Mechanical Search: Multi-Step Retrieval
of a Target Object Occluded by Clutter

Michael Danielczuk*!, Andrey Kurenkov*2, Ashwin Balakrishna!, Matthew Matl!,
David Wangl, Roberto Martin-Martin, Animesh Gargz, Silvio Savarese?, Ken Goldberg]

Abstract— When operating in unstructured environments
such as warehouses, homes, and retail centers, robots are
frequently required to interactively search for and retrieve
specific objects from cluttered bins, shelves, or tables. Me-
chanical Search describes the class of tasks where the goal
is to locate and extract a known target object. In this paper,
we formalize Mechanical Search and study a version where
distractor objects are heaped over the target object in a bin.
The robot uses an RGBD perception system and control policies
to iteratively select, parameterize, and perform one of 3 actions
— push, suction, grasp — until the target object is extracted, or
either a time limit is exceeded, or no high confidence push or
grasp is available. We present a study of 5 algorithmic policies
for mechanical search, with 15,000 simulated trials and 300
physical trials for heaps ranging from 10 to 20 objects. Results
suggest that success can be achieved in this long-horizon task
with algorithmic policies in over 95% of instances and that the
number of actions required scales approximately linearly with
the size of the heap. Code and supplementary material can be
found at http://ai.stanford.edu/mech-search.

I. INTRODUCTION

In unstructured settings such as warehouses or homes,
robotic manipulation tasks are often complicated by the
presence of dense clutter that obscures desired objects.
Whether a robot is trying to retrieve a can of soda from a
stuffed refrigerator or pick a customer’s order from warehouse
shelves, the target object is often either not immediately
visible or not easily accessible for the robot to grasp. In these
situations, the robot must interact with the environment to
localize the target object and manipulate the environment to
expose and plan grasps (see Figure 1). Mechanical Search
describes a class of tasks where the goal is to locate and
extract the target object, and poses challenges in visual
reasoning, task, motion, and grasp planning, and action
execution.

Significant progress has been made in recent years on
sub-problems relevant to Mechanical Search. Deep-learning
methods for segmenting and recognizing objects in images
have demonstrated excellent performance in challenging
domains [16, 30, 41] and new grasp planning methods have
leveraged convolutional neural networks (CNNs) to plan and
execute high-quality grasps directly from sensor data [13,
23, 25]. By combining object segmentation and recognition
methods with action selectors that can effectively choose
between different motion primitives in long horizon sequential
tasks, multi-step policies can search for a target object and
extract it from clutter.

* Authors have contributed equally and names are in alphabetical order.
University of California, Berkeley 2Stanford University

AN .

Target

A

[

2 N

Fig. 1: To locate and extract the target object from the bin, the system selects
between 1) grasping objects with a parallel-jaw gripper, 2) pushing objects,
or 3) grasping objects with a suction-cup gripper until the target object is
extracted, a time limit is exceeded, or no high-confidence push or grasp is
available.

In this paper, we propose a framework that integrates
perception, action selection, and manipulation policies to
address a version of the Mechanical Search problem, with 3
contributions:

1) A generalized formulation of the family of Mechanical
Search problems and a specific version for retrieving
occluded target objects from cluttered bins using a series
of parallel jaw grasps, suction grasps and pushes.

2) An implementation of this version, using depth-based
object segmentation, single-shot image recognition, low-
level grasp and push planners, and five action selection
policies.

3) Data from simulation and physical experiments evalu-
ating the performance of the five policies and that of
a human supervisor. For simulated experiments, each
policy was evaluated on a set of 1000 heaps of 10-20
objects sampled from 1600 3D object models; physical
experiments used 50 heaps sampled from 75 common
household objects.

II. BACKGROUND AND RELATED WORK

Perception for Sequential Interaction: Searching for
an object of interest in a static image is a central problem
in active vision [29, 38, 45]. There has also been work

http://ai.stanford.edu/mech-search

on optimizing camera positioning for improving visual
recognition (i.e., active perception [1, 2]) and embodied
interactions to explore (i.e., interactive perception [4, 14]).
Mechanical Search differs from prior works in interactive
perception in that it deals with long grasping sequences.

Recent deep learning based methods achieve remarkable
success in segmentation of RGB [36, 39] and depth images [6],
as well as in localizing visual templates in uncluttered [22,
47] and cluttered scenes [30, 41]. Furthermore, one-shot
learning approaches using Siamese Networks for matching a
novel visual template in images [22, 47] can translate well
to pattern recognition in clutter [30, 41]. We build on Mask
R-CNN [16] by training a variant for depth-image based
instance segmentation and leverage a Siamese network for
target template matching for localization.

