
Second-order backpropagation algorithms for a
stagewise-partitioned separable Hessian matrix

Eiji Mizutani
Department of Computer Science

Tsing Hua University
Hsinchu, 300 Taiwan

E-mail: eiji@wayne.cs.nthu.edu.tw

Stuart E. Dreyfus
Industrial Engineering & Operations Research

University of California, Berkeley
Berkeley, CA 94720 USA

E-mail: dreyfus@ieor.berkeley.edu

James W. Demmel
Mathematics & Computer Science
University of California, Berkeley

Berkeley, CA 94720 USA
E-mail: demmel@cs.berkeley.edu

Abstract— Recent advances in computer technology allow the
implementation of some important methods that were assigned
lower priority in the past due to their computational burdens.
Second-order backpropagation (BP) is such a method that
computes the exact Hessian matrix of a given objective function.
We describe two algorithms for feed-forward neural-network
(NN) learning with emphasis on how to organize Hessian elements
into a so-called stagewise-partitioned block-arrow matrix form:
(1) stagewise BP, an extension of the discrete-time optimal-control
stagewise Newton of Dreyfus 1966; and (2) nodewise BP, based
on direct implementation of the chain rule for differentiation
attributable to Bishop 1992. The former, a more systematic and
cost-efficient implementation in both memory and operation,
progresses in the same layer-by-layer (i.e., stagewise) fashion as
the widely-employed first-order BP computes the gradient vector.
We also show intriguing separable structures of each block in
the partitioned Hessian, disclosing the rank of blocks.

I. INTRODUCTION

In multi-stage optimal control problems, second-order opti-
mization procedures (see [8] and references therein) proceed
in a stagewise manner since N , the number of stages, is often
very large. Naturally, those methods can be employed for
optimizing multi-stage feed-forward neural networks: In this
paper, we focus on an N -layered multilayer perceptron (MLP),
which gives rise to an N -stage decision making problem. At
each stage s, we assume there are Ps (s = 1, · · · , N) states
(or nodes) and ns (s=1, · · · , N−1) decision parameters (or
weights), denoted by an ns-vector θs,s+1 (between layers s

and s+1). No decisions are to be made at terminal stage N (or
layer N); hence, the N -1 decision stages in total. To compute
the gradient vector for optimization purposes, we employ the
“first-order” backpropagation (BP) process [5], [6], [7], which
consists of two major procedures: forward pass and backward
pass [see later Eq. (2)]. A forward-pass situation in MLP-
learning, where the node outputs in layer s−1 (denoted by
ys−1) affect the node outputs in the next layer s (i.e., ys)
via connection parameters (denoted by θs−1,s between those
two layers), can be interpreted as a situation in optimal control
where state ys−1 at stage s−1 is moved to state ys at the next
stage s by decisions θs−1,s. In the backward pass, sensitivities
of the objective function E with respect to states (i.e., node
sensitivities) are propagated from one stage back to another
while computing gradients and Hessian elements. However,
MLPs exhibit a great deal of structure, which turns out to be

a very special case in optimal control; for instance, the “after-
node” outputs (or states) are evaluated individually at each
stage as ys

j = fs
j (xs

j), where f(.) denotes a differentiable
state-transition function of nonlinear dynamics, and xs

j , the
“before-node” net input to node j at layer s, depends on
only a subset of all decisions taken at stage s−1. In spite of
this distinction and others, using a vector of states as a basic
ingredient allows us to adopt analogous formulas available
in the optimal control theory (see [8]). The key concept
behind the theory resides in stagewise implementation; in fact,
first-order BP is essentially a simplified stagewise optimal-
control gradient formula developed in early 1960s [6]. We
first review the important “stagewise concept” of first-order
BP, and then advance to stagewise second-order BP with
particular emphasis on our organization of Hessian elements
into a stagewise-partitioned block-arrow Hessian matrix form.

II. STAGEWISE FIRST-ORDER BACKPROPAGATION

The backward pass in MLP-learning starts evaluating the
so-called terminal after-node sensitivities (also known as
costates or multipliers in optimal control) ξN

k
≡ ∂E

∂yN
k

(defined
as partial derivatives of an objective function E with respect
to yN

k , the output of node k at layer N) for k = 1, ..., PN ,
yielding a PN -vector ξN . Then, at each node k, the after-
node sensitivity is transformed into the before-node sensitivity
(called delta in ref. [5]; see pages 325–326) δN

k
≡ ∂E

∂xN
k

(defined as partial derivatives of E with respect to xN

k ,
the before-node “net input” to node k) by multiplying by
node-function derivatives as δN

k = fN′

k (xN
k)ξN

k . The well-known
stagewise first-order BP (i.e., generalized delta rule; see
Eq.(14), p.326 in [5]) for intermediate stage s (s=2, · · · , N−1)
can be written out with δ or ξ as the recurrence relation below





δs

|{z}
Ps×1

def
=

∂E

∂xs
| {z }
Ps×1

= Ns,s+1T

| {z }
Ps×Ps+1

δs+1
| {z }

Ps+1×1

=
h
∂xs+1

∂xs

iT
δs+1,

ξs

|{z}
Ps×1

def
=

∂E

∂ys

| {z }
Ps×1

= Ws,s+1T

| {z }
Ps×Ps+1

ξs+1

| {z }
Ps+1×1

=
h
∂ys+1

∂ys

iT
ξs+1,

(1)

where E is a given certain objective function (to be mini-
mized), and two Ps+1-by-Ps matrices, Ns,s+1 and Ws,s+1,
are defined as Ns,s+1 def

=
h

∂xs+1

∂xs

i
and Ws,s+1 def

=
h

∂ys+1

∂ys

i
.

