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Abstract— Learning-based approaches to robust robot grasp
planning can grasp a wide variety of objects, but may be
prone to failure on some objects. Inspired by recent results in
computer vision, we define a class of ‘“adversarial grasp objects
that are physically similar to a given object but significantly
less graspable” in terms of a specified robot grasping policy.
We present three algorithms for synthesizing adversarial grasp
objects under the grasp reliability measure of Dex-Net 1.0
for parallel-jaw grippers: 1) two analytic algorithms that
perturb vertices on antipodal faces (one that uses random
perturbations and one that uses systematic perturbations), and
2) a deep-learning-based approach using a variation of the
Cross-Entropy Method (CEM) augmented with a generative
adversarial network (GAN) to synthesize classes of adversarial
grasp objects represented by discrete Signed Distance Func-
tions. The random perturbation algorithm reduces graspability
by 32%, 12%, and 32% for intersected cylinders, intersected
prisms, and ShapeNet bottles, respectively, while maintaining
shape similarity using geometric constraints. The systematic
perturbation algorithm reduces graspability by 32%, 11%, and
21%; and the GAN reduces graspability by 22%, 36%, and
17%, on the same objects. We use the algorithms to generate
and 3D print adversarial grasp objects. Simulation and physical
experiments confirm that all algorithms are effective at reducing
graspability.

I. INTRODUCTION

Adversarial images [1], [2], [3], [4] are modified images
that drastically alter the prediction made by a deep learning
classifier while applying minimal perturbation to the original
image. This paper defines “adversarial grasp objects,” anal-
ogous to adversarial images for the domain of robust robot
grasping.

Robust robot grasping of a large variety of objects can
benefit a diverse range of applications, such as the automa-
tion of industrial warehousing and home decluttering. Recent
research suggests that robot policies based on deep learning
can grasp a wide variety of previously unseen objects [5],
[6], [7], [8], but can be prone to failures on objects that
may not be encountered during training [9]. In this work, we
introduce algorithms to synthesize adversarial grasp objects
for the application of examining grasp failure cases on a
physical system.

Some adversarial image generation techniques involve per-
forming constrained gradient-based optimization algorithms
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Fig. 1: Original objects vs. adversarial objects. The most robust 25 of 100
parallel-jaw grasps sampled on each object are displayed as grasp axes
colored by relative reliability on a linear gradient from green to red. The
angle of the friction cone was set to 10°. Top: Results from running an
analytic algorithm on a dodecahedron mesh for 64 iterations, and a plot
of the number of antipodal face pairs vs. the number of iterations of the
algorithm. Bottom row: Results from applying an analytical algorithm and
the CEM + GAN algorithm on a synthetically generated intersected prism.

on the image classification loss [1]. However, it is challeng-
ing to apply these algorithms to grasping policies where
the grasping performance is generally not a differentiable
function of a network output. Instead, the grasp planned
by a policy is the result of scoring, ranking, and pruning
a set of grasp candidates for each object. To address this, we
explore analytic methods and derivative-free optimization.
We present three algorithms for synthesizing adversarial
objects: two analytic algorithms that modify objects by
perturbing vertices on antipodal faces subject to geometric
constraints to maintain similarity to the input object, and
an algorithm for synthesizing adversarial 3D object models
using 3D Generative Adversarial Networks (GANs) [10]
and the Cross Entropy Method (CEM) for derivative-free
optimization. The third algorithm extends recent advances
in GANs to synthesize a 3D Signed Distance Function
(SDF) representation for objects that minimizes the quality of
available grasps. We note that in this work, an SDF refers to
a sampled grid of distances rather than a continuous function.
This paper contributes:
1) A formal definition of adversarial grasp objects.



2) Two analytic algorithms to synthesize adversarial 3D
objects for grasp planning from a given 3D object
by performing constrained perturbations of vertices on
antipodal faces.

3) A deep learning algorithm based on the Cross Entropy
Method (CEM) for derivative-free optimization and
deep Generative Adversarial Networks (GANSs) that
uses an SDF representation of 3D objects to generate
a distribution of adversarial objects that look similar
to objects from a prior distribution.

4) Simulated and physical experiments studying several
categories of adversarial grasp objects generated by the
algorithms for the Dexterity Network (Dex-Net) 1.0
grasp planner, which plans parallel-jaw grasps based
on a robust quasi-static point contact model [11].