Grasping and Manipulation in Clutter: Past approaches
to this problem can be broadly characterized as model-based
with geometric knowledge of the environment [3, 31, 42]
and model-free with only raw visual input [20, 24, 40].
Recent studies have leveraged CNNs for casting grasping as
a supervised learning problem with impressive results [11,
18, 19, 23, 26, 46, 50]. Pushing and singulation can facilitate
grasping in cluttered scenes [5, 8, 17]. Techniques for grasping
in clutter, either as open-loop prediction or as closed-loop
continuous control, have been studied but have not dealt
with the multi-step plans that are critical to attain successful
grasps on occluded or inaccessible target objects [19, 32]. In
contrast, we formulate Mechanical Search as an interactive
search problem in significant clutter, necessitating a multi-step
process combining grasping and pushing actions.

Sequential Decision Making: Sequential composition of
primitives to enable long-term environment interaction has
often been approached through hierarchical decomposition
of control policies to manage task complexity. The idea of
using hierarchical models for complex tasks has been widely
explored in both reinforcement learning and robotics [21, 43,
44]. Training such multi-level models can be computationally
expensive and has been limited to either simulated or
elementary physical tasks [10, 49].

Search Based Methods: Traditional task planning ap-
proaches abstract away perception and focus on high-level
task plans and low-level state spaces [12, 42]. For instance,
in robotic applications, hierarchical methods have been used
to learn task planning strategies while abstracting away low-
level motion planning [35, 42, 48]. However, high-level
planning requires complete domain specification a priori,
and complex geometric and free space reasoning make this
approach applicable only to uncluttered environments with
few objects, such as a tabletop with one or two objects.

A similar problem has been studied in the context of
mobility under problem domains of target-driven and semantic
visual navigation [15, 33, 51]. These studies look at finding
visual targets in unknown environments without maps through
sensory pattern matching. The work by Guptaet al. [14] is
the closest to the approach considered in this paper. Their
work also considers the problem of searching for a specific

object using pushing and grasping actions, but when the
objects are arranged in a shelf. We consider significantly more
cluttered settings, while also executing temporally extended
manipulation policies.

III. MECHANICAL SEARCH: PROBLEM FORMULATION

In Mechanical Search, the objective is to retrieve a specific
target object (x*) from a physical environment (E) containing
a variety of objects X within task horizon H while minimizing
time. The agent is initially provided with a specification of
the target object in the form of images, text description, a 3D
model, or other representation(s). We can frame the general
problem of Mechanical Search as a Partially Observable
Markov Decision Process (POMDP), defined by the tuple
(S, AT, R,Y).

« States (S). A bounded environment E at time 7 con-

taining N objects s, = {O1,, ...,On, }. Each object state
O, includes a ground truth triangular mesh defining the
object geometry and pose. Each state also contains the
pose and joint states of the robot as well as the poses
of the sensor(s).

o Actions (A). A fixed set of parameterized motion
primitives.

« Transitions (7). Unknown transition probability distri-
bution P: S xS x A — [0, oo).

« Rewards (R). Function given by R, = R(s;,a;) — R
at time ¢ that estimates the change in probability of
successfully extracting the target object x* € X within
task horizon H.

o Observations ())). Sensor data, such as an RGB-D
image, y; from robot’s sensor(s) at time ¢ (see Fig. 1).

In this paper, we focus on a specific version of Mechanical
Search: extracting a target object specified by a set of k
RGB images from a heap of objects in a single bin while
minimizing the number of actions needed. For this problem,
we precisely specify the observations, the action set, and the
reward function. All other aspects of the problem formulation
are sufficiently captured by the general POMDP formulation
above.

o Observations. An RGB-D image from an overhead
camera.

« Actions.

— Parallel Jaw Grasping: A center point p= (x,y,2) €
R3 between the jaws, and an angle in the plane of the
table ¢ € S' representing the grasp axis [26].

— Suction Grasping: A target point p = (x,y,z) € R?
and spherical coordinates (¢,8) € S? representing the
axis of approach of the suction cup [27].

— Pushing: A linear motion of the robot end-effector
between two points p and p’ € R.

« Reward. Let v;, derived from y;, denote the estimated
grasp reliability on the target object. An intuitive reward
function would be the increase in estimated grasp
reliability on the target object:

R(se,ar) = Vi1 — v

Perception

— Recognition

Target Images

Mask Target
Probabilities

Siamese

Search Policy

Action Selector Action

High-Level Planner

Network

i . Prarger = 0.99
Observation

Segmentation

RGB Image Color Masks

Depth-Based
Mask R-CNN

e
o/’
Y

Depth Image

s]a]s

Action Policies

Suction

o

Fig. 2: System architecture. At each timestep, the RGB-D image of the bin is segmented using a variant of Mask R-CNN trained on synthetic depth images.
The colorized masks are each assigned a probability of belonging to the target object using a Siamese Network as a pattern comparator. These masks are
then fed to an action selector, which chooses which object to manipulate and passes that object mask as context to all the action policies. These policies
each compute an action with an associated quality score and pass them back to the action selector, which then chooses an action and executes it on the
physical system. This process continues until the target object is retrieved. In simulation, the perception pipeline is removed and planners operate on

full-state information rather than object masks.

