Second-order backpropagation algorithms for a
stagewise-partitioned separable Hessian matrix

Eiji Mizutani
Department of Computer Science
Tsing Hua University
Hsinchu, 300 Taiwan
E-mail: eiji@wayne.cs.nthu.edu.tw

Abstract— Recent advances in computer technology allow the
implementation of some important methods that were assigned
lower priority in the past due to their computational burdens.
Second-order backpropagation (BP) is such a method that
computes the exact Hessian matrix of a given objective function.
We describe two algorithms for feed-forward neural-network
(NN) learning with emphasis on how to organize Hessian elements
into a so-called stagewise-partitioned block-arrow matrix form:
(1) stagewise BP, an extension of the discrete-time optimal-control
stagewise Newton of Dreyfus 1966; and (2) nodewise BP, based
on direct implementation of the chain rule for differentiation
attributable to Bishop 1992. The former, a more systematic and
cost-efficient implementation in both memory and operation,
progresses in the same layer-by-layer (i.e., stagewise) fashion as
the widely-employed first-order BP computes the gradient vector.
We also show intriguing separable structures of each block in
the partitioned Hessian, disclosing the rank of blocks.

I. INTRODUCTION

In multi-stage optimal control problems, second-order opti-
mization procedures (see [8] and references therein) proceed
in a stagewise manner since N, the number of stages, is often
very large. Naturally, those methods can be employed for
optimizing multi-stage feed-forward neural networks: In this
paper, we focus on an N-layered multilayer perceptron (MLP),
which gives rise to an N-stage decision making problem. At
each stage s, we assume there are P; (s=1,---,N) states
(or nodes) and ng (s=1,---, N—1) decision parameters (or
weights), denoted by an n,-vector 8°°T* (between layers s
and s+1). No decisions are to be made at terminal stage N (or
layer N); hence, the V-1 decision stages in total. To compute
the gradient vector for optimization purposes, we employ the
“first-order” backpropagation (BP) process [5], [6], [7], which
consists of two major procedures: forward pass and backward
pass [see later Eqg. (2)]. A forward-pass situation in MLP-
learning, where the node outputs in layer s—1 (denoted by
y*~1) affect the node outputs in the next layer s (i.e., y*)
via connection parameters (denoted by 8°~!* between those
two layers), can be interpreted as a situation in optimal control
where state y*~! at stage s—1 is moved to state y* at the next
stage s by decisions 8°~ . In the backward pass, sensitivities
of the objective function E with respect to states (i.e., node
sensitivities) are propagated from one stage back to another
while computing gradients and Hessian elements. However,
MLPs exhibit a great deal of structure, which turns out to be
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a very special case in optimal control; for instance, the “after-
node” outputs (or states) are evaluated individually at each
stage as y; = f7(x3), where f(.) denotes a differentiable
state-transition function of nonlinear dynamics, and 7, the
“before-node” net input to node j at layer s, depends on
only a subset of all decisions taken at stage s—1. In spite of
this distinction and others, using a vector of states as a basic
ingredient allows us to adopt analogous formulas available
in the optimal control theory (see [8]). The key concept
behind the theory resides in stagewise implementation; in fact,
first-order BP is essentially a simplified stagewise optimal-
control gradient formula developed in early 1960s [6]. We
first review the important “stagewise concept” of first-order
BP, and then advance to stagewise second-order BP with
particular emphasis on our organization of Hessian elements
into a stagewise-partitioned block-arrow Hessian matrix form.

Il. STAGEWISE FIRST-ORDER BACKPROPAGATION

The backward pass in MLP-learning starts evaluating the
so-called terminal after-node sensitivities (also known as
costates or multipliers in optimal control) ¢ = B‘% (defined
as partial derivatives of an objective function £ with respect
to vy, the output of node & at layer N) for k=1,..., Py,
yielding a Py-vector ¢~. Then, at each node k, the after-
node sensitivity is transformed into the before-node sensitivity
(called delta in ref. [5]; see pages 325-326) o) = 2&
(defined as partial derivatives of E with respect to m,f’ ,
the before-node “net input” to node k) by multiplying by
node-function derivatives as 6 = f¥(« )¢y . The well-known
stagewise first-order BP (i.e., generalized delta rule; see
Eq.(14), p.326 in [5]) for intermediate stage s (s=2,--- , N—1)
can be written out with & or £ as the recurrence relation below
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where E is a given certain objective function (to be mini-
mized), and two P.,-by-P. matrices, N***! and W#s+1,
are defined as Nest! 9 [agsfl] and Westl 4 [63’3“}.
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These two are called before-node and after-node sen-
sitivity transition matrices, respectively, for they trans-
late the node-sensitivity vector 4 by N (and & by W)
from one stage to another e.g., we can readily verify
oo l=Ne— L Nt et N LT §s+1 Note that those
two forms of sensitivity vectors become identical when node
functions f(.) are linear identity functions usually employed
only at terminal layer N in MLP-learning.