II. RELATED WORK

Adversarial Images. Adversarial images [1], [2], [3], [4]
are inputs with a small added perturbation that can change
the output of an image classifier, and the problem of finding
adversarial images is sometimes formulated as a constrained
optimization problem that can be approximately solved using
gradient-based approaches [1]. Yang et al. [12] developed a
method to perturb the texture maps of 3D shapes such that
their projections onto 2D image space can fool classifiers.
We build on this line of research by studying adversarial 3D
objects for robotic grasping.

Grasp Planning. Grasp planning considers the problem of
finding a gripper configuration that maximizes the probability
of grasp success. There are several classes of approaches.

Analytic approaches typically assume knowledge of the
object and gripper state, and consider the ability to resist ex-
ternal wrenches [13] or constrain the object’s motion [14] un-
der perturbations and noises. Examples include Grasplt! [15],
OpenGRASP [16], and the Dexterity Network (Dex-Net)
1.0 [11]. To satisfy the assumption of known state, analytic
methods typically assume a registration-based perception
system: matching sensor data to known 3D object models
in the database [17], [18], [19], [20], [21], [22]. However,
these systems may not scale well to novel objects and may
be computationally expensive during execution.

Empirical approaches [23] use machine learning to de-
velop models that map sensor readings directly to success
labels from humans or physical trials. A limitation of empir-
ical methods is that data collection may be time-consuming
and error-prone.

Hybrid approaches make use of analytic models to au-
tomatically generate large training datasets for machine
learning models [24], [25]. Recent results suggest that these
methods can be used to rapidly train grasping policies to
plan grasps on point clouds that generalize well to novel
objects on a physical robot [8], [9], [26]. In this paper, we
consider synthesizing adversarial 3D objects for the analytic
supervisor used to train these hybrid grasp planning methods.

Generative Models. Deep generative models map a sim-
ple distribution (e.g., Gaussian) to a much more complex

distribution, such as natural images. Common deep genera-
tive models fall into likelihood-based models [27], [28] and
implicit likelihood-free models (e.g., Generative Adversarial
Networks (GANs) [10]). During training of a GAN, a dis-
criminator tries to distinguish the generated samples apart
from the samples from the real data while a generator tries
to generate samples to confuse the discriminator. Generative
models have also been previously used in the domain of robot
grasping, where Veres et al. [29] used conditional generative
models to synthesize grasps from RGB-D images, and Bous-
malis et al. [26] used GANs for simulation-to-reality transfer
learning. There have also been some applications of deep
generative models for 3D data. Some notable works in this
area include the 3D-GAN work by Wu et al. [30], which uses
a GAN to generate 3D reconstruction from an image, and the
signed distance-based object generation by Jiang et al. [31],
where different frequency components are generated by two
separate networks. Mousavian et al. [32] use a variation auto-
encoder to map a partially observed point cloud to grasps. We
expand on these directions by incorporating recent advances
in GANs for images.

III. PROBLEM STATEMENT
A. Adversarial Grasp Objects

Let X be the set of possible states of all 3D objects, where
the state consists of a 3D triangular mesh of the object and
its pose. Let m be a robot grasping policy mapping a 3D
object x € & to a grasp action u. In this work, we only
consider a parallel-jaw grasping policy. We assume that the
policy can be represented as:

7(x) = argmax Q(x,u)
ueU (x)
where U (x) denotes the set of all reachable and collision-
free (from any angle) grasps on x, and @ is a quality
function measuring the reliability or probability of success
for a candidate grasp u on object x.

We introduce the “graspability” g¢.(x,Q) of x as an
approximation of 7 to measure of how well the policy can
robustly grasp the object, taking into account grasps occluded
by environment. To do this, we define graspability by the -
percentile of grasp quality [33]:

9:(x,Q) £ P,({Q(x,w) [Vu € U(x)})

We then consider the problem of generating an adversarial
grasp object: a 3D object that reduces graspability under
a grasping policy with constrained changes to the input
geometry. Let o(A, B) for subsets A, B C X be a binary-
valued shape-similarity constraint between the two subsets of
objects. We study the following optimization problem, which
defines an adversarial grasp object x*:

x* £ argmin g, (x, Q) subject to o({x},5) =1 (IIL1)

xeX

where S C X is a subset of objects to which the generated
object should be similar.