The policies used in this paper do not directly optimize
this reward function because it is difficult to compute;
instead, they continue to remove and push objects via
heuristic methods until the target object is extracted. In
future work, we will develop methods to approximate
this function.

IV. PERCEPTION AND DECISION SYSTEM

As shown in Figure 2, we implement the system both in
simulation and for physical experiments via a pipeline for
perception and policy execution.

A. Perception

The system first processes the RGB-D image into a set of
segmentation masks using an object instance segmentation
pipeline trained on synthetic depth images. Then, a Siamese
network is used to attempt to identify one of the masks as
the target object, and a target mask is returned if a high
confidence match is found. If no high confidence match is
found, the perception system reports that no masks match
the target object.

Object Instance Segmentation: We first compute a mask
for each object instance. Each mask is a binary image with the
same dimensions as the input RGB-D image. These masks
are computed with SD Mask R-CNN, a variant of Mask
R-CNN trained exclusively on synthetic depth images [9].
It converts a depth image into a list of unclassified binary
object masks, and generalizes well to arbitrary objects without
retraining. Recent results suggest that depth cues alone
may be sufficient for high-performance segmentation, and
this network’s generalization capabilities are beneficial in a
scenario where only the target object is known and many
unknown objects may be present.

Target Recognition: Next, the set of masks is combined
with the RGB image to create color masks of each object.
Each of the m color masks is cropped, scaled, rotated, and
compared to each of the k images in the target object image
set using a Siamese network [22]. For each pair of inputs,
the Siamese network outputs a recognition confidence value
between 0 and 1, with a mask’s recognition confidence score
set to the maximum recognition confidence value over the

k target object images. If the mask with the highest score
has a score above recognition confidence threshold ¢,, the
mask is labeled as the target object. Otherwise, we report
that no masks match the target object. See the supplementary
materials on website for training and implementation details.

B. Search Policy

Given the RGB-D image and the output of the perception
pipeline, the system executes the next action in the search
procedure by selecting the object to act on and the action to
perform on it. Our approach to the version of Mechanical
Search described in Section III for bin picking includes
searching for actions in three continuous spaces (parallel
jaw grasp, suction grasp and push). However, more complex
versions of Mechanical Search (e.g., search for an object
in a house) could have even more complex search spaces
(e.g., navigation). To allow our method to scale to these more
complex versions, we propose a hierarchical approach: (1)
an action selector that queries a set of action policies on a
specific object for a particular action and associated quality
metric and (2) action policies that correspond to the possible
actions in the problem formulation.

Action Selection: The search policy first determines
which object masks to send to the action policies. Then, using
the actions and associated quality metric returned by the low
level policies, the high level planner determines whether to
execute the action in the environment.

The action selector takes as input from the perception
system the set of all m visible object masks ([o1,...0m]),
possibly including an object mask that is positively identified
as the target object (or), from the perception system. It
then selects an action policy and a goal object, 0gyq, from
[01,...0,] and sends the action policy a query g(0goar). The
action policy p; responds with an action a; = p;(04041) and
a quality metric Q(a;,0404) for the action, which is used to
decide whether to execute the action.

Action Policies: Each action policy p; takes as input an
object mask from the action selector (0404) and the RGBD
image observation and returns an action a; = p;(0goa) and a
quality metric Q(a;, 0goar). In simulation, the object masks and
depth images are generated from ground-truth renderings of

each object, while in physical experiments, depth images are
obtained using a depth sensor and object masks are generated
by the perception pipeline. The set of action policies in our
system are:

Parallel Jaw Grasping: In simulation, pre-computed
grasps are indexed from a Dex-Net 1.0 parallel-jaw grasping
policy [28], and the grasp with the highest predicted quality
0N 0g,q is returned as the action along with an associated
quality metric. For physical experiments, parallel-jaw grasps
are planned using a Dex-Net 2.0 Grasp Quality CNN (GQ-
CNN) [25]. To plan grasps for a single object in a depth image,
grasp candidate sampling is constrained to the goal object’s
segmentation mask. The GQ-CNN evaluates each candidate
grasp and returns the grasp with the highest predicted quality
and its associated quality metric.

Suction Grasping: For simulation experiments, grasp
planning is done with a Dex-Net 1.0 suction grasping
policy [28]. For physical experiments, suction cup grasps
are planned with a Dex-Net 3.0 GQ-CNN [27], with mask-
based constraints to plan grasps only on the goal object’s
segmentation mask. The GQ-CNN evaluates each candidate
grasp and returns the grasp with the highest predicted quality
and its associated quality metric.

Pushing: The pushing action policy, similar to that in [8],
selects p’ as the most free point in the bin. This point is
computed by taking the signed distance transform of a binary
mask of the bin walls and objects, finding the pixel with the
maximum signed distance value, and deprojecting that pixel
back into R3. Given an object to push, p is then selected so
that the gripper is not in collision at p, the line from p to
p’ passes through the object’s center of mass, and the push
direction is as close as possible to the direction of the most
free point in the bin. The pushing policy returns the push
satisfying the above constraints as its action if one exists.
The returned quality metric is 1 if a valid push exists and 0
if not.

