesticated Robot: Design Guidelines for
Assisting Older Adults to Age in Place”. In: ACM/IEEE International
Conference on Human-Robot Interaction (HRI). 2012.

[2] Jacqueline Bloomfield, Anne Pegram, and Anne Jones. “Recommended
Procedure for Bedmaking in Hospital”. In: Nursing Standard 22 (2008).

[3] Marco Cusumano-Towner et al. “Bringing Clothing Into Desired Configu-
rations with Limited Perception”. In: IEEE International Conference on
Robotics and Automation. 2011.



REFERENCES 15

[4] Andreas Doumanoglou et al. “Autonomous Active Recognition and Un-
folding of Clothes Using Random Decision Forests and Probabilistic Plan-
ning”. In: IEEE International Conference on Robotics and Automation.
2014.

[5] Zackory Erickson et al. “Deep Haptic Model Predictive Control for Robot-
Assisted Dressing”. In: IEEE International Conference on Robotics and
Automation. 2018.

[6] M. Everingham et al. The PASCAL Visual Object Classes Challenge 2012
(VOC2012) Results. http://www.pascal-network.org/. 2012.

[7] Neta Ezer, Arthur Fisk, and Wendy Rogers. “More than a Servant: Self-
Reported Willingness of Younger and Older Adults to having a Robot
perform Interactive and Critical Tasks in the Home”. In: Proc Hum Factors
Ergon Soc Annu Meet (2009).

[8] Cara Bailey Fausset et al. “Challenges to Aging in Place: Understanding
Home Maintenance Difficulties”. In: Journal of Housing for the Elderly
25.2 (2011), pp. 125–141.

[9] Martin A. Fischler and Robert C. Bolles. “Random Sample Consensus:
A Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography”. In: Commun. ACM 24.6 (June 1981).

[10] Chris Harris and Mike Stephens. “A Combined Corner and Edge Detec-
tor”. In: In Proceedings of the Fourth Alvey Vision Conference. 1988.

[11] Kunimatsu Hashimoto et al. “A Field Study of the Human Support Robot
in the Home Environment”. In: IEEE Workshop on Advanced Robotics and
its Social Impacts. 2013.

[12] Biao Jia et al. “Cloth Manipulation Using Random-Forest-Based Imitation
Learning”. In: IEEE International Conference on Robotics and Automa-
tion. 2019.

[13] Chih-Hung King et al. “Towards an Assistive Robot that Autonomously
Performs Bed Baths for Patient Hygiene”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2010.

[14] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic
Optimization”. In: International Conference on Learning Representations
(ICLR). 2015.

[15] Yasuyo Kita et al. “A Method For Handling a Specific Part of Clothing by
Dual Arms”. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 2009.

[16] Yasuyo Kita et al. “Clothes State Recognition Using 3D Observed Data”.
In: IEEE International Conference on Robotics and Automation. 2009.

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Clas-
sification with Deep Convolutional Neural Networks”. In: Neural Informa-
tion Processing Systems (NIPS). 2012.

[18] Yinxiao Li et al. “Multi-Sensor Surface Analysis for Robotic Ironing”. In:
IEEE International Conference on Robotics and Automation. 2016.

[19] Jeremy Maitin-Shepard et al. “Cloth Grasp Point Detection Based on
Multiple-View Geometric Cues with Application to Robotic Towel Fold-



16 REFERENCES

ing”. In: IEEE International Conference on Robotics and Automation.
2010.

[20] H. B. Mann and D. R. Whitney. “On a Test of Whether one of Two
Random Variables is Stochastically Larger than the Other”. In: The Annals
of Mathematical Statistics (1947).

[21] Jan Matas, Stephen James, and Andrew J. Davison. “Sim-to-Real Rein-
forcement Learning for Deformable Object Manipulation”. In: Conference
on Robot Learning (CoRL) (2018).

[22] Stephen Miller et al. “A Geometric Approach to Robotic Laundry Fold-
ing”. In: International Journal of Robotics Research (IJRR). 2012.

[23] Toshiharu Mukai et al. “Development of a Nursing-Care Assistant Robot
RIBA That Can Lift a Human in Its Arms”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2010.

[24] Fumiaki Osawa, Hiroaki Seki, and Yoshitsugu Kamiya. “Unfolding of Mas-
sive Laundry and Classification Types by Dual Manipulator”. In: Journal
of Advanced Computational Intelligence and Intelligent Informatics 11.5
(2007).

[25] Joseph Redmon et al. “You Only Look Once: Unified, Real-Time Object
Detection”. In: IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). 2016.

[26] Johannes Schrimpf and Lars Erik Wetterwald. “Experiments Towards Au-
tomated Sewing With a Multi-Robot System”. In: IEEE International
Conference on Robotics and Automation. 2012.

[27] John Schulman et al. “Learning from Demonstrations Through the Use
of Non-Rigid Registration”. In: International Symposium on Robotics Re-
search (ISRR). 2013.

[28] Kap-Ho Seo et al. “Bed-Type Robotic System for the Bedridden”. In: IEEE
International Conference on Advanced Intelligent Mechatronics. 2005.

[29] Syohei Shibata et al. “A Trajectory Generation of Cloth Object Fold-
ing Motion Toward Realization of Housekeeping Robot”. In: International
Conference on Ubiquitous Robots and Ambient Intelligence (URAI). 2012.

[30] A. K. Tanwani et al. “A Fog Robotics Approach to Deep Robot Learning:
Application to Object Recognition and Grasp Planning in Surface Declut-
tering”. In: IEEE International Conference on Robotics and Automation.
2019.

[31] Brijen Thananjeyan et al. “Multilateral Surgical Pattern Cutting in 2D
Orthotropic Gauze with Deep Reinforcement Learning Policies for Ten-
sioning”. In: IEEE International Conference on Robotics and Automation.
2017.

[32] Melonee Wise et al. “Fetch & Freight: Standard Platforms for Service
Robot Applications”. In: IJCAI Workshop on Autonomous Mobile Service
Robots. 2016.