B. Robust Grasp Analysis

In this paper, we optimize adversarial examples with
respect to the Dexterity Network (Dex-Net) 1.0 grasping
policy [11]. Here, U(x) is a set of antipodal points on the
object surface that correspond to a reachable grasp, where
a pair of opposite contact points (vy,vy) are antipodal if
the line between (v1,v9) lies entirely within the friction
cones [11]. The quality function () measures the robust
wrench resistance which is the ability of a grasp to resist a
target wrench under perturbations to the object pose, gripper
pose, friction, and wrench under a soft-finger point contact
model [9].

When calculating g, both the reward and policy are based
on the Dex-Net 1.0 robust grasp quality metric and the
associated maximal quality grasping policy. Within the Dex-
Net 1.0 robust quality metric, Q(x,u) is defined as:

Q(Xv l.l) = Eu’~p(-\u),x’~p(~|x) [R(le ll,)}

where p(u’|u) and p(x’|x) denote conditional distributions
over X and grasp u, and R measures grasp quality if the
grasp is executed with zero uncertainty in object and gripper
pose. We use the epsilon metric by Ferrari and Canny [34].

To calculate g,(x,Q) in practice, we uniformly sample
a constant number of antipodal grasps on the object. We
take N samples from the object and grasp pose distributions
p(u’|u) and p(x’|x) and estimate the robust quality Q(x,u)
by the sample mean Q(x,u) for each grasp:

. 1 Y
Qx,u) = — > R(x;,w)
i=1

The empirical graspability g,(x, @) is estimated by taking
the discrete ~y-percentile of ()(x,u) for all sampled grasps.

IV. ANALYTICAL METHODS: CONSTRAINED VERTEX
PERTURBATION

In order to decrease the graspability of an object, we
first consider an analytic approach to modify an existing
3D triangular mesh. Let the mesh x be specified by a set
of vertices V = {v1,v2,...v,} C R® and a set of faces
F = {f1, f2s--- fm}, where each face f; is the triangle
defined by three distinct elements of V. Also, let F, =
{(fis fj)s---(fp, fq)} be the set of pairs of antipodal faces,
face pairs that contain a pair of antipodal points. Let the
unit normal of face f; be denoted by n; € S2. Finally, let
the antipodality angle ¢ between two faces be defined as

o(fi, f;) = arccos(—n; T ny).
A. Case Study: Simple Shapes

Dex-Net 1.0’s graspability metric specifically considers the
robustness of a parallel jaw grasp, which requires antipodal
point pairs and can be susceptible to small pose varia-
tions. Thus, we consider the following iterative algorithm
for analytically perturbing vertices to reduce the number
of antipodal point pairs. Intuitively, we are attempting to
decrease |F,|, the number of antipodal faces by increasing ¢
between all pairs of antipodal faces until ¢ reaches the angle

of the friction cone. In each iteration, we compute F,. For
each vertex v of each face in F,, (i.e., all vertices incident
to a face in F,), we consider perturbations in directions
W, a set of 6 randomly selected unit vectors. We then test
perturbations v’ = v + 6w for each w € W, where § € R
is a constant. We select the v’ that maximizes >, ;, the
sum of the antipodality angles between all antipodal pairs
in F, that contain a face that is incident to v. Results from
applying this algorithm to a sample dodecahedron mesh to
systematically decrease the number of antipodal faces can be
seen in Fig. 1.

B. Sampling-Based Random Perturbation Algorithm

Since it is computationally expensive to run the previous
algorithm on complex meshes with thousands of faces and
vertices, we propose a sampling-based version of the above
algorithm to avoid the overhead of computing the full set of
antipodal faces. Consider the same mesh x as above. We want
to perturb vertices while constraining the movement such that
the surface normals of adjacent faces do not deviate by more
than some angle «. This corresponds to the shape similarity
constraint o in Equation III.1, and in this case, S = {x}, the
original object itself.

In each iteration, we sample a pair of antipodal faces f;
and f,. We then randomly sample one of the vertices vy of f;
and f5. Again, we consider a set of 6 directions W, and for
each direction w € W, we compute the perturbation §,, €
R such that the antipodality angle ¢ between faces f; and
f2 is maximized subject to the shape similarity constraint o
when vy, is moved to vy, + ., w. Then, we take the minimum
perturbation ¢,, found along each of the 6 directions as the
actual perturbation. By constraining the perturbations such
that the shape similarity constraint is still satisfied after each
step, the algorithm attempts to maintain local similarity of
the region of perturbation while decreasing the graspability.