These two are called before-node and after-node sen-
sitivity transition matrices, respectively, for they trans-
late the node-sensitivity vector δ by N (and ξ by W)
from one stage to another; e.g., we can readily verify
δs−1=Ns−1,sT

Ns,s+1T

δs+1=Ns−1,s+1T

δs+1. Note that those
two forms of sensitivity vectors become identical when node
functions f(.) are linear identity functions usually employed
only at terminal layer N in MLP-learning.

The forward and backward passes in first-order stagewise
BP for the standard MLP-learning can be summarized below:

Forward pass: Backward pass:
8
>>>>>>>><
>>>>>>>>:

xs+1
j| {z }

scalar

= ysT

+ θ
s,s+1
.,j| {z }

(1+Ps)×1

m (for j =1, ..., Ps+1)

xs+1
| {z }

Ps+1×1

= Θs,s+1
| {z }

Ps+1×(1+Ps)

ys
+|{z}

(1+Ps)×1

,

8
>>>>>>>>><
>>>>>>>>>:

ξs
i|{z}

scalar

= δs+1T
θ

s,s+1
i,.| {z }

Ps+1×1

m (for i=1, ..., Ps)

ξs

|{z}
Ps×1

= Θ
s,s+1T

void| {z }
Ps×Ps+1

δs+1
| {z }

Ps+1×1

.

(2)

Here, ys
+ (with subscript + on ys) includes a scalar constant

output ys
0 of a bias node (denoted by node 0) at layer s leading

to ysT

+ =[ys
0,y

sT

], a (1 + Ps)-vector of outputs at layer s; θ
s,s+1
i,.

is a Ps+1-vector of the parameters linked to node i at layer s;
θ

s,s+1
.,j is a (1 + Ps)-vector of the parameters linked to node j

at layer s + 1 (including a threshold parameter linked to bias
node 0 at layer s); Θs,s+1 in forward pass, a Ps+1-by-(1 + Ps)

matrix of parameters between layers s and s+1, includes the
Ps+1 threshold parameters (i.e., the Ps+1-vector θ

s,s+1
0,.) linked

to bias node 0 at layer s in the first column, whereas Θ
s,s+1
void

in backward pass excludes the threshold parameters. Note
that a matrix can always be reshaped into a vector for our
convenience; for instance, Θs,s+1 can be reshaped to θs,s+1,
an ns-vector [ns≡(1 + Ps)Ps+1] of parameters, as shown next:

Θs,s+1
| {z }

Ps+1×(1+Ps)

=

2
4

θ
s,s+1
0,.| {z }

Ps+1×1

Θ
s,s+1
void| {z }

Ps+1×Ps

3
5 (3)

m Reshape

θs,s+1T

| {z }
1×ns

=
h
θ

s,s+1
0,1 , θ

s,s+1
1,1 , ...,θ

s,s+1
Ps,1

˛̨
˛...

˛̨
˛θs,s+1

0,Ps+1
, θ

s,s+1
1,Ps+1

,...,θ
s,s+1
Ps,Ps+1

i
,

where scalar θ
s,s+1
i,k denotes a parameter between node i at

layer s and node k at layer s+1. At each stage s, the ns-
length gradient vector associated with θs,s+1 can be written
as

gs,s+1 =
h

∂ys+1

∂θs,s+1

iT

ξs+1 =
h

∂xs+1

∂θs,s+1

iT

δs+1, (4)

where the transposed matrices are sparse in a block-diagonal

form; for instance, see
»

∂y4

∂θ3,4

–
later in Eqs. (25) and (26). Yet,

the stagewise computation by first-order BP can be viewed in
such a way that the gradients are efficiently computed (without
forming such sparse block-diagonal matrices explicitly) by the
outer product δs+1ysT

+ , which produces a Ps+1-by-(1 + Ps)

matrix Gs,s+1 of gradients [7] associated with the same-sized
matrix Θs,s+1 of parameters; here, column i of Gs,s+1 is
given as a Ps+1-vector g

s,s+1
i,. for θ

s,s+1
i,. . Again, the resulting

gradient matrix Gs,s+1 can be reshaped to an ns-length
gradient vector gs,s+1 in the same manner as shown in Eq. (3).

Furthermore, the before-node sensitivity vector δs+1 (used to
get gs,s+1 in the outer-product operation) is backpropagated
by ξs =Θ

s,s+1T

void δs+1, as shown in Eq. (2)(right), rather than by
Eq. (1) due to Ns,s+1 =Θ

s,s+1
void

h
∂ys

∂xs

i
; that is, stagewise “first-

order” BP forms neither N nor W explicitly.
Such matrices as Ns,s+1 for adjacent layers also play an

important role as a vehicle for bucket-brigading second-order
information [see later Eqs (10) and (11)] necessary to obtain
the Hessian matrix H. Stagewise second-order BP computes
one block after another in the stagewise-partitioned H without
forming Ns,s+1 explicitly in the same way as stagewise first-
order BP, which we shall describe next.