V. ACTION SELECTION POLICIES

All action selection methods use input from the perception
system to generate a specific object priority list. Each action
selection method generates a priority list in a different way
but all have the same action execution criteria. For all action
selection methods described here, a grasp action is executed if
the quality metric returned by the action policy exceeds #(0),
the grasp confidence threshold for object mask o. The grasp
confidence threshold for the object mask positively identified
as the target object or is given by #(07) = fnresh. For policies
without pushing, 7(0) = fresh, Vo, while for policies with
pushing, #(0) = thign, Vo # or. Policies with pushing can be
more conservative in their choice of grasps, so they use a
higher grasp confidence threshold #;g, for non-target objects.
A push action is performed if a valid push is found (quality 1).
Details on parameters used can be found in the supplementary
material.

Each action selection method iterates through its priority
list, queries the grasping action policies for each object mask,
and executes the returned action with the highest quality

metric among the two grasping policies if it satisfies the
action execution criteria. If the target object is grasped, the
policy terminates and reports a success. If no grasping action
satisfies the criteria and the policy does not have pushing,
the policy terminates and reports a failure. If the policy does
have pushing, it iterates through its priority list, queries the
pushing action policy for each object mask, and executes
the first action that satisfies the criteria. If no pushing action
satisfies the criteria, or if a pushing action has been selected
more than three consecutive times, the policy terminates with
a failure.

Action Selection Methods: The action selection methods
are distinguished by whether or not they have pushing as an
available action policy and by their generated object priority
list:

1) Random Search: Prioritizes objects randomly, with no
preference for the target object mask (o7).

2) Preempted Random Search (with and without push-
ing): Always prioritizes o7 and prioritizes other objects
randomly.

3) Largest-First Search (with and without pushing):
Always prioritizes or and ranks the other objects by
their visible area. If the target object isn’t visible, this
strategy will increase the likelihood of removing objects
that may be occluding the target object.

Termination Criteria: In addition to the termination
criteria outlined above (terminate and return success if target
object grasped, return failure if no good grasp/valid push
found), we impose two more termination conditions on our
policies which cause them to return a failure: (1) 2N timesteps
have elapsed, where N is the initial number of objects in the
bin and (2) The target object is inadvertently removed from
the work space when another object is grasped or pushed.

VI. EXPERIMENTS
A. Simulation

Heap Generation: Three datasets of simulated heaps
are generated, each containing 1000 heaps of N objects, for
N € {10,15,20}. Then, using the Bullet Physics Engine [7],
sampled objects are dropped one by one into the bin, and
the target object is chosen to be the most occluded object.
Please refer to the supplementary material for further details.

Rollouts: To simulate grasp actions, we use the same
approach as in [24]: using wrench space analysis, we
determine whether or not an object can be lifted from the
heap [34, 37]. If the object can be lifted, a constant upward
force is applied to the object’s center of mass until it leaves
the bin, and the remaining objects are allowed to come to
rest. To simulate push actions, we check that the gripper can
be placed in the starting location without collisions, and only
execute pushes if this is the case. Then, we place a 3D model
of the closed gripper in the physics simulator and move it
from the start point to the end point of the push, as in [8].

B. Physical
Heap Generation: We randomly sample 50 heaps of 15
items each from a set of 75 common household objects with

B 019 $55ey
SElemene: smn

s Fe R ifeol o
g59Tetefosgze

st =
. “ﬂi: 'iéii

A Cameras —» _
= i =

Fig. 3: (A) Front view of the robot and bin setup. The black bin is the
primary bin in which heaps are initialized, and the white bins provide
space for the robot to deposit grasped items. (B) The 75 objects used in
physical experiments. (C) A sample heap of 15 objects used in the physical
experiments.

relatively simple shapes, such as boxes and cylinders, as well
as more complex geometries, such as plastic climbing holds
and scissors (see Figure 3). We also include several 3D-printed
items, which present a challenge for both segmentation and
target object recognition due to their unusual shapes and
uniform texture. A target object is chosen at random from
each 15 item heap. Then, in order to generate adversarial bin
configurations, each rollout is initialized by first shaking the
target object in a box to randomize its pose and dumping
into the center of the bin, and then shaking the other fourteen
objects and pouring them over the target object.

Policy Rollouts: We execute pushing and grasping
actions on an ABB YuMi robot equipped with suction-cup
and parallel-jaw grippers (see Figure 3). Actions generated by
the search policy are transformed into a sequence of poses for
the robot’s end-effectors, and we use ABB’s RAPID linear
motion planner and controller to execute these motions.

