
On using discretized Cohen-Grossberg node dynamics for model-free
actor-critic neural learning in non-Markovian domains ∗

Eiji Mizutani
Dept. of Computer Science

National Tsing Hua University
Hsinchu 300 Taiwan R.O.C.

eiji@wayne.cs.nthu.edu.tw

Stuart E. Dreyfus
Department of IEOR

University of California at Berkeley
Berkeley, CA 94720, USA

dreyfus@ieor.berkeley.edu

Abstract
We describe how multi-stage non-Markovian decision
problems can be solved using actor-critic reinforcement
learning by assuming that a discrete version of Cohen-
Grossberg node dynamics describes the node-activation
computations of a neural network (NN). Our NN (i.e.,
agent) is capable of rendering the process Markovian
implicitly and automatically in a totally model-free
fashion without learning by how much the state space
must be augmented so that the Markov property holds.
This serves as an alternative to using Elman or Jordan-
type recurrent neural networks, whose context units
function as a history memory in order to develop sensi-
tivity to non-Markovian dependencies. We shall demon-
strate our concept using a small-scale non-Markovian
deterministic path problem, in which our actor-critic
NN finds an optimal sequence of actions (but learns
neither transitional dynamics nor associated rewards),
although it needs many iterations due to the nature of
neural model-free learning. This is, in spirit, a neuro-
dynamic programming approach.

1 Introduction
Practical multi-stage decision-making problems may in-
volve hidden non-Markovian characteristics that are
correlated with certain past events; both reinforcement
signals and states may depend arbitrarily on the past
history of the agent’s outputs (e.g., decisions) through
interaction with the dynamic world (i.e., environment).
We assume in what follows that only the reinforcement
signal is non-Markovian. In general, the approaches to
make the agent manage non-Markovian situations can
be roughly categorized into the next two types:
(1) Model-based (or model-building) approach,

wherein the agent attempts to learn explicitly what
prior events matter;

(2) Model-free approach,
wherein the agent retains some internal state (or
memory) over time that is automatically sensitive

∗This paper appeared in Proc. of the 5th IEEE Int’l Symposium on Compu-
tational Intelligence in Robotics and Automation (CIRA 2003), Vol.1., pp. 1–6.

to non-Markovian dependencies by trial-and-error
interaction with the world without attempting to
learn a world model.

The classical dynamic programming (DP) algorithm is
a model-based approach because it requires an explicit
state description (see Section 3.1) to allow a DP solu-
tion based on the principle of optimality [1]. In con-
trol engineering, the model-building approach is known
as system identification, whereby the agent is assumed
to be able to model the mapping from actions to rein-
forcement signals by observing states, actions, and rein-
forcement signals. Utile Suffix Memory [2] is a typical
model-building algorithm that constructs a tree repre-
sentation with associated Q-values.

In a model-free approach, a typical realization of in-
ternal memory is to use recurrent neural networks
(see [3, 4], Chap. 7 in [5], and pages 291–292 in [6])
such as an Elman network or a Jordan network, whose
context units implicitly and automatically encode cer-
tain aspects of the past as far back as it goes. Here, two
distinct dynamics are entwined:

• External environmental dynamics: task-oriented
(or problem-specific) time-dependent dynamics
that governs the past history as well as the future
evolution (e.g., drives the agent to a next stage
upon interaction);

• Internal neural dynamics: agent’s internal
neuron-level dynamics, related to neuron-output
propagations through networks (e.g., layer-by-
layer forward and backward passes in a simple
MLP-agent); in general recurrent neural networks
(of animals and humans), such dynamics are com-
plicated.

Through interaction with the environment, the agent’s
internal dynamics will be harmonized in a certain sense
with external dynamics, being sensitive to the past his-
tory governed by laws of external dynamics (but still
unknown to the agent itself because of its model-free na-
ture). In what follows, we describe a model-free actor-
critic reinforcement learning agent with a partially re-
current network, whose internal neuron dynamics are

regulated by a discrete version of Cohen-Grossberg dy-
namics. The resulting NN has the ability to solve a non-
Markov problem using different internal dynamics from
those of Elman and Jordan-type NNs.

2 Reinforcement Learning with
Cohen-Grossberg Dynamics

A variety of dynamical rules could be described for re-
current networks, such as

τj

daj

dt
= −aj +f(netj) = −aj +f

(

∑

i

θi,jai

)

(1)

where aj denotes neuron dynamics or activation level
(i.e., state) of a particular neuron j; τj some time con-
stants; and θi,j the weight parameter from node i to
node j. This formula is what we call the “Cohen-
Grossberg” dynamic formula [7] (see Eq.(3.31), page 54
in [5]), but its variants have been discussed in many dif-
ferent contexts (for example, see Eq.(1) in [8] as well as
refs. [9, 3]).