III. THE STAGEWISE-PARTITIONED HESSIAN MATRIX

Given an N-layered MLP, let the total number of parameters
be denoted by n =

PN−1
s=1 ns, and let each ns-by-nt Hs,t block

include Hessian elements with respect to pairs of one pa-
rameter at stage s [in the space of ns parameters (θs,s+1

between layers s and s+1)] and another parameter at stage t

[in the space of nt parameters (θt,t+1 between layers t and
t+1)]. Then, the n-by-n symmetric Hessian matrix H of a
certain objective function E can be represented as a partitioned
form among N layers (i.e., N−1 decision stages) in such a
stagewise format as shown next:

←− ←− ←− ←− . . . ←− Forward
↓ Stage N -1 Stage N -2 Stage N -3 . . . Stage 1

Backward −→ −→ −→ . . . −→z }| { z }| { z }| { z }| {

H|{z}
n×n

=

2
66666666666666666666666664

HN -1,N -1 HN -2,N -1T
HN -3,N -1T

. . . H1,N -1T

HN -2,N -1 HN -2,N -2 HN -3,N -2T
. . . H1,N -2T

HN -3,N -1 HN -3,N -2 HN -3,N -3 . . . H1,N -3T

...
...

...
. . .

...

H1,N -1 H1,N -2 H1,N -3 . . . H1, 1

3
77777777777777777777777775

.

(5)

By symmetry, we need to form only the lower (or upper)
triangular part of H; totally N(N−1)

2
blocks including ns-by-

nt rectangular “off-diagonal” blocks Hs,t (1≤s≤ t≤N−1) as
well as N−1 symmetric ns-by-ns square “diagonal” blocks
Hs,s (1≤s≤N−1), of which we need only the lower half.

A. Stagewise second-order backpropagation

Stagewise second-order BP computes the entire Hessian
matrix by one forward pass followed by backward processes
per training datum in a stagewise block-by-block fashion. The
Hessian blocks are computed from stage N -1 in a stagewise
manner in the order of

Stage N -1 Stage N -2 Stage N -3 Stage 1

HN−1,N−1 ⇒


HN−2,N−2

HN−2,N−1 ⇒

8
<
:

HN−3,N−3

HN−3,N−2

HN−3,N−1
⇒ . . .⇒

8
>><
>>:

H1,1

H1,2
...

H1,N−1.

In what follows, we describe algorithmic details step by step:

Algorithm: Stagewise second-order BP (per training datum).

(Step 0) Do forward pass from stage 1 to N to obtain node
outputs, and evaluate the objective function value E.

(Step 1) At terminal stage N , compute ξN =
h

∂E

∂yN

i
, the PN -

length after-node sensitivity vector (defined in Sec. II), and

ZN

|{z}
PN×PN

=
h

∂2E

∂xN ∂xN

i
=

h
∂δN

∂xN

i

=

»
∂yN

∂xN

–T

| {z }
PN×PN

»
∂2E

∂yN∂yN

–

| {z }
PN×PN

»
∂yN

∂xN

–

| {z }
PN×PN

+

fi»
∂2yN

∂xN∂xN

–
, ξN

fl
.

| {z }
PN×PN

(6)

The (i, j)-element of the last symmetric matrix is obtainable
from the following special 〈., .〉-operation (set s=N below):

〈[
∂2ys

∂xs∂xs

]
, ξs

〉

ij

def
=

Ps∑

k=1

Ps∑

j=1

Ps∑

i=1

ξs
k

[
∂2ys

k

∂xs
i ∂xs

j

]
, (7)

which is just a diagonal matrix in standard MLP-learning.

• Repeat the following Steps 2 to 6, starting at stage s=N−1:
(Step 2) Obtain the diagonal Hessian block at stage s by

Hs,s

| {z }
ns×ns

=
»

∂xs+1

∂θs,s+1

–T

| {z }
ns×Ps+1

Zs+1
| {z }

Ps+1×Ps+1

»
∂xs+1

∂θs,s+1

–

| {z }
Ps+1×ns

. (8)

(Step 3) Only when 2 ≤ N−s holds, obtain (N−s−1) off-
diagonal Hessian blocks by

Hs,s+t

| {z }
ns×ns+t

=
»

∂xs+1

∂θs,s+1

–T

| {z }
ns×Ps+1

Fs+1,s+t

| {z }
Ps+1×ns+t

for t = 1, . . . , N−s−1, (9)

where Fs+1,s+t is not needed initially when s=N−1; hence,
defined later in Eq. (11).

• If s=1, then terminate; otherwise continue:

(Step 4) When 2 ≤ N−s holds, update previously-computed
rectangular matrices Fs+1,u for the next stage by:

F
s,u

(new)| {z }
Ps×nu

← N
s,s+1T

| {z }
Ps×Ps+1

F
s+1,u

(old)| {z }
Ps+1×nu

for u = s+1, . . . , N−1. (10)

(Step 5) Compute a new Ps-by-ns rectangular matrix Fs,s at
the current stage s by

F
s,s

|{z}
Ps×ns

=

»
∂ys

∂xs

–T

| {z }
Ps×Ps

8
><
>:

Θ
s,s+1T

void| {z }
Ps×Ps+1

Z
s+1

| {z }
Ps+1×Ps+1

»
∂xs+1

∂θs,s+1

–

| {z }
Ps+1×ns

+

fi»
∂θ

s,s+1
void

∂θs,s+1

–
, δ

s+1

fl

| {z }
Ps×ns

9
>=
>;

.