The forward and backward passes in first-order stagewise
BP for the standard MLP-learning can be summarized below:

Forward pass: Backward pass:
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Here, y5 (with subscript 4 on y®) includes a scalar constant
output y; of a blas node (denoted by node 0) at layer s leading
to yJr =y, ¥y’ } (1 + Ps)-vector of outputs at layer s; ;" o1
is a Ps;1-vector of the parameters linked to node ¢ at Iayer s;
6°°F 'is a (14 P,)-vector of the parameters linked to node j
at layer s + 1 (including a threshold parameter linked to bias
node 0 at layer s); @ in forward pass, a Psy1-by-(1 + P,)
matrix of parameters between layers s and s+1, includes the
P41 threshold parameters (i.e., the P..-vector 65°*") linked
to bias node O at layer s in the first column, whereas ©:;5+"
in backward pass excludes the threshold parameters. Note
that a matrix can always be reshaped into a vector for our
convenience; for instance, ®***! can be reshaped to §°+1,
an ns-vector [ns = (1 + Ps)Ps+1] of parameters, as shown next:
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where scalar 6. “*1 denotes a parameter between node i at
layer s and node k at layer s+1. At each stage s, the n-
length gradient vector associated with <t can be written
as

5,8 8S+1Ts '5+1Ts
g’ = [80};5+1} 3 = [ade)i,wl] 0 +17 (4)

where the transposed matrices are sparse in a block-diagonal
form; for instance, see 934 later in Egs. (25) and (26). Yet,

the stagewise computation by first-order BP can be viewed in
such a way that the gradients are efficiently computed (without
forming such sparse block-diagonal matrices explicitly) by the
outer product éstlyf, which produces a Psi1-by-(1 + Ps)
matrix G***1 of gradients [7] associated with the same-sized
matrix ©@*°t1 of parameters; here, column i of G***! is
given as a P.;,-vector g5**! for 67°*!. Again, the resulting
gradient matrix G***!' can be reshaped to an n,-length
gradient vector g**** in the same manner as shown in Eq. (3).

Furthermore, the before-node sensitivity vector §°+! (used to
get g***1 in the outer-product operation) is backpropagated
by ¢* = @25 5+, as shown in Eq. (2)(right), rather than by
Eqg. (1) due to N>+l =@%51! [gys}, that is, stagewise “first-
order” BP forms neither N nor W explicitly.

Such matrices as N***! for adjacent layers also play an
important role as a vehicle for bucket-brigading second-order
information [see later Eqs (10) and (11)] necessary to obtain
the Hessian matrix H. Stagewise second-order BP computes
one block after another in the stagewise-partitioned H without
forming N*st1 explicitly in the same way as stagewise first-
order BP, which we shall describe next.

I1l. THE STAGEWISE-PARTITIONED HESSIAN MATRIX

Given an N- Iayered MLP let the total number of parameters
be denoted by n = Z "' ns, and let each n,-by-n; H** block
include Hessian elements with respect to pairs of one pa-
rameter at stage s [in the space of n, parameters (6%°+!
between layers s and s+1)] and another parameter at stage ¢
[in the space of n; parameters (‘"' between layers ¢ and
t+1)]. Then, the n-by-n symmetric Hessian matrix H of a
certain objective function E can be represented as a partitioned
form among N layers (i.e., N—1 decision stages) in such a
stagewise format as shown next:
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By symmetry, we need to form only the lower (or upper)
triangular part of H; totally ~2=1 plocks including ns-by-
n, rectangular “off-diagonal” blocks H** (1<s<t<N-1) as
well as N—1 symmetric n,-by-n, square “diagonal” blocks
H**® (1<s<N-1), of which we need only the lower half.