2.1 A Discretized Cohen-Grossberg Dy-
namical Rule

For our discrete-action problems (see Section 3), we
discretize Eq. (1) for reinforcement learning as:

τj

[

aj(t + ∆t) − aj(t)

∆t

]

= −aj(t)+f (netj(t + ∆t)) ,

where the last term is special to reinforcement learning,
and letting ∆t = 1 and replacing t by t − 1 (and then
calling t “stage” rather than “time”) yields (using βj ≡
1 − 1

τj
):

aj(t) = βjaj(t − 1) + (1 − βj)f (netj(t)) . (2)

This is our discretized Cohen-Grossberg dynamical
rule; here, βj is a constant weight for the linear com-
bination of aj(t − 1) and f (netj(t)). In everything
that follows we shall apply Eq. (2) to “standard” N -
layered multilayer perceptrons (MLPs). The resultant
NNs can be viewed as an NN with partial recurrence,
wherein each neuron (say node i) is assumed to have a
self-loop connection to itself that has a fixed value (βj).
Of course, one might use another type of self-loop (back
to the net input similar to Elman and Jordan-type recur-
rence) shown below:

aj(t) = f(βjaj(t − 1) + (1 − βj)netj(t)),

but the main virtue of the self-loop in Eq. (2) is that
it is similar to what a brain presumably does. In any
event, such self-looping modification still allows us to
use the standard MLP-backpropagation because all βj

are fixed, and as
j(t− 1), the self-looped activation from

the forward pass done at previous stage t − 1, is just
a constant when the node derivatives are evaluated at
stage t. Notably, the added constants make the node
outputs sensitive to past history, whereas Elman-type
recurrence renders the net inputs sensitive to it. The
resultant dynamics are also different from dynamics by
backpropagation through time [10].

2.2 An Actor-Critic reinforcement learn-
ing algorithm

Actor-Critic (AC) reinforcement learning is a class
of simulation-based approximate policy iteration algo-
rithms. While generating a number of simulated system
trajectories with associated accrued rewards, Critic ap-
proximates maximum reward-to-go values (i.e., policy
evaluation), and Actor generates a current policy based
on the current estimated values (policy improvement).
Here, the policy is continuously updated by Actor be-
fore the values (constantly updated by Critic) converge;
hence, called optimistic policy iteration [11]. For recent
analysis on AC-learning, refer to [12, 13].

When we consider the NN-agent with the new dy-
namical rule (2) that attempts to solve a multi-stage
non-Markov decision-making problem, the agent’s de-
cision u(t) at stage t becomes twofold below in associ-
ation with both the external task dynamics and internal
neural dynamics (explained in Section 1):

(1) external decision z (scalar, in our example de-
scribed later) for solving the posed non-Markov
problem (i.e., external problem);

(2) internal decision θ for seeking the optimal param-
eters (denoted by n-dimensional vector θ) of the
MLP-agent itself (i.e., internal problem).

For our convenience, the state and stage in the exter-
nal task/problem are denoted by y and t (i.e., external
time t), respectively, while the state and stage in the in-
ternal problem by a and s (i.e., layer s), respectively.
Since these two problems have their own dynamics that
are discretized with different clocks (i.e., different time
ticks), we specifically call t the task-stage and s the
layer-stage without using the term “time-stage” com-
mon to both cases. Hence, the agent’s twofold deci-
sion u(t) can be expressed as u(t)=[z(t), θ(t)] at task-
stage t, but internal decision θ(t) consists of a sequence
of actions θ

s at each layer-stage s (s=1, · · · , N − 1).
Our notations are summarized in the next table:

External problem Internal problem

State y a

Stage t (task) s (layer)
Action z θ

Accordingly, the value function approximated by Critic
can be written as V (y(t),a(t − 1)) and the randomized
policy function approximated by Actor can be written
as A (y(t),a(t − 1)), wherein the agent’s state at task-
stage t is written as [y(t),a(t − 1)] because the agent
plugs y(t) into the first input layer and uses a(t − 1)
(activations at previous task-stage t−1) for propagating
activations with Eq. (2). In other words, our NN-agent
employs a multiple-layered version of Eq. (2), given at
task-stage t by:

as
j(t) = βja

s
j(t − 1) + (1 − βj)f

s
(

netsj(t)
)