(11)

Here, θs,s+1 has its length ns =(1 + Ps)Ps+1 including
Ps+1 threshold parameters θ

s,s+1
0,. linked to node 0 at layer s,

whereas θ
s,s+1
void has its length PsPs+1 excluding the thresholds;

these two vectors can be reshaped to Θs,s+1 and Θ
s,s+1
void ,

respectively, as shown in Eq. (3). The (i, j)-element of the last

Ps-by-ns rectangular matrix is obtainable from the following
particular 〈., .〉-operation [compare Eq. (7)]:
〈[

∂θ
s,s+1
void

∂θs,s+1

]
, δ

s+1

〉

ij

def
=

Ps+1∑

k=1

Ps∑

i=1

Ps∑

l=0

δs+1
k

[
∂θ

s,s+1
i,k

∂θ
s,s+1
l,k

]
, (12)

where index j is subject to j = (1 + Ps)(k − 1) + l + 1.

(Step 6) Compute a Ps-by-Ps matrix Zs by

Zs

|{z}
Ps×Ps

= Ns,s+1T

| {z }
Ps×Ps+1

Zs+1
| {z }

Ps+1×Ps+1

Ns,s+1
| {z }

Ps+1×Ps

+

fi»
∂2ys

∂xs∂xs

–
, ξs

fl
,

| {z }
Ps×Ps

(13)

where the last matrix is obtainable from the 〈., .〉-operation
defined in Eq. (7).
• Go back to Step 2 by setting s=s−1. �(End of Algorithm)�

Remarks: The 〈., .〉-operation defined in Eq. (12) yields a
matrix of only first derivatives below:
*"

∂θ
s,s+1
void

∂θs,s+1

#
, δ

s+1

+

| {z }
Ps×ns

=

2
64δ

s+1
1

0
B@0

˛̨
˛̨
˛̨
˛

I|{z}
Ps×Ps

1
CA

˛̨
˛̨
˛̨
˛
...

˛̨
˛̨
˛̨
˛
δ

s+1
k

0
B@0

˛̨
˛̨
˛̨
˛

I|{z}
Ps×Ps

1
CA

˛̨
˛̨
˛̨
˛
...

˛̨
˛̨
˛̨
˛
δ

s+1
Ps+1

0
B@0

˛̨
˛̨
˛̨
˛

I|{z}
Ps×Ps

1
CA

3
75.

| {z }
(1+Ps) columns

| {z }
(1+Ps) columns

| {z }
(1+Ps) columns

Here, the ns-column space of the resulting Ps-by-ns matrix
has totally Ps+1 partitions, each of which consists of (1+Ps)
columns since ns =(1+Ps)Ps+1, and each partition has a Ps-
vector of zeros, denoted by 0, in the first column. The posed
sparsity is tied to particular applications like MLP-learning.

B. Nodewise second-order backpropagation

In the NN literature, the best-known second-order BP is
probably Bishop’s method [1], [3], where for every node
individually one must run a forward pass to the terminal
output layer followed by a backward pass back to the node
to get information necessary for Hessian elements; here, that
node is one of the variables differentiated with repect to [for
seeking node sensitivity in Eq. (1)]. This is what we call
nodewise BP, a nodewise implementation of the chain rule
for differentiation, which yields a Hessian element below with
respect to two parameters θ

s−1,s
i,j and θ

u−1,u
k,l for 1 < s ≤ u ≤ N

using n
s,u−1
j,k

≡
∂x

u−1
k

∂xs
j

and z
s,u
j,l
≡

∂δu
l

∂xs
j

[cf. Eqs. (6) and (13)]:

∂2E

∂θ
s−1,s
i,j ∂θ

u−1,u

k,l

=
∂xs

j

∂θ
s−1,s
i,j

∂
∂xs

j

(
∂E

∂θ
u−1,u

k,l

)

= ys−1
i

[
∂(yu−1

k
δu

l)

∂xs
j

]

= ys−1
i

[
∂y

u−1
k

∂xs
j

δu
l + yu−1

k

∂δu
l

∂xs
j

]

= ys−1
i

[
∂x

u−1
k

∂xs
j

∂y
u−1
k

∂x
u−1
k

δu
l + yu−1

k

∂δu
l

∂xs
j

]

= ys−1
i

[
n

s,u−1
j,k fu−1′

k (xu−1
k)δu

l + yu−1
k z

s,u
j,l

]
.

(14)

This is Eq.(4.71), p. 155 in [2] rewritten with stages introduced
and denoted by superscripts, and n

s,u−1
j,k is the (k, j)-element

of Pu−1-by-Ps matrix Ns,u−1 in Eq. (1). The basic idea
of Bishop’s nodewise BP is as follows: Compute all the
necessary quantities: δu

l by stagewise first-order BP, n
s,u−1
j,k by

forward pass, and z
s,u
j,l by backward pass in advance; then,

use Eq. (14) to evaluate Hessian elements. Unfortunately, this
nodewise implementation of chain rules (14) does not exploit
stagewise structure unlike first-order BP (see Section II); in
addition, it has no implication about how to organize Hessian
elements into a stagewise-partitioned “block-arrow” Hessian
matrix [see Eq. (5) and Fig. 1]: To this end, it would be of
much greater value to rewrite the nodewise algorithm posed
by Bishop (outlined on p. 157 in [2]) in matrix form below.

Algorithm: Nodewise second-order BP (per training datum).

(Step 0) Do forward pass from stage 1 to stage N .