C. Antipodal Rotation Algorithm

An alternative to the method described in Sec. IV-B is to
analytically rotate faces with the smallest angle necessary
to make the antipodality angle between pairs of faces larger
than the angle of the friction cone. To encourage the algo-
rithm to make large structural changes instead of only local
perturbations, if the mesh has more than d faces, we decimate
the mesh until it has less than d faces. Then, each iteration
of the algorithm uniformly samples a pair of antipodal faces
f1 and fs. Let o be the antipodality angle between f; and
fo, and let Operpurs = B(¢ — @), where ¢ is the friction
cone angle. Then we rotate fi, fo by Operturs, —Operturs
respectively in a direction orthogonal to 1 and ny, where the
sign of Opertury 1S chosen to maximize the new antipodality
angle between f1 and f5. We note that rotating a face means
applying the same rotation matrix to each of the vertices on
the face. The tunable parameter § € (0, 1] determines the
strength of the shape similarity constraint.

V. DEEP LEARNING ALGORITHM: CEM + GAN

In this section, we describe a data-driven approach to
generating adversarial grasp objects. As opposed to the ana-
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Fig. 2: Example result after converting a mesh to an SDF. The general shape
of the mesh is preserved, and the conversion artifacts are due to the finite
resolution of the SDF. Left: Original mesh. Middle: SDF after remeshing.
Right: A sample cross section of the SDF.

Iytical algorithm, which generates an adversarial version of
an existing object, the cross-entropy method and generative
adversarial network (CEM + GAN) algorithm takes as input
a set S C X of objects and can output a set of generated
objects similar to those in S. The following sections describe
different aspects and components of the algorithm.

A. Signed Distance Generative Adversarial Network

Generative adversarial networks (GANs) [10] are a family
of powerful implicit generative models that have demon-
strated remarkable capabilities in generating high-quality
samples with low inference complexity. In this algorithm,
we train a GAN to obtain a generative model from which
we can sample objects that are similar to the input data.

We use the Signed Distance Function (SDF) [35] as a
representation for generating 3D geometry. SDFs are widely
used in applications such as rendering, segmentation, or
collision checking. In this work, an SDF is parameterized as
a discrete, sampled grid of distances rather than a continuous
function. An example is shown in Fig. 2. We note that the
SDFs produce some artifacts due to the finite resolution. The
SDF of a closed object x at a point v can be given as:

d(v, 0x),
f(U) B {_d(v7 6x),

where 0x denotes the boundary of x, and d is the Euclidean
distance from the closest boundary to a point. In this work,
we use compact watertight meshes that have well-defined
SDFs.

We draw on techniques used in Spectral-Normalization
GAN (SNGAN) [36], which can generate high-fidelity im-
ages, and apply them to generate SDFs. We denote the
standard Gaussian noise vector as z € R290 drawn from Pss
the empirical distribution defined by training data as pgq¢q,
the Generator as G : R200 l 32X32x32 and the

S 32x3 ;312’ 1]
Discriminator as D : [—1, 1] — R. The output of
the generator and input for the discriminator are SDFs. For
the training objective, we use the hinge version of adversarial
loss [37] as we found that it stabilizes training. The GAN
objective is then

ifvex

if v&x V-1)

[’%lm = _]EXN;Ddata(')[min(O’ -1+ D(X))}
LE" = —Eyop. (o [min(0, —1 — D(G(2)))]

Lp=LE +LE", La=-E,0y.)[D(G(z))]

Let © represent the space of parameter weights for the
GAN, which maps a multivariate Gaussian distribution to
pe(x), a probability distribution over objects X parameter-
ized by some # € ©. We can formulate a similar objective
to Equation III.1, but instead optimizing for a distribution
of objects that we want to be similar to some prior subset
Scai:

0" (Q) = argmin Eyp,, ()[g, (X, Q)] subject to o(Xp, S) =1,

0cO
(V.2)
where Xy C X is the support of the probability distribution
po for some parameter 6§ € ©.

B. Optimization via Resampling

One challenge in performing the optimization in Equa-
tion V.2 is that the graspability function g-(x,Q) is not
differentiable; therefore, we need to perform derivative-free
optimization by querying the function with different inputs
and adjust the model parameters based on the responses of
the function. The cross-entropy method [38] is an adaptive
derivative-free optimization algorithm that has been widely
applied. We are interested in finding the distribution of rare
events that minimize a real-valued grasp quality function
g~(x,Q) over X.