A. Stagewise second-order backpropagation

Stagewise second-order BP computes the entire Hessian
matrix by one forward pass followed by backward processes
per training datum in a stagewise block-by-block fashion. The
Hessian blocks are computed from stage V-1 in a stagewise
manner in the order of

Stage N-1 Stage N-2 Stage N-3 Stage 1
Hl,l
HN 2,N—2 HN3N3 H1‘2
HN1N1:>{N2N1:>HN3N2¢ = :
H HN-3,N-1 :
HLN-1



In what follows, we describe algorithmic details step by step:
Algorithm: Stagewise second-order BP (per training datum).

(Step 0) Do forward pass from stage 1 to N to obtain node
outputs, and evaluate the objective function value E.

(Step 1) At terminal stage N, compute ¢V = [sy , the Py-
length after-node sensitivity vector (defined in Sec.” 1), and
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The (i, j)-element of the last symmetric matrix is obtainable
from the following special (., .)-operation (set s=N below):

82}’8 s def iiig 322/13 (7)
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which is just a diagonal matrix in standard MLP-learning.

o Repeat the following Steps 2 to 6, starting at stage s=N—1:
(Step 2) Obtain the diagonal Hessian block at stage s by
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(Step 3) Only when 2 < N—s holds, obtain (NV—s—1) off-
diagonal Hessian blocks by

s,s+t 8:{5+1 r s+1,s+t —
H> =|— F'" for t=1,...,N—s—1, (9)
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where Fst+s+t js not needed initially when s=N—1; hence,
defined later in Eq. (11).

e If s=1, then terminate; otherwise continue:

(Step 4) When 2 < N—s holds, update previously-computed
rectangular matrices F*+1 for the next stage by:

S, u s,s+1 s+1,u _
Fray — N Fiolg" for u=s+l,....N— (10)
Py Xny Psx Py Py i1 Xny

(Step 5) Compute a new Ps-by-n, rectangular matrix F** at
the current stage s by
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Here, 6*°t' has its length n,=(1+ Ps)P.;: including

P41 threshold parameters 6 =T linked to node O at layer s,
whereas 03,57 has its length P, P, excluding the thresholds;
these two vectors can be reshaped to ®***! and @:5*!,
respectively, as shown in Eq. (3). The (¢, j)-element of the last

Ps-by-n, rectangular matrix is obtainable from the following

particular (., .)-operation [compare Eq. (M]:
000t ] o der SN AN o] 0
<[695 s+1 7 Z ZZ 895 s+1 (12)
ij k=1 i=1 =0 Lk

where index j is subject to j = (1+ Ps)(k— 1) +1+ 1.
(Step 6) Compute a Ps-by-P, matrix Z* by

(25 o

Ps x Pg
where the last matrix is obtainable from the (.,.)-operation
defined in Eq. (7).
e Go back to Step 2 by setting s=s—1. o(End of Algorithm)o

VA — Ns,s+1T Zs+1 Ns,s+1
~—~ —_— —
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Remarks: The (.,.)-operation defined in Eq. (12) yields a
matrix of only first derivatives below:
A E) I )]
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Here, the ng-column space of the resulting Ps-by-n, matrix
has totally P, partitions, each of which consists of (1+Ps)
columns since ns=(1+Ps)Ps41, and each partition has a P;-
vector of zeros, denoted by 0, in the first column. The posed
sparsity is tied to particular applications like MLP-learning.

B. Nodewise second-order backpropagation

In the NN literature, the best-known second-order BP is
probably Bishop’s method [1], [3], where for every node
individually one must run a forward pass to the terminal
output layer followed by a backward pass back to the node
to get information necessary for Hessian elements; here, that
node is one of the variables differentiated with repect to [for
seeking node sensitivity in Eq. (1)]. This is what we call
nodewise BP, a nodewise implementation of the chain rule
for differentiation, which yields a Hessian element below with
respect to two parameters 6;5°and 6, for 1 <s <u<N
and =5 = ga [cf. Egs. (6) and (13)]:

using nS ! = 6’
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This is Eq.(4.71), p. 155 in [2] rewritten with stages introduced
and denoted by superscripts, and n}’ }j‘l is the (k, j)-element
of P,_i-by-P, matrix N=“~! in Eq. (1). The basic idea
of Bishop’s nodewise BP is as follows: Compute all the
necessary quantities: 5“ by stagewise first-order BP, n>":~ Y

forward pass, and z’ by backward pass in advance then



use Eq. (14) to evaluate Hessian elements. Unfortunately, this
nodewise implementation of chain rules (14) does not exploit
stagewise structure unlike first-order BP (see Section Il); in
addition, it has no implication about how to organize Hessian
elements into a stagewise-partitioned “block-arrow” Hessian
matrix [see Eqg. (5) and Fig. 1]: To this end, it would be of
much greater value to rewrite the nodewise algorithm posed
by Bishop (outlined on p. 157 in [2]) in matrix form below.