(Step 1) Initialize Ns,s =I (identity matrix) and Nu,s =0

(matrix of zeros) for 1<s<u ≤ N (see pages 155 & 156
in [2] for this particular initialization), and then do forward
pass to obtain a Pt-by-Ps non-zero dense matrix Ns,t (for
s < t; s=2, · · · , N−1) by the following computation:

n
s,t
j,l =

Pt−1∑

k=1

f t−1′

k (xt−1
k)θt−1,t

k,l n
s,t−1
j,k ⇐⇒ Ns,t

| {z }
Pt×Ps

=Nt−1,t

| {z }
Pt×Pt−1

Ns,t−1

| {z }
Pt−1×Ps

. (15)

(Step 2) At terminal stage N , compute δN =
ˆ

∂E

∂xN

˜
, the PN -

length before-node sensitivity vector, and matrix ZN [defined
in Eq. (6)], and then obtain the following for 2 ≤ s ≤ N :

z
s,N
j,l =

PN∑

m=1

n
s,N
j,m

(
∂2E

∂xN

l ∂xN
m

)
⇐⇒ Zs,N

| {z }
Ps×PN

=Ns,NT

| {z }
Ps×PN

ZN

|{z}
PN×PN

. (16)

(Step 3) Compute δs using first-order BP: ξt
k
=

P
l=1θ

t,t+1
k,l

δt+1
l

in Eq.(2)(right) and obtain the next for 1 < s ≤ t < N :

z
s,t
j,k = n

s,t
j,kf t ′′

k (xt
k)

Pt+1∑

l=1

θ
t,t+1
k,l δt+1

l + f t ′

k (xt
k)

Pt+1∑

l=1

θ
t,t+1
k,l z

s,t+1
j,l ,

⇐⇒ Zs,t

|{z}
Ps×Pt

= Ns,tT

| {z }
Ps×Pt

fi»
∂2yt

∂xt∂xt

–
, ξt

fl

| {z }
Pt×Pt

+ Zs,t+1
| {z }

Ps×Pt+1

Nt,t+1
| {z }

Pt+1×Pt

. (17)

(Step 4) Evaluate the Hessian blocks by Eq. (14) in matrix
form for 1 < s ≤ u ≤ N :

Hs−1,u−1
| {z }

ns−1×nu−1

=
»

∂xs

∂θs−1,s

–T

| {z }
ns−1×Ps


Ns,u−1T

| {z }
Ps×Pu−1

»
∂yu−1

∂xu−1

–T

| {z }
Pu−1×Pu−1

*"
∂θ

u−1,u
void

∂θu−1,u

#
, δu

+

| {z }
Pu−1×nu−1

+ Zs,u

| {z }
Ps×Pu

»
∂xu

∂θu−1,u

–

| {z }
Pu×nu−1


, (18)

where Eq. (12) is used for evaluating a 〈., .〉-term. �(End)�

Remarks: Eqs. (15), (16), and (17) correspond to Eqs.(4.75),
(4.79), and (4.78), respectively, on pages 155 & 156 in ref. [2].

IV. TWO HIDDEN-LAYER MLP LEARNING

In optimal control, N , the number of stages, is arbi-
trarily large. In MLP-learning, however, use of merely one
or two hidden layers is by far the most popular at this
stage. For this reason, we consider standard two-hidden-
layer MLP-learning. This is a four-stage (N=4; three decision
stages plus a terminal stage) problem, in which the total
number of parameters (or decision variables) is given as:

n = n3 + n2 + n1 = P4(1 + P3) + P3(1 + P2) + P2(1 + P1) (in-
cluding threshold parameters). In this setting, we have a three-
block by three-block stagewise symmetric Hessian matrix H

in a nine-block partitioned form below as well as a three-
block-partitioned gradient vector g defined in Eq. (4):

H =

[
H3,3 H2,3T

H1,3T

H2,3 H2,2 H1,2T

H1,3 H1,2 H1,1

]
, g =

[
g3,4

g2,3

g1,2

]
. (19)

Here, we need to form three off-diagonal blocks and only
the lower (or upper) triangular part of three diagonal blocks;
totally, six blocks Hs,t (1≤s≤ t≤3). Each block Hs,t includes
Hessian elements with respect to pairs of one parameter at
stage s and another at stage t.

A. Algorithmic behaviors

We describe how our version of nodewise second-order BP
algorithm in Section III-B works:

(Step 1): By initialization, set N4,4 =I, N3,3 =I, N2,2 =I,
N4,3 =0, N4,2 =0, and N3,2 =0. By forward pass in Eq. (15),
get three dense blocks: N2,3, N3,4, and N2,4 = N3,4N2,3.

(Step 2): Get Z4 by Eq. (6) and Z4,4 = N4,4Z4 by Eq. (16);
similarly, obtain Z3,4 and Z2,4 as well.

(Step 3): Use Eq. (17) to get Z3,3, Z2,3, and Z2,2; for instance,
by Z3,3 =N3,3T

Dh
∂2y3

∂x3∂x3

i
, ξ3

E
+ Z3,4N3,4.

(Step 4): Use Eq. (18) [i.e., Eq. (14)] to obtain the desired six
Hessian blocks.