Human Supervisor Rollouts: For comparison, we also
benchmark a human supervisor’s performance as an action
selector. At each timestep, the human is asked to draw a mask
in the scene on which to plan a push or a grasp. Then, grasps
and pushes are planned and executed on the specified mask
with the same action primitives described above (parallel jaw
grasps, suction grasps, linear pushes). Thus, the human is
limited by the available action primitives, but is allowed to
use their own judgement for perceptual reasoning and high
level action planning.

C. Evaluation Metrics

We evaluate each policy according to its reliability and
efficiency in target object retrieval. Reliability is defined
as the frequency at which the target object is successfully
extracted, while efficiency is defined as the mean number of
actions taken to successfully extract the target object. For
each experiment, we recorded the number of successes and
failures, as well as statistics regarding the number of actions
taken.

VII. RESULTS
A. Simulation Results

We tested each action selection policy in simulation with
heaps generated using the method described in VI and running

until termination on each heap. A total of 15,000 simulation
experiments were conducted over all policies. The results for
each of the five policies are shown in Figure 4, and a detailed
breakdown of each policy can be found in the supplementary
material. Figure4(A) shows the mean number of actions
needed for each policy as a function of heap size. These
results suggest that extracting the target object becomes more
difficult as heap size increases and the mean number of
actions needed for each policy appears to scale linearly with
heap size, although the rate of increase is not constant across
policies.

Figure 4(B) shows cumulative successful extractions for a
given amount of actions (number of successful extractions
in that many actions or fewer). All policies have success
rates of 90% or higher on 15 object heaps. The cumulative
success plot suggests that grasping the target object when
possible provides improvement over the random policy, and
that prioritizing larger object masks when the target object
is inaccessible further increases efficiency. The largest-first
policies successfully extract the target object within 5 or
fewer actions on 50% of the heaps, while the preempted
random and random policies only do so for 30% and 10%
of heaps respectively.

Results also suggest that pushing can increase overall
success rate, as policies that included pushing succeeded
on at least 3% more heaps than those without pushing. For
policies with pushing, only 5% of all actions attempted are
pushes, as opposed to 29% parallel jaw grasps and 66%
suction grasps, on ten object heaps. The percentage of push
actions decreases further when increasing the number of
objects to just 3% for 15 object heaps. We suspect that the
reason pushes are selected so rarely is because the pushing
primitive is designed to execute a sequence of linear pushes
to singulate a particular object, rather than flatten a heap of
objects. While the former directly addresses the objective
of the push, the latter is much easier to achieve in practice,
since in many cases, especially with many objects in the bin,
it may be almost impossible to plan collision-free pushes that
successfully singulate the object of interest.

In simulation, failures account for 6-12% of all rollouts.
These failures fall into three categories: 1) the policy fails to
plan an action (e.g., no actions are available on any remaining
objects with a quality metric above the threshold), 2) the
target object is inadvertently removed from the bin, despite
an attempted action that was not a grasp on the target object,
or 3) the policy reaches the maximum number of timesteps
given to extract the object (2N timesteps, where N is the
initial number of objects in the heap).

Failure mode (1) accounts for 85-90% of all failures, while
(2) accounts for nearly all of the remaining failures. Mode (1)
typically happens because objects are moved to the corners of
the bin, making it difficult to plan collision-free grasps. Mode
(2) occurs more often for policies that include pushing actions,
since pushing in clutter can occasionally lead to objects being
pushed up and over the bin walls. It is also possible that the
target object is removed from the work space when another
object is grasped. Mode (3) never actually occurs in any

=== Random
Preempted Random

Preempted Random
+ Pushing

Largest-First
Largest-First

>

-

9
g
g

=
°

g

8

1000
+ Pushing

|
|
L
i
¢ i
: I
2
°

o - o N L 3 6
10 Objects 15 Objects 20 Objects

Mean Num Actions
©
2
g
3

Successful Extractions

N
3
H

Fig.

= Human (3.1 + 2.2)
Largest-First (4.9 + 3.5)

—— Largest-First + Pushing (6.0 + 4.3)

—— Preempted Random (6.7 = 4.0)
Preempted Random + Pushing (6.3 + 4.4)
Random (10.9 + 4.4)

— Largest-First (6.3 + 4.2)
Largest-First + Pushing (6.5 + 4.2)

—— Preempted Random (8.5 + 4.6)

—— Preempted Random + Pushing (8.9 + 4.5)

Random (11.3 + 4.4)
18 21 24 o 3 6 18 21 24

9 12 15 9 12 15
Number of Actions Number of Actions

4: Performance of policies on (A) simulated heaps of 10, 15, and 20 objects over a total of 15,000 simulated rollouts and 300 physical rollouts, (B)

simulated heaps of 15 objects, and (C) real heaps of 15 objects. The largest-first search policies are the most efficient, and are able to extract the target
object in the least number of actions. All policies have similar reliability, although pushing shows potential to avoid more failures in simulation. The human
was allowed to look at the RGBD image inputs and choose an object to push or grasp. Means and standard deviations for successful extractions are shown

in parentheses for each policy.

of our experiments, and the maximum timesteps cutoff is
intentionally set high to exhaust the policy of actions.