(3)

= βja
s
j(t − 1) + (1 − βj)f

s
(
∑

i θs−1

i,j (t)as−1

i (t)
)

to generate Critic’s value and Actor’s random action
choice. For temporal difference (TD) reinforcement
learning [14, 11], the agent needs to compute a(t + 1)
at the next task-stage t + 1 using the same internal de-
cision θ(t) as at task-stage t because θ(t + 1) is not de-
termined before the TD error is computed (as described
below). For this purpose, the agent uses the next equa-
tion to produce node outputs:
as

j(t + 1) = βja
s
j(t) + (1 − βj)f

s
(

netsj(t + 1)
)

(4)

= βja
s
j(t) + (1 − βj)f

s
(
∑

i θs−1

i,j (t)as−1

i (t + 1)
)

.

Next, we explain how to implement AC-learning with
Eqs. (3) and (4) for our NN-agent that attempts to solve
a non-Markov problem (i.e., external task).

We now consider a situation where the agent is at
state [y(t),a(t − 1)] (at task-stage t), and assume
using Eq. (3) that the agent has computed approxi-
mate value V (y(t),a(t − 1)) by Critic and also ob-
tained external decision z(t) from the policy func-
tion A (y(t),a(t − 1)) by Actor. The agent exercises
action z(t), and observes the next successor (external)
state y(t+1) plus the current-stage (history-dependent)
reward (between task-stages t and t + 1) R (yt, z(t)),

wherein yt def
= {y(1), y(2), · · · , y(t)}, resulting from

decision z(t) through interaction with external dynam-
ics. The agent then uses that new state [y(t + 1), a(t)]
as input to do forward pass with Eq. (4) through the
network: (a) plugging the current state y(t + 1) as in-
put into the nodes at the first input layer, (b) propa-
gating the node activations as(t + 1) with a

s(t) used
for Eq. (4) through all N -layers (s = 1, · · · , N),
(c) producing the final outputs aN (t + 1); this gives
Critic’s value V (y(t + 1),a(t)), an estimated value
[i.e., value incurred by that selected action z(t)] of
the next state y(t + 1) at task-stage t + 1. The agent
now computes the TD error (i.e., residual for Critic):
R (yt, z(t)) + V (y(t + 1),a(t)) − V (y(t),a(t − 1)),
and converts the error to the associated residual (or in-
ternal reinforcement) for Actor. The agent then propa-
gates those residuals backward (i.e., backward pass) to
obtain internal decision θ

s(t + 1) at each layer-stage s

(s=N − 1, · · · , 1) in an attempt to solve the N -stage in-
ternal problem. Consequently, y(t + 1) and θ(t + 1)
are now determined. After advancing to the successor
state y(t+1), our agent repeats the whole procedures at
that new state.

Furthermore, in finite-horizon decision problems with
the total (discounted) reward criteria, we can employ
activation-resetting a(0)=0 whenever the agent returns
to the initial task-stage t=1; that is, V (y(1),a(0)) =
V (y(1), 0) intuitively because node activations at the
first task-stage have nothing to do with what they were
before at the terminal task-stage (see Section 3.2). A
similar idea can be found in infinite-horizon decision
problems with the average-reward criteria to reset the
eligibility traces (see Chapter 7 in [14]) whenever the

agent returns to certain designated states (i.e., when-
ever a “renewal” occurs); see details on such resetting
schemes in [15, 13, 16].

3 Experiments: A Four-Stage
Longest Path Problem

We consider a triangular four-stage (i.e., four task-
stage) path network in a deterministic discrete two-
action environment, wherein a transition from vertex
(i.e., state) to vertex incurs a reward assigned to each
arc, as shown in Figure 1(left). The agent’s objective is
to learn the optimal sequence of four actions that max-
imizes the total rewards (including the terminal task-
stage value). We assume that the agent always starts
at vertex A, choosing either action d (going diagonally
downward) or action u (going diagonally upward) at
each vertex. The environment accordingly informs the
agent of the next vertex and the transitional value as-
sociated with the action taken. Since the process is
deterministic, by action d an agent always goes diago-
nally downward, although the model-free agent neither
knows nor uses this fact during its learning. For the
fourth action, the terminal value (all zeros in our exam-
ple) provided by the environment is used as the value of
the next state rather than the agent’s outputs. This is the
realization of the boundary conditions.