As a starting point, the GAN is initialized with a prior
distribution of objects S C & so that it generates objects
similar in shape. We start by training the GAN on this prior
set of objects. Then, in a resampling step, we use the GAN
to generate objects and take a subset of the objects with the
lowest graspability to use as training data to retrain the GAN.
We continue alternating between training and resampling
steps for a number of iterations.

In an independent work, Gupta et al. [39] apply similar
techniques to optimize functions over genetic sequences with
a GAN by feeding samples with desired properties back into
the GAN to generate more sequences with the properties.
This suggests that the techniques we use may be general
and can potentially be extended to broader applications.

C. Shape Similarity

We now discuss the shape similarity constraint ¢ in
Equation V.2 for the CEM + GAN algorithm. Let Py be the
distribution over X induced by the model with parameter
f# and Pg be the distribution empirically defined by S.
We then define the shape similarity constraint o(Xp,.S) in
Objective 1.1 as Dk, (Ps||Py) < €, where Dgy, is the
Kullback-Leibler divergence between two distributions, and
e > 0 is a hyperparameter that can be controlled through
the sampling percentile v (smaller v means more similar
distributions). The GAN loss function implicitly enforces this
shape similarity constraint as it has been shown that at the
global optimum, the KL-divergence between the generated
distribution and the original distribution is zero [37]. We
note that the e in the shape similarity constraint is necessary,
since GANs do not usually reduce the loss to O in practice
and we use multiple resampling iterations.
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Fig. 3: Results from the analytical random perturbation algorithm and the analytical antipodal rotation algorithm. Both algorithms are able to decrease
graspability on objects from all three datasets. We show the progression of an example from the bottles dataset as we increase the perturbation parameters
from each algorithm. The metric < is the mean normalized graspability of the generated dataset for the level of the perturbation parameter, where the
graspability is the empirical 75" percentile of samples from the grasp quality function. The histograms on the right show the graspability of all the objects.
Top row: Analytical Algorithm. From left to right: original object, then perturbed versions using the surface normal constraint with a = 10, a = 15,
and a = 20, respectively. Bottom row: Antipodal Rotation Algorithm. From left to right: original object, then perturbed versions using the perturbation
parameter 8 = 0.01, 8 = 0.075, and 8 = 0.3. The objects have been smoothed for visualization purposes with OpenGL smooth shading.

VI. EXPERIMENTS

To test the three algorithms ability to reduce graspability
on known objects, we run the algorithms on two synthetic
datasets as well as on the ShapeNet [40] bottles category. To
have all algorithms take in meshes or SDFs with similar
resolution, we first converted all three datasets to SDFs.
These SDFs are directly consumed by the GAN algorithm,
while they are remeshed for the analytical algorithms. For
the synthetic datasets, we used the process presented by
Bousmalis et al. [26]. The intersected cylinders dataset
consists of one large central cylinder with two smaller
cylinders randomly grafted onto it. The intersected prisms
dataset is similar but uses rectangular prisms instead. We
vary the sizes of all three prisms. The bottle, cylinder, and
prism datasets have averages of 1,391 vertices and 2,783
faces, 1,202 vertices and 2,400 faces, and 2,731 vertices and
4,739 faces, respectively, and have 479, 1000, and 1000 total
objects, respectively. Examples from each of these datasets
are shown in Fig. 4.

In the following experiments, we set friction coefficient to
be 0.5. For the graspability metric g(x, @), we chose v =
75%: often, one of the top 25% of grasps is accessible, so
we choose to look at the worst case from this set. Consider a
set of n generated objects {X1,Xa,...X,} C X from a prior
dataset of objects. We define mean normalized graspability as
k=c 13" g,(x;,Q), where c is a normalizing constant.
We note that the objects in the figures in the section have
been smoothed for visual clarity to demonstrate the behavior
of the algorithms, but the metrics represent the results of the
objects without smoothing.