All those nine N blocks can be pictured in an augmented
“upper triangular” before-node sensitivity transition matrix eN
defined below together with x̃, a eP -dimensional augmented
vector, which consists of all the before-node net-inputs per da-
tum at three layers except the first input layer (N =1) because
x1 is a fixed vector of given inputs; hence, eP ≡P4+P3+P2:

eN|{z}
eP× eP

def
=
[

∂ex
∂ex

]
=

2
6666666666664

IP4×P4| {z }
= N4,4

N3,4
| {z }

P4×P3

N2,4
| {z }

P4×P2

0P3×P4| {z }
= N4,3

IP3×P3| {z }
= N3,3

N2,3
| {z }

P3×P2

0P2×P4| {z }
= N4,2

0P2×P3| {z }
= N3,2

IP2×P2| {z }
= N2,2

3
7777777777775

; ex|{z}
eP×1

def
=

2
6666666666664

x4

x3

x2

3
7777777777775

. (20)

Here, three diagonal identity blocks I correspond to N4,4, N3,3,
and N2,2. At first glance, Bishop’s nodewise BP relies on
using eN explicitly, requiring Ns,t even for non-adjacent lay-
ers (s+1<t) as well as identity blocks Ns,s and zero blocks.
For adjacent blocks Ns,s+1, Eq. (15) just implies multiply
by an identity matrix; hence, no need to use it in reality.
Likewise, at Step 2, Z4,4 =Z4 due to N4,4 =I. Furthermore,
in Eq. (18), N4,3 =0 and N3,2 =0 (matrices of zeros) are used
when diagonal blocks Hs,s are evaluated (but N4,2 =0 is not
needed at all). In this way, nodewise BP yields Hessian blocks
by Eq. (18), a matrix form of Eq. (14), as long as eN in
Eq. (20) is obtained correctly in advance by forward pass at
Step 1 (according to pp.155–156 in [2]); yet, it is not very
efficient to work on such zero entries and multiply by one.

On the other hand, stagewise second-order BP evaluates
Ns,s+1 implicitly only for adjacent layers during the backward
process (not by forward pass) essentially in the same man-
ner as stagewise first-order BP does with no Ns,s+1 blocks
required explicitly, and thus avoids operating on such zeros
and ones [for Eq. (20)]. For off-diagonal Hessian blocks
Hs,u (s < u), the parenthesized terms in Eq. (18) become
the rectangular matrix Fs,u−1 in Eq. (11). That is, stagewise
BP splits Eq. (18) into Eqs. (8) and (9) by exploitation of the
stagewise MLP structure.

B. Separable Hessian Structures

We next show the Hessian-block structures to be separable
into several portions. Among the six distinct blocks in Eq. (19),
due to space limitation we display below three Hessian blocks:
two diagonal blocks and one off-diagonal block alone.

H3,3
| {z }

n3×n3

=
h

∂x
4

∂θ3,4

iT

| {z }
n3×P4

»
∂y4

∂x4

–T

| {z }
P4×P4

»
∂2E

∂y4∂y4

–

| {z }
P4×P4

»
∂y4

∂x4

–

| {z }
P4×P4

h
∂x

4

∂θ3,4

i

| {z }
P4×n3

(21)

+
h

∂x
4

∂θ3,4

iT

| {z }
n3×P4

fi»
∂2y4

∂x4∂x4

–
, ξ4

fl

| {z }
P4×P4

h
∂x

4

∂θ3,4

i

| {z }
P4×n3

;

H1,1
| {z }

n1×n1

=
h

∂x
2

∂θ1,2

iT

| {z }
n1×P2

N2,3T

| {z }
P2×P3

N3,4T

| {z }
P3×P4

»
∂y4

∂x4

–T

| {z }
P4×P4

»
∂2E

∂y4∂y4

–

| {z }
P4×P4

»
∂y4

∂x4

–

| {z }
P4×P4

N3,4
| {z }

P4×P3

N2,3
| {z }

P3×P2

h
∂x

2

∂θ1,2

i

| {z }
P2×n1

+
h

∂x
2

∂θ1,2

iT

| {z }
n1×P2

N2,3T

| {z }
P2×P3

N3,4T

| {z }
P3×P4

fi»
∂2y4

∂x4∂x4

–
, ξ4

fl

| {z }
P4×P4

N3,4

| {z }
P4×P3

N2,3

| {z }
P3×P2

h
∂x

2

∂θ1,2

i

| {z }
P2×n1

+
h

∂x
2

∂θ1,2

iT

| {z }
n1×P2

N2,3T

| {z }
P2×P3

fi»
∂2y3

∂x3∂x3

–
, ξ3

fl

| {z }
P3×P3

N2,3

| {z }
P3×P2

h
∂x

2

∂θ1,2

i

| {z }
P2×n1

(22)

+
h

∂x
2

∂θ1,2

iT

| {z }
n1×P2

fi»
∂2y2

∂x2∂x2

–
, ξ2

fl

| {z }
P2×P2

h
∂x

2

∂θ1,2

i

| {z }
P2×n1

;

H1,2
| {z }

n1×n2

=
h

∂x
2

∂θ1,2

iT

| {z }
n1×P2

N2,3T

| {z }
P2×P3

N3,4T

| {z }
P3×P4

»
∂y4

∂x4

–T

| {z }
P4×P4

»
∂2E

∂y4∂y4

–

| {z }
P4×P4

»
∂y4

∂x4

–

| {z }
P4×P4

N3,4
| {z }

P4×P3

h
∂x

3

∂θ2,3

i

| {z }
P3×n2

+
h

∂x
2

∂θ1,2

iT

| {z }
n1×P2

N2,3T

| {z }
P2×P3

N3,4T

| {z }
P3×P4

fi»
∂2y4

∂x4∂x4

–
, ξ4

fl

| {z }
P4×P4

N3,4
| {z }

P4×P3

h
∂x

3

∂θ2,3

i

| {z }
P3×n2

+
h

∂x
2

∂θ1,2

iT

| {z }
n1×P2

N2,3T

| {z }
P2×P3

fi»
∂2y3

∂x3∂x3

–
, ξ3

fl

| {z }
P3×P3

h
∂x

3

∂θ2,3

i

| {z }
P3×n2

(23)