Algorithm: Nodewise second-order BP (per training datum).
(Step 0) Do forward pass from stage 1 to stage N.

(Step 1) Initialize N*°=I (identity matrix) and N**=0
(matrix of zeros) for 1<s<u < N (see pages 155 & 156
in [2] for this particular initialization), and then do forward
pass to obtain a P;-by-P. non-zero dense matrix N** (for

s<t;s=2,---,N—1) by the following computation:
Py
t—l t—1 f—lt 5,1 syt NTt=1,t NS t—
Ef ny <:>N:_N“iN“.(15)
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(Step 2) At terminal stage N, compute 6" =[2%], the Py-

length before-node sensitivity vector, and matrix Z* [defined
in Eq. (6)], and then obtain the following for 2 < s < N:
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(Step 3) Compute &° using first-order BP: ¢f =3, 04" o/
in Eq.(2)(right) and obtain the next for 1 < s <t < N:
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(Step 4) Evaluate the Hessian blocks by Eq. (14) in matrix
form for 1 < s <u < N:
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where Eq. (12) is used for evaluating a (., .)-term. o(End)o

Remarks: Egs. (15), (16), and (17) correspond to Egs.(4.75),
(4.79), and (4.78), respectively, on pages 155 & 156 in ref. [2].

IV. TWO HIDDEN-LAYER MLP LEARNING

In optimal control, N, the number of stages, is arbi-
trarily large. In MLP-learning, however, use of merely one
or two hidden layers is by far the most popular at this
stage. For this reason, we consider standard two-hidden-
layer MLP-learning. This is a four-stage (V=4; three decision
stages plus a terminal stage) problem, in which the total
number of parameters (or decision variables) is given as:

n=n3+na+n=Pi(1+ P3)+ Ps(1+ P) + P (1+ P) (in-
cluding threshold parameters). In this setting, we have a three-
block by three-block stagewise symmetric Hessian matrix H
in a nine-block partitioned form below as well as a three-
block-partitioned gradient vector g defined in Eq. (4):

33 23T 1T g3,f1
H= |23 g2 meT|, g8=|&2%|. (19)
H!3 H12 HLL gl2

Here, we need to form three off-diagonal blocks and only
the lower (or upper) triangular part of three diagonal blocks;
totally, six blocks H*"* (1<s<t<3). Each block H** includes
Hessian elements with respect to pairs of one parameter at
stage s and another at stage t.

A. Algorithmic behaviors

We describe how our version of nodewise second-order BP
algorithm in Section 111-B works:

(Step 1): By initialization, set N*4=1I, N3*3=1, N>»%=I,
N*3=0, N*2=0, and N*>2=0. By forward pass in Eq. (15),
get three dense blocks: N?3, N34, and N?* = N34N?3,
(Step 2): Get Z* by Eq. (6) and Z** = N**Z* by Eq. (16);
similarly, obtain z** and z** as well.

(Step 3): Use Eq. (17) to get Z*3, Z>3, and Zz2-2; for instance,
by Z3,3:N3,3T<[ai§g;]7€3>+ Z3AN3 4,

(Step 4): Use Eq. (18) [i.e., Eq. (14)] to obtain the desired six
Hessian blocks.

All those nine N blocks can be pictured in an augmented
“upper triangular” before-node sensitivity transition matrix N
defined below together with X, a P-dimensional augmented
vector, which consists of all the before-node net-inputs per da-
tum at three layers except the first input layer (N =1) because
x! is a fixed vector of given inputs; hence, P=P,+ Ps+ Ps:

Ip, . p N34 N24 A
a4 SN—~— haad X
— N4.4 PyxP3 Pyx Py
2,3
R OR]_ | Orgxry | Trry | NO2 10 5 odef) o (20)
=| 5= |= — |3 = | x3 |
~~ ox _N43 | —n3s | PaxP2 -
PxP = = Px1
Opyxpy | Opyxpy | Ipyxp, 9
SN—— X
L = N4,2 = N3,2 = N2,2 _ L |