A. Random Perturbation Algorithm

We run the analytical algorithm for local perturbations of
vertices on antipodal faces on 100 objects from each of the
three datasets. We experimented with « values of 10, 15, and

20 degrees for the shape similarity constraint for maximum
deviation in surface normals described in Section IV-B. We
find that the analytical algorithm decreases the graspability
metric for all datasets. With a value of @ = 10 degrees,
the mean normalized graspability is decreased by 32% on
the intersected cylinders dataset, 12% on the intersected
prisms dataset, and 32% on the ShapeNet bottles datset. At
each level of «, we observe that the objects from the prism
dataset have the highest graspability; we conjecture that it is
difficult to decrease the antipodality of large, prism surfaces
with only local perturbations. Sample object examples along
with their adversarial versions, the associated graspability
metrics, and the distribution of graspability metrics before
and after applying the analytical algorithm are shown in
Fig. 3. Increasing « decreases the graspability at the cost
of geometric similarity to the original object.

B. Antipodal Rotation Algorithm

We run the antipodal rotation algorithm on 100 objects
from each of the three datasets. We use d = 350, and number
of iterations equal to the number of faces of the mesh after
decimation. d = 350 was chosen because for this number of
faces, the decimated meshes appear similar to the original
meshes by visual inspection. We experimented with 5 =
0.01,0.075, 0.3 for the shape similarity constraint described
in Section I'V-C. We find that the antipodal rotation algorithm
decreases the graspability metric for all datasets. With a
value of § = 0.01, the mean normalized graspability is
decreased by 32% on the intersected cylinders dataset, 11%
on the intersected prisms dataset, and 21% on the ShapeNet
bottles datset. At each level of 3, we observe that the objects
from the prism dataset have the highest graspability, similar
to the other analytical algorithm above. Object examples
and metrics are shown in Fig. 3. Increasing  decreases
the graspability at the cost of geometric similarity to the
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Fig. 4: CEM + GAN Algorithm. The images on the left are example objects from the GAN output distribution as the resampling progresses. “Original”
means the original SDF dataset, “Episode 0” denotes the GAN trained on the prior dataset (the first GAN trained, or Episode 0), and “Episode n” denotes
the n™ GAN trained excluding the first. The  values are the mean normalized graspabilities over a set of 100 objects generated during the corresponding
stage in the training, where the graspability is the empirical 75¢" percentile of samples from the grasp quality function. The right image is the histogram
showing the overall distribution of the graspability metric (normalized to the mean graspability Episode 0) on the GAN output distribution as resampling
progresses. As the algorithm progresses through the episodes, the probability mass shifts towards lower graspability. The objects have been smoothed for

visualization purposes with OpenGL smooth shading.

original object, corresponding to an increasingly relaxed
shape similarity constraint.

C. CEM + GAN Algorithm

We train the resampling GAN on all three datasets. The
datasets are preprocessed into signed distance field format
with stride 0.03125 after being scaled such that the entire
set has bounding boxes of approximately 1 x 1 x 1.

For all three datasets, we sample 2500 new objects and
keep 500 with the lowest graspability, and train the GAN
for 16000 iterations between resampling steps. Resampling
in all experiments rejects output grids that produce non-
watertight meshes after remeshing, as producing meshes
with non-orientable faces, gaps, self-intersection, or disjoint
pieces is not desirable when generating a distribution of 3D
objects. Such outputs are possible because the GAN does
not explicitly enforce such constraints, but this rejection
rate is very low: for bottles, no grids were rejected in any
resampling iteration, and on the intersected sets, rejection
rate remained below 10% in all episodes.

Examples of objects from the GAN output distributions
and histograms showing the overall distribution of graspa-
bility over resampling episodes are shown in Fig. 4. After
3 resampling iterations on the intersected cylinders dataset,
the mean normalized graspability is reduced by 22% relative
to objects in the original dataset. Similarly, graspability is
reduced by 36% on the intersected prisms dataset after 4

resampling iterations and by 17% on the ShapeNet bottles
dataset after 5 resampling iterations.

D. CEM + GAN Fuailure Modes

In general, CEM + GAN can produce objects with richer
geometric variations compared to analytical methods; how-
ever, since resampling decreases diversity of objects in the
samples as objects with similar metric scores tend to have
similar geometry, complete mode collapse, the phenomenon
where a GAN outputs one distinct object regardless of the
input [41], tends to occur after enough resampling episodes.
We observed mode collapse by the 9'" iteration on all three
datasets.