+
h

∂x
2

∂θ1,2

iT

| {z }
n1×P2

h
∂y2

∂x2

iT

| {z }
P2×P2

*"
∂θ

2,3
void

∂θ2,3

#
, δ3

+
.

| {z }
P2×n2

In ordinary MLP-learning with multiple terminal outputs
(P4 > 1), only CA(≡ 1 + P3 = n3

P4
) parameters, a subset of

the n3 terminal parameters θ3,4, contribute to each termi-
nal output: At some node k at layer 4, for instance, only
CA parameters θ

3,4
.,k influence output y4

k, whereas the other
(n3 − CA) parameters θ

3,4
.,j (k 6= j; j = 1, ..., P4) have no effect

on it. Therefore, the first diagonal Hessian block H3,3 in

Eq. (21) [i.e., HN -1,N -1 placed at the upper-left corner in Eq. (5)]
always becomes block-diagonal (with P4 sub-blocks ×) below:

H
3,3

|{z}
n3×n3

=

2
64

×1
×2

.
.
.

×P4

3
75 , (24)

where ×k denotes a CA-by-CA dense symmetric sub-block.
In consequence, the entire Hessian matrix becomes a block-
arrow form; see later the front panel in Fig. 1. In addition,
if linear identity node functions are employed at the terminal
layer (hence, y4 = x4), then all the diagonal sub-blocks in
Eq. (24) become identical; so, need to store only half of one
sub-block due to symmetry. In such a case, it is clear from
our separable representations of the Hessian blocks that the
second term on the right-hand side of Eqs (21), (22), and (23)
will disappear because

h
∂2y4

∂x4∂x4

i
reduces to a matrix of zeros.

Furthermore, the last term in H1,2 is a sparse matrix of only
first derivatives due to Eq. (12); in the next section, we shall
explain this finding in nonlinear least squares learning.

C. Neural Networks Nonlinear Least Squares Learning

When our objective function E is the sum over all the
d training data of squared residuals, we have E(θ) = 1

2
rT r,

where r ≡ y4(θ)− t; in words, an m-vector r of residuals is
the difference between an m-vector t of the desired outputs
and an m-vector y4 of the terminal outputs of a two hidden-
layer MLP (with N =4), and m ≡ P4d (P4 > 1, or multiple
terminal outputs in general). The gradient vector of E is given
by g=JT r; here, J denotes the m-by-n Jacobian matrix J of
the residual vector r, which is J of y4 because t is independent
of θ by assumption. As shown in Eqs. (19)(right) and (4), g is

stagewise-partitioned as: gs,s+1 =
h

∂ys+1

∂θs,s+1

iT

ξs+1 for s=1, ..., 3,
where ξ4 =r. Likewise, J can be given in stagewise column-
partitioned form below in Eq. (25), or equivalently in block-
angular form below in Eq. (26) [with nB≡n−n3 =n1+n2]:

J|{z}
m×n

=


 ∂y4

∂θ3,4

| {z }
m×n3

∣∣∣∣∣∣∣
∂y4

∂θ2,3

| {z }
m×n2

∣∣∣∣∣∣∣
∂y4

∂θ1,2

| {z }
m×n1




︸ ︷︷ ︸
dense nB columns

(25)

=




A1 B1

A2 B2

. . .
.
.
.

AP4
BP4




︸ ︷︷ ︸
dense nB columns

(26)

where Ak is d-by-CA (k = 1, ..., P4) and Bk d-by-nB . The
block-angular form is due to the same reason as Eq. (24);
i.e., only CA parameters affect each terminal residual. Since
J has the block-angular form in Eq. (26), its cross-product
matrix JT J has a so-called block-arrow form due to its
appearance, as illustrated in Fig. 1, where H=JT J and H3,3

in Eqs (21) and (24) consists of P4 diagonal blocks AT
k Ak

for k=1, ..., P4. If the terminal node functions are the linear

A AT
1 1

A AT
2 2

A BT
1 1

A BT
22

1B A1
T

TA2

B AF
T

F

AT
F

TB2

BT
F

BT
1

A AT
FF A BT

FF

B A2 2
T B B

T

AT
1

d

d

Totally m (=Fd) slabs
d

Fig. 1. The front square panel shows the block-arrow Gauss-Newton Hessian
matrix JT J obtainable from the sum of m(≡Fd) slabs over all the d training
data with a multiple F (≡ PN)-output multilayer-perceptron (MLP) model;
here, the lower-right block of the Hessian is: eBT eB ≡

PF
k=1 BT

k
Bk , and

the right-front rectangular panel depicts the transposed block-angular residual
Jacobian matrix JT [in Eq.(26)]. The ith slab (i=1, ..., m) consists of four
rank-one blocks: AT

k
Ak , AT

k
Bk , BT

k
Ak , and BT

k
Bk , resulting from the

kth residual rk,p computed at node k (k = 1, ..., F) at terminal layer on
datum p (p=1, ..., d); hence, the relation i=(k−1)d+p. In standard MLP-
learning, the full Hessian H (e.g., JT J+S) also has the same block-arrow
form because HN -1,N -1 in Eq.(5) is block-diagonal;e.g., see Eq.(24).

identity function, then all the diagonal blocks Ak become
identical; so do AT

k Ak, as described after Eq. (24).
Since E(θ) = 1

2
rT r, matrix

h
∂2E

∂y4∂y4

i
in Eq. (6) reduces

to the identity matrix I; therefore, the full Hessian can be
given as H = JT J + S, where JT J is a matrix of only first
derivatives (called the Gauss-Newton Hessian in Fig. 1), the
first term on the right hand side of Eqs. (21) to (23), and
S is a matrix of second derivatives, the rest of right-hand-
side terms in those equations. Intriguingly, in off-diagonal
Hessian blocks Hs,t =

ˆ
JT J

˜s,t
+ Ss,t (s < t), we can further

pull Ts,t, a sparse matrix of only first derivatives, out of Ss,t

as Hs,t =
“̂

JT J
˜s,t

+Ts,t
”
+

“
Ss,t−Ts,t

”
, where we have

Ts,t =
h

∂y
t

∂θ
s,s+1

iT
fi»

∂θ
t,t+1
void

∂θt,t+1

–
, δt+1

fl
. (27)

For instance, T1,2 is the last term of H1,2 [see Eq. (23)],
obtainable from Eq. (12).