B. Physical Results

Figure 4(C) shows results on the physical system. A total of
300 physical experiments were conducted over all policies. All
policies retrieved the target object within the given number
of timesteps at least 90% of the time, and success rates
were not statistically different between policies. However,
the cumulative success curves suggest similar trends to those
seen in the simulation results, with the largest-first policies
outperforming the preempted random and random policies in
terms of efficiency. The largest-first policies again successfully
extract the target object within 5 or fewer actions on on 50%
of the heaps, while the preempted random and random policies
only do so for 40% and 10% of heaps respectively.

Stochasticity in the initial bin state in physical experiments
can result in varying difficulty for different policies on the
same heap. For example, a target object may be completely
covered by other objects when one policy is presented with
a given heap, but for another policy, the target may be
partially or fully visible in the initial state. Thus, policies
may occasionally get “lucky" or “unlucky" with respect to the
target object visibility in the initial state, which may account
for some increased variance in the physical results.

Failure cases for the physical heaps are very similar to those
in simulation: 93% of failures arise from the policy being
unable to plan an action. However, in physical experiments,
out of the 300 heaps evaluated for all policies, only 1 rollout
failed due to timing out. Failure to plan actions is almost
always due to the target object lying flat on the bottom of
the bin (e.g., the dice, sharpie pens, or another blister-pack
object), making it difficult to obtain accurate segmentation.
Another common reason for failure to plan actions is when
no mask is identified as the target object, which often occurs
for 3D printed objects.

C. Action-Limited Human Supervisor

The human supervisor outperforms all policies presented
here, requiring an average of just 3.1 actions to extract
the target object due to more intelligent action selection.
Specifically, we noticed that a human operator chose to push
far more frequently (26% of all actions, compared to 6%
for the other action policies with pushing), especially when

objects were heaped in the center of the bin and the target
was not visible. These pushes tend to spread many objects
out over the bottom of the bin, as opposed to a grasping
action that would remove only a single object from the top
of the heap.

VIII. DISCUSSION AND FUTURE WORK

We present a general formulation for mechanical search
problems and describe a framework for solving the specific
problem of extracting a target object from a cluttered bin.
While the best action selection method (largest-first) is much
more efficient than random search and provides a solid
baseline, a human selecting the low-level actions can still
achieve 37% higher efficiency by pushing significantly more
effectively and often. We will explore how reinforcement
learning in simulation can address this gap.

In future work, the action primitives used (grasp, suction,
push) can also be improved. We conjecture that more effective
push primitives can be learned from simulation.

IX. ACKNOWLEDGMENTS

This work is partially supported by a Google Focused Research Award and
was performed jointly at the AUTOLAB at UC Berkeley and at the Stanford
Vision & Learning Lab, in affiliation with the Berkeley AI Research (BAIR)
Lab, Berkeley Deep Drive (BDD), the Real-Time Intelligent Secure Execution
(RISE) Lab, and the CITRIS "People and Robots" (CPAR) Initiative. Authors
were also supported by the SAIL-Toyota Research initiative, the Scalable
Collaborative Human-Robot Learning (SCHooL) Project, the NSF National
Robotics Initiative Award 1734633, and in part by donations from Siemens,
Google, Amazon Robotics, Toyota Research Institute, Autodesk, ABB,
Knapp, Loccioni, Honda, Intel, Comcast, Cisco, Hewlett-Packard and by
equipment grants from PhotoNeo, and NVidia. This article solely reflects the
opinions and conclusions of its authors and do not reflect the views of the
Sponsors or their associated entities. We thank our colleagues who provided
helpful feedback, code, and suggestions, in particular Jeff Mahler.

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

REFERENCES

A. Aydemir, K. Sjoo, J. Folkesson, A. Pronobis, and P. Jensfelt,
“Search in the real world: Active visual object search based on
spatial relations”, in Proc. IEEE Int. Conf. Robotics and Automation
(ICRA), IEEE, 2011, pp. 2818-2824.

R. Bajcsy, “Active perception”, Proceedings of the IEEE, vol. 76,
no. 8, pp. 966-1005, 1988.

D. Berenson and S. S. Srinivasa, “Grasp synthesis in cluttered
environments for dexterous hands”, in Humanoid Robots, 2008.
Humanoids 2008. 8th IEEE-RAS International Conference on, 1EEE,
2008, pp. 189-196.

J. Bohg, K. Hausman, B. Sankaran, O. Brock, D. Kragic, S. Schaal,
and G. S. Sukhatme, “Interactive perception: Leveraging action in
perception and perception in action”, IEEE Trans. Robotics, vol. 33,
no. 6, pp. 1273-1291, 2017.

L. Chang, J. R. Smith, and D. Fox, “Interactive singulation of objects
from a pile”, in Proc. IEEE Int. Conf. Robotics and Automation
(ICRA), IEEE, 2012, pp. 3875-3882.