Here, three diagonal identity blocks I correspond to N+, N33,
and N*2, At first glance, Bishop’s nodewise BP relies on
using N explicitly, requiring N** even for non-adjacent lay-
ers (s+1<t) as well as identity blocks N** and zero blocks.
For adjacent blocks N**" Eq. (15) just implies multiply
by an identity matrix; hence, no need to use it in reality.
Likewise, at Step 2, Z**=2Z* due to N**=I1. Furthermore,
in Eq. (18), N*3=0 and N*2?=0 (matrices of zeros) are used
when diagonal blocks H** are evaluated (but N*2=0 is not
needed at all). In this way, nodewise BP yields Hessian blocks
by Eq. (18), a matrix form of Eq. (14), as long as N in
Eq. (20) is obtained correctly in advance by forward pass at
Step 1 (according to pp.155-156 in [2]); yet, it is not very
efficient to work on such zero entries and multiply by one.



On the other hand, stagewise second-order BP evaluates
N***1 implicitly only for adjacent layers during the backward
process (not by forward pass) essentially in the same man-
ner as stagewise first-order BP does with no N***! blocks
required explicitly, and thus avoids operating on such zeros
and ones [for Eqg. (20)]. For off-diagonal Hessian blocks
H** (s < u), the parenthesized terms in Eq. (18) become
the rectangular matrix F**~! in Eq. (11). That is, stagewise
BP splits Eq. (18) into Egs. (8) and (9) by exploitation of the
stagewise MLP structure.

B. Separable Hessian Structures

We next show the Hessian-block structures to be separable
into several portions. Among the six distinct blocks in Eq. (19),
due to space limitation we display below three Hessian blocks:
two diagonal blocks and one off-diagonal block alone.
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In ordinary MLP-learning with multiple terminal outputs
(P2 >1), only Ca(=1+ Ps= %) parameters, a subset of
the n3 terminal parameters 64, contribute to each termi-
nal output: At some node k at layer 4, for instance, only
Ca parameters 6. influence output y;, whereas the other
(ns — Ca) parameters 6 (k # j; j = 1, ..., P4) have no effect
on it. Therefore, the first diagonal Hessian block H?* in

Eqg. (21) [i.e., HV*V* placed at the upper-left corner in Eq. (5)]
always becomes block-diagonal (with P, sub-blocks x) below:

X1

3,3 2
H>® = . , (24)
ngXxXns X py

where xj denotes a Cx-by-Ca dense symmetric sub-block.
In consequence, the entire Hessian matrix becomes a block-
arrow form; see later the front panel in Fig. 1. In addition,
if linear identity node functions are employed at the terminal
layer (hence, y* = x*), then all the diagonal sub-blocks in
Eg. (24) become identical; so, need to store only half of one
sub-block due to symmetry. In such a case, it is clear from
our separable representations of the Hessian blocks that the
second term on the right-hand side of Egs (21), (22), and (23)
will disappear because aiig; reduces to a matrix of zeros.
Furthermore, the last term in H2 is a sparse matrix of only
first derivatives due to Eq. (12); in the next section, we shall
explain this finding in nonlinear least squares learning.

C. Neural Networks Nonlinear Least Squares Learning

When our objective function E is the sum over all the
d training data of squared residuals, we have E(6) = ir'r,
where r = y*(@) — t; in words, an m-vector r of residuals is
the difference between an m-vector t of the desired outputs
and an m-vector y* of the terminal outputs of a two hidden-
layer MLP (with N=4), and m = Psd (P > 1, or multiple
terminal outputs in general). The gradient vector of E is given
by g=J7r; here, J denotes the m-by-n Jacobian matrix J of
the residual vector r, which is J of y* because t is independent
of 8 by assumption. As shown in Egs. (19)r(right) and (4), g is
stagewise-partitioned as: g** ' = :g’ill] etfors=1,...,3,
where ¢*=r. Likewise, J can be given in stagewise column-
partitioned form below in Eq. (25), or equivalently in block-
angular form below in Eg. (26) [with ng=n—n3 =n1+n2]:
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dense np columns
where Ay is d-by-Ca (k=1,...,Ps) and By d-by-np. The
block-angular form is due to the same reason as Eq. (24);
i.e., only C. parameters affect each terminal residual. Since
J has the block-angular form in Eq. (26), its cross-product
matrix J7J has a so-called block-arrow form due to its
appearance, as illustrated in Fig. 1, where H=J*J and H??3
in Egs (21) and (24) consists of P, diagonal blocks AT A,
for k=1, ..., Ps. If the terminal node functions are the linear
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Fig. 1. The front square panel shows the block-arrow Gauss-Newton Hessian
matrix J7 J obtainable from the sum of m (= F'd) slabs over al the d training
data with a multiple F'(= P )-output multilayer-perceptron (MLP) model;
here, the lower-right block of the Hessian iss BB = "5 _, B By, and
the right-front rectangular panel depicts the transposed block-angular residual
Jacobian matrix J7 [in Eq.(26)]. The ith slab (i=1, ..., m) consists of four
rank-one blocks: AT Ay, ATBy, BT Ay, and B] By, resuiting from the
kth residual rj , computed a node k (k =1, ..., F) a termina layer on
datum p (p=1, ..., d); hence, the relation i = (k — 1)d + p. In standard MLP-
learning, the full Hessian H (e.g., J7J+S) aso has the same block-arrow
form because HN-1V-1 in Eq.(5) is block-diagond;e.q., see Eq.(24).