We experimented with several variations of the GAN ar-
chitecture and observed that removing spectral normalization
can lead to more diverse objects on the intersected cylinders
dataset. In this experiment, mode collapse does not occur
before the metric quality mean stops improving, reaching a
decrease of 83% from the original dataset. However, these
generated objects can deviate more significantly from the
prior dataset. Some examples are shown in Section VIL

VII. PHYSICAL EXPERIMENTS

A. Objects

We experiment with several types of objects. First, we
consider a unit cube, a highly graspable object. We manually
optimized an adversarial cube with minimal perturbation



such that any pair of faces of the adversarial object has
an antipodality angle of at least ¢ degrees by moving the
midpoint on three adjacent faces of the cube by 2 in the
direction of the surface normal of the original face.

We also consider a cuboctahedron, a polyhedron with
6 square faces and 8 triangular faces. As it is difficult
to manually design an adversarial version satisfying the
property that all pairs of faces have an antipodality angle of
at least o, we used a modification of the analytical algorithm
described in Section IV-A. We apply random perturbations
until the property above is satisfied, rejecting perturbations
that introduce concavities to the objects.

We also 3D printed two of the adversarial intersected
cylinders objects generated using the alternative GAN ar-
chitecture described in Section VI-D. We chose this class of
objects to explore in physical trials, since it was the output
generated by the CEM + GAN algorithm with the lowest
graspability in simulation.

B. Experimental Setup

We used a custom parallel jaw gripper in which each jaw
simulates a point contact using a small metal bearing (Fig.
5). The friction angle with this gripper and the printed objects
is approximately 17°.

P
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Fig. 5: Top: 3D printed objects with nylon plastic material. We use cubes and
cuboctahedrons with ¢ = 0, 10, 15,26 and adversarial intersected cylinder
objects generated by the CEM + GAN algorithm. Bottom (left to right):
Gripper design with metal ball bearings to simulate point contacts, suc-
cessful grasp of the original cuboctahedron, attempted grasp on adversarial
cuboctahedron (p = 26), failure on adversarial cuboctahedron (¢ = 26) in
which the object rolls forward after slipping out of the gripper.

In physical trials, we first compute the stables poses of
each object and potential grasps with their associated confi-
dences using the Dex-Net 1.0 [11] analytic robustness model.
On the physical system, we sample 5 grasps and execute each
3 times. To sample the grasps, we first sample a stable pose,

using probabilities for each stable pose proportional to the
computed feasibility probability of the stable pose. We then
take the grasp with the highest confidence of success that has
not yet been executed. When executing the grasp, we place
the object in a bin, use a depth sensor to obtain a point cloud
of the object, and then align it to the known 3D model of
the object using the SuperdPCS algorithm [42]. A grasp is
successful if the robot arm is able to lift the object out of
the bin and transport it to an adjacent bin.

C. Results

We conducted a total of 15 trials for each of the ten
objects (Table I). The original cube is successfully grasped
in all trials, and the success rate decreases as we increase the
adversarial friction angle; the adversarial cube of 26 degrees
is never successfully grasped. We observe a similar trend
for the cuboctahedrons. The adversarial intersected cylinder
objects generated by the CEM + GAN method are very
difficult to grasp, as only we observed success in only 3
of 30 total trials for the two objects.

Object Pred. | Actual
Original Cube 100.0 100.0
Adversarial Cube (10°) 100.0 80.0
Adversarial Cube (15°) 100.0 13.3

Adversarial Cube (26°) 0.0 0.0

Original Cuboctahedron 100.0 100.0
Adversarial Cuboctahedron (10°) 100.0 60.0
Adversarial Cuboctahedron (15°) 100.0 13.3
Adversarial Cuboctahedron (26°) 0.0 0.0
Adversarial Intersected Cylinder 1 0.0 13.3
Adversarial Intersected Cylinder 2 0.0 6.7

TABLE I: Physical Experiment Results. 5 grasps with 3 trials for each of
10 objects showing predicted and actual grasp success rates. Lower success
rates for cases where the adversarial friction angle is close to the real friction
angle may be due to small calibration errors.

VIII. DISCUSSION AND FUTURE WORK

We introduce adversarial grasp objects: objects that are
geometrically similar to a given object, but decrease the pre-
dicted graspability, and present three algorithms that generate
adversarial grasp objects.

The Dex-Net 1.0 graspability metric [11] models point
contacts instead of area contacts, which can be disproportion-
ately affected by surface roughness. In future work, we will
explore extensions to different gripper types and to suction
grasps. In computer vision, adversarial images can be used to
train more robust neural network image classifiers. Similarly,
we conjecture that adversarial grasp objects can be used to
train more robust learning-based robot grasping policies.
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