X. Chen, K. Kundu, Y. Zhu, H. Ma, S. Fidler, and R. Urtasun,
“3d object proposals using stereo imagery for accurate object class
detection”, IEEE transactions on pattern analysis and machine
intelligence, vol. 40, no. 5, pp. 1259-1272, 2018.

E. Coumans and Y. Bai, Pybullet, a python module for physics
simulation, games, robotics and machine learning, http : / /
pybullet.org/, 2016-2017.

M. Danielczuk, J. Mahler, C. Correa, and K. Goldberg, “Linear push
policies to increase grasp access for robot bin picking”, in Proc.
IEEE Conf. on Automation Science and Engineering (CASE), 1EEE,
2018.

M. Danielczuk, M. Matl, S. Gupta, A. Li, A. Lee, J. Mahler, and
K. Goldberg, “Segmenting unknown 3d objects from real depth
images using mask r-cnn trained on synthetic point clouds”, in Proc.
IEEE Int. Conf. Robotics and Automation (ICRA), IEEE, 2019.

Y. Duan, M. Andrychowicz, B. C. Stadie, J. Ho, J. Schneider,
I. Sutskever, P. Abbeel, and W. Zaremba, “One-Shot Imitation
Learning”, arXiv preprint arXiv:1703.07326, 2017.

K. Fang, Y. Zhu, A. Garg, A. Kurenkov, V. Mehta, L. Fei-Fei, and
S. Savarese, “Learning task-oriented grasping for tool manipulation
from simulated self-supervision”, arXiv preprint arXiv:1806.09266,
2018.

R. E. Fikes and N. J. Nilsson, “Strips: A new approach to the
application of theorem proving to problem solving”, Artificial
intelligence, vol. 2, no. 3-4, pp. 189-208, 1971.

M. Gualtieri, A. ten Pas, K. Saenko, and R. Platt, “High precision
grasp pose detection in dense clutter”, in Proc. IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS), IEEE, 2016, pp. 598-605.
M. Gupta, T. Rithr, M. Beetz, and G. S. Sukhatme, “Interactive
environment exploration in clutter”, in Proc. IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), IEEE, 2013, pp. 5265-5272.
S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik,
“Cognitive mapping and planning for visual navigation”, arXiv
preprint arXiv:1702.03920, vol. 3, 2017.

K. He, G. Gkioxari, P. Dolldr, and R. Girshick, “Mask r-cnn. arxiv
preprint arxiv: 170306870, 2017.

T. Hermans, J. M. Rehg, and A. Bobick, “Guided pushing for object
singulation”, in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), IEEE, 2012, pp. 4783-4790.

E. Jang, S. Vijayanarasimhan, P. Pastor, J. Ibarz, and S. Levine, “End-
to-end learning of semantic grasping”, in Conf. on Robot Learning
(CoRL), 2017.

D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, et al., “Qt-
opt: Scalable deep reinforcement learning for vision-based robotic
manipulation”, arXiv preprint arXiv:1806.10293, 2018.

D. Katz, A. Venkatraman, M. Kazemi, J. A. Bagnell, and A.
Stentz, “Perceiving, learning, and exploiting object affordances for
autonomous pile manipulation”, Autonomous Robots, vol. 37, no. 4,
pp. 369-382, 2014.

J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey”, Int. Journal of Robotics Research (IJRR), vol. 32,
no. 11, pp. 1238-1274, 2013.

G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks
for one-shot image recognition”, in ICML Deep Learning Workshop,
vol. 2, 2015.

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic
grasps”, Int. Journal of Robotics Research (IJRR), vol. 34, no. 4-5,
pp. 705-724, 2015.

J. Mahler and K. Goldberg, “Learning deep policies for robot bin
picking by simulating robust grasping sequences”, in Conf. on Robot
Learning (CoRL), 2017, pp. 515-524.

J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A.
Ojea, and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust
grasps with synthetic point clouds and analytic grasp metrics”, Proc.
Robotics: Science and Systems (RSS), 2017.

——, “Dex-net 2.0: Deep learning to plan robust grasps with synthetic
point clouds and analytic grasp metrics”, CoRR, vol. abs/1703.09312,
2017. arXiv: 1703.09312.

J. Mahler, M. Matl, X. Liu, A. Li, D. Gealy, and K. Goldberg, “Dex-
net 3.0: Computing robust vacuum suction grasp targets in point
clouds using a new analytic model and deep learning”, in Proc. IEEE
Int. Conf. Robotics and Automation (ICRA), IEEE, 2018, pp. 1-8.
J. Mahler, F. T. Pokorny, B. Hou, M. Roderick, M. Laskey, M. Aubry,
K. Kohlhoff, T. Kroger, J. Kuffner, and K. Goldberg, “Dex-net 1.0: A
cloud-based network of 3d objects for robust grasp planning using a
multi-armed bandit model with correlated rewards”, in Proc. IEEE Int.
Conf. Robotics and Automation (ICRA), IEEE, 2016, pp. 1957-1964.
C. Michaelis, M. Bethge, and A. Ecker, “One-shot segmentation
in clutter”, in Proc. Int. Conf. on Machine Learning, J. Dy and A.
Krause, Eds., ser. Proceedings of Machine Learning Research, vol. 80,
Stockholmsmissan, Stockholm Sweden: PMLR, 2018, pp. 3549—
3558.

C. Michaelis, M. Bethge, and A. S. Ecker, “One-shot segmentation
in clutter”, arXiv preprint arXiv:1803.09597, 2018.

M. Moll, L. Kavraki, J. Rosell, et al., “Randomized physics-
based motion planning for grasping in cluttered and uncertain
environments”, IEEE Robotics & Automation Letters, vol. 3, no. 2,
pp. 712-719, 2018.

D. Morrison, P. Corke, and J. Leitner, “Closing the loop for robotic
grasping: A real-time, generative grasp synthesis approach”, arXiv
preprint arXiv:1804.05172, 2018.

A. Mousavian, A. Toshev, M. Fiser, J. Kosecka, and J. Davidson,
“Visual representations for semantic target driven navigation”, arXiv
preprint arXiv:1805.06066, 2018.

A. ten Pas and R. Platt, “Using geometry to detect grasp poses in 3d
point clouds”, in Robotics Research, Springer, 2018, pp. 307-324.
C. Paxton, F. Jonathan, M. Kobilarov, and G. D. Hager, “Do what
i want, not what i did: Imitation of skills by planning sequences
of actions”, in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), 2016.

P. O. Pinheiro, T.-Y. Lin, R. Collobert, and P. Dolldr, “Learning
to refine object segments”, in European Conference on Computer
Vision, Springer, 2016, pp. 75-91.

D. Prattichizzo and J. C. Trinkle, “Grasping”, in Springer handbook
of robotics, Springer, 2008, pp. 671-700.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection”, in Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779—
788.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards
real-time object detection with region proposal networks”, in Proc.
Advances in Neural Information Processing Systems, 2015, pp. 91-99.
A. Saxena, L. L. Wong, and A. Y. Ng, “Learning grasp strategies with
partial shape information.”, in AAAI, vol. 3, 2008, pp. 1491-1494.
A. Shaban, S. Bansal, Z. Liu, I. Essa, and B. Boots, “One-shot learn-
ing for semantic segmentation”, arXiv preprint arXiv:1709.03410,
2017.

S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer”, in Proc. IEEE Int. Conf. Robotics and
Automation (ICRA), IEEE, 2014, pp. 639-646.

J. Sung, B. Selman, and A. Saxena, “Learning sequences of
controllers for complex manipulation tasks”, in Proc. Int. Conf. on
Machine Learning, Citeseer, 2013.

R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning”,
Artificial intelligence, vol. 112, no. 1-2, pp. 181-211, 1999.

K. E. Van de Sande, J. R. Uijlings, T. Gevers, and A. W. Smeulders,
“Segmentation as selective search for object recognition”, in Proc.

http://pybullet.org/
http://pybullet.org/
http://arxiv.org/abs/1703.09312

[40]

[47]

(48]

[49]

IEEE Int. Conf. on Computer Vision (ICCV), IEEE, 2011, pp. 1879-
1886.

U. Viereck, A. t. Pas, K. Saenko, and R. Platt, “Learning a visuomotor
controller for real world robotic grasping using simulated depth
images”, arXiv preprint arXiv:1706.04652, 2017.

O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al., “Matching
networks for one shot learning”, in Proc. Advances in Neural
Information Processing Systems, 2016, pp. 3630-3638.

J. Wolfe, B. Marthi, and S. J. Russell, “Combined task and motion
planning for mobile manipulation”, in ICAPS, 2010.

D. Xu, S. Nair, Y. Zhu, J. Gao, A. Garg, L. Fei-Fei, and S. Savarese,
“Neural task programming: Learning to generalize across hierarchical

[50]

[51]

tasks”, in Proc. IEEE Int. Conf. Robotics and Automation (ICRA),
2018.

A. Zeng, S. Song, K.-T. Yu, E. Donlon, F. R. Hogan, M. Bauza,
D. Ma, O. Taylor, M. Liu, E. Romo, et al., “Robotic pick-and-
place of novel objects in clutter with multi-affordance grasping and
cross-domain image matching”, arXiv preprint arXiv:1710.01330,
2017.

Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, “Target-driven visual navigation in indoor scenes using
deep reinforcement learning”, in Proc. IEEE Int. Conf. Robotics and

Automation (ICRA), 2017, pp. 3357-3364.

	Introduction
	Background and Related Work
	Mechanical Search: Problem Formulation
	Perception and Decision System
	Perception
	Search Policy

	Action Selection Policies
	Experiments
	Simulation
	Physical
	Evaluation Metrics

	Results
	Simulation Results
	Physical Results
	Action-Limited Human Supervisor

	Discussion and Future Work
	Acknowledgments