....

d

identity function, then all the diagonal blocks A, become
identical; so do AT A,, as described after Eq. (24).

Since E(0) = ir"r, matrix % in Eq. (6) reduces
to the identity matrix I; therefore, the full Hessian can be
given as H = J*J 4+ S, where J7J is a matrix of only first
derivatives (called the Gauss-Newton Hessian in Fig. 1), the
first term on the right hand side of Egs. (21) to (23), and
S is a matrix of second derivatives, the rest of right-hand-
side terms in those equations. Intriguingly, in off-diagonal
Hessian blocks H**=[J7J]""+ S>! (s < ¢), we can further
pull T=*, a sparse matrix of only first derivatives, out of S**
as H*' = ([JTJ] S’WT“)Jr(SS’thSvt), where we have

st _ oyt T 805;35“ t+1
T - [895)’;+1i| <|:80t,td+1 76 .

For instance, T2 is the last term of H"? [see Eq. (23)],
obtainable from Eq. (12).

@7)

V. CONCLUSION AND FUTURE DIRECTIONS

Given a general objective function arising in multi-stage
NN-learning, we have described in matrix form both stagewise
second-order BP and our version of nodewise second-order
BP with a particular emphasis on how to organize Hessian
elements into the stagewise-partitioned “block-arrow” Hessian
matrix H (with its arrow-head pointing downwards to the
right; see pp. 83-90 in [4]), as illustrated in Fig. 1, so as
to exploit inevitable sparsity [9] when Py > 1 (i.e., multiple
terminal outputs). In more elaborate MLP-learning, one may
introduce direct connections between the first input and the ter-
minal layers; this increases C4, the diagonal sub-block size in
HY V! [see Eq. (24)], leading to a very nice block-arrow form.
On the other hand, such nice sparsity may disappear when

weight-sharing and weight-pruning are applied (as usual in
optimal control [8]) so that all the terminal parameters 6V~
are shared among the terminal states y”. In this way, MLP-
learning exhibits a great deal of structure.

For the parameter optimization, we recommend trust-region
globalization, which works even if H is indefinite [10], [9]. In
large-scale problems, where H may not be needed explicitly,
we could use sparse Hessian matrix-vector multiply (e.g., [11])
to construct Krylov subspaces for optimization purposes, but it
is still worth exploiting sparsity of H for pre-conditioning [10].
In this context, it is not recommendable to compute (or
approximate) the inverse matrix of (sparse) block-arrow H (see
Fig. 1) because it always becomes dense.

Our matrix-based algorithms revealed that blocks in the
stagewise-partitioned H are separable into several distinct
portions, and disclosed that sparse matrices of only first deriva-
tives [see Eq. (27)] can be further identified. Furthermore, by
inspection of the common matrix terms in block [e.g., see
Egs. (21) to (23)], we see that the Hessian part computed on
each datum at stage s, which consists of blocks H** (1 <
s<t< N-1), is at most rank P,.;, where P, denotes the
number of nodes at layer s+1. We plan to report in another
opportunity more on those findings as well as the practical
implementation issues of stagewise second-order BP, for which
the matrix recursive formulas may allow us to take advantage
of level-3 BLAS (Basic Linear Algebra Subprograms; see
http://www.netlib.org/blas/).
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