Moreover, the process is non-Markovian because of the
additional reward rule (or bonus-rule, in short); that is,
“an additional value (bonus) of 9” is accrued if the tran-
sition at any stage matches the transition two stages be-
fore.” For instance, an action sequence “d-u-d-d” yields
the total (reward) value 27 [= 4+2+(6+bonus 9)+6].
Of course, the bonus-rule and the incurred-reward data
used by the environment are unknown to our model-free
agent, and are not explicitly learned during the proce-
dure. The agent is in a non-Markovian domain because
the agent at vertex E [see Figure 1(left)] does not know
the previous vertex (B or C) just by observing the cur-
rent state (vertex E) alone, yet it is crucial in making an
optimal action due to the bonus-rule. In other words,
our NN agent has no explicit memory other than mem-
ory of the current and the next states plus the associated
one-stage reward. It does, of course, have an implicit
memory encoded in its hidden node activations. This is
a very simplified situation, but is related to complicated
real-life situations; for instance, a situation where an au-
tonomous mobile agent (or robot) should be able to deal
with incomplete state descriptions generated by limited
sensors (e.g., one can perceive the current vertex alone).

3.1 Model-based approach: Dynamic-
Programming (DP) algorithm

We first show a model-based approach by classical DP-
algorithm [1], which uses world models, such as a tran-

0

0

0

0

0

6

5

4

2

3

6

4

5

0

4

3

5

4

2

3

−1

8

7

6

6

−1

F

G

C

A

B

D

E

H

J

I

2 3 41

4

3

2

5

1

6

7

Agent

O

N

M

L

K

Prob. of choosing

action ‘‘going down’’

Estimated

value

Actor Node Critic Node

Input

2−D

Coordinates

Figure 1. A four stage longest path problem (left) in the x-y coordinate system, and our actor-critic NN agent
(right) wherein discretized Cohen-Grossberg dynamical formulas [see Eqs. (3) and (4)] describe the hidden-node
activations.

sition model and a reward (or cost) model. To solve our
path problem with the bonus-rule, DP requires that one
increase the arguments in the optimal value function
so that the Markov property holds. Choosing proper
arguments for the value function corresponds to en-
larging the state space to make the process Markovian,
and those arguments must explicitly define the appro-
priate amount of information including the bonus-rule;
for instance, the current two-dimensional coordinates
[e.g., vertex H expressed as (4,3)] plus the last two con-
secutive actions. Here is our classical backward DP-
formulation that needs the following four definitions:
(1) Define the optimal value function V (x, y, z1, z2) as
“maximum reward-to-go, starting at vertex (x, y) (i.e.,
state y at stage x) to terminal vertices with action z1

at stage x − 1, and z2 at stage x − 2.” (2) Define the
recurrence relation using one-stage reward Rz(x, y)
associated with action z at vertex (x, y):

V (x, y, U,D)

= max

{

u : Ru(x, y) + V (x + 1, y + 1, U, U)
d : Rd(x, y) + V (x + 1, y − 1, D, U) + bonus

V (x, y, U, U)

= max

{

u : Ru(x, y) + V (x + 1, y + 1, U, U) + bonus
d : Rd(x, y) + V (x + 1, y − 1, D, U)

with obvious modifications for V (x, y,D,U) and
V (x, y,D,D). (3) Define the boundary conditions:
V (5, 0,−,−) = V (5, 2,−,−) = V (5, 4,−,−) =

V (5, 6,−,−) = V (5, 8,−,−) = 0. (4) Define an op-
timal policy function, which is clear from the above
recurrence relation: π(x, y,−,−) = z, where z is ac-
tion d or u, such that z maximizes V (x, y,−,−).

Using full backups, the DP-algorithm yields the opti-
mal sequence of action “u-d-u-d” with the exact maxi-
mum total value “34” (including double bonus), which
corresponds to the following optimal path:

A
up

=⇒ C
down
=⇒ E

up
=⇒ I

down
=⇒ M.

3 4 7 + bonus 2 + bonus

In the next model-free approach, only the current ver-
tex (x, y) (i.e., observable state) is used as input to our
actor-critic learning agent using sample backups.

3.2 Model-free approach: Actor-Critic al-
gorithm

As a model-free approach to the posed path problem, we
shall demonstrate our AC-learning algorithm described
in Section 2.2, using a partially-recurrent AC-network
[see Figure 1(right)], which is obtained by applying
Eqs. (3) and (4) to describe the hidden-node outputs of
an MLP. Furthermore, we used activation-resetting as
defined and justified in Section 