V. CONCLUSION AND FUTURE DIRECTIONS

Given a general objective function arising in multi-stage
NN-learning, we have described in matrix form both stagewise
second-order BP and our version of nodewise second-order
BP with a particular emphasis on how to organize Hessian
elements into the stagewise-partitioned “block-arrow” Hessian
matrix H (with its arrow-head pointing downwards to the
right; see pp. 83–90 in [4]), as illustrated in Fig. 1, so as
to exploit inevitable sparsity [9] when PN > 1 (i.e., multiple
terminal outputs). In more elaborate MLP-learning, one may
introduce direct connections between the first input and the ter-
minal layers; this increases CA, the diagonal sub-block size in
HN -1,N -1 [see Eq. (24)], leading to a very nice block-arrow form.
On the other hand, such nice sparsity may disappear when

weight-sharing and weight-pruning are applied (as usual in
optimal control [8]) so that all the terminal parameters θN -1,N

are shared among the terminal states yN . In this way, MLP-
learning exhibits a great deal of structure.

For the parameter optimization, we recommend trust-region
globalization, which works even if H is indefinite [10], [9]. In
large-scale problems, where H may not be needed explicitly,
we could use sparse Hessian matrix-vector multiply (e.g., [11])
to construct Krylov subspaces for optimization purposes, but it
is still worth exploiting sparsity of H for pre-conditioning [10].
In this context, it is not recommendable to compute (or
approximate) the inverse matrix of (sparse) block-arrow H (see
Fig. 1) because it always becomes dense.

Our matrix-based algorithms revealed that blocks in the
stagewise-partitioned H are separable into several distinct
portions, and disclosed that sparse matrices of only first deriva-
tives [see Eq. (27)] can be further identified. Furthermore, by
inspection of the common matrix terms in block [e.g., see
Eqs. (21) to (23)], we see that the Hessian part computed on
each datum at stage s, which consists of blocks Hs,t (1 ≤
s≤ t≤ N−1), is at most rank Ps+1, where Ps+1 denotes the
number of nodes at layer s+1. We plan to report in another
opportunity more on those findings as well as the practical
implementation issues of stagewise second-order BP, for which
the matrix recursive formulas may allow us to take advantage
of level-3 BLAS (Basic Linear Algebra Subprograms; see
http://www.netlib.org/blas/).

REFERENCES

[1] Christopher M. Bishop. “Exact calculation of the Hessian matrix for the
multilayer perceptron.” In Neural Computation. pages 494–501, Vol.4,
No. 4, 1992.

[2] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford
Press, 1995.

[3] Wray L. Buntine and Andreas S. Weigend. “Computing Second Deriva-
tives in Feed-Forward Networks: A Review.” In IEEE Trans. on Neural
Networks, pp. 480–488, Vol.5, No. 3, 1994.

[4] James W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.
[5] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning internal

representations by error propagation.” In Parallel distributed processing:
explorations in the microstructure of cognition, pp. 318–362, Vol. 1, MIT
press, Cambridge, MA., 1986.

[6] E. Mizutani, S.E. Dreyfus, and K. Nishio. “On derivation of MLP back-
propagation from the Kelley-Bryson optimal-control gradient formula and
its application.” In Proc. of the IEEE International Joint Conference on
Neural Networks, Vol.2, pages 167–172, Como ITALY, July 2000.

[7] Eiji Mizutani and Stuart E. Dreyfus. “On complexity analysis of
supervised MLP-learning for algorithmic comparisons.” In Proceedings
of the INNS-IEEE International Joint Conference on Neural Networks.
Vol. 1, pages 347–352, Washington D.C., July, 2001.

[8] Eiji Mizutani and Stuart E. Dreyfus. “Stagewise Newton, differ-
ential dynamic programming, and neighboring optimum control for
neural-network learning.” To appear in Proc. of the 2005 Amer-
ican Control Conference, Portland OR, June 2005. (Available at
http://www.ieor.berkeley.edu/People/Faculty/dreyfus-pubs/ACC05.pdf)

[9] Eiji Mizutani and James Demmel. “On structure-exploiting trust-region
regularized nonlinear least squares algorithms for neural-network learn-
ing.” In Neural Networks, Elsevier Science, Vol. 16, pp. 745-753, 2003.

[10] Eiji Mizutani and James W. Demmel. “Iterative scaled trust-region
learning in Krylov subspaces via Pearlmutter’s implicit sparse Hessian-
vector multiply.” In Advances in Neural Information Processing Systems
(NIPS), pp. 209–216, Vol. 16, MIT Press, 2004.

[11] Barak A. Pearlmutter. “Fast exact multiplication by the Hessian.” In
Neural Computation, pp. 147–160, Vol. 6, No. 1, 1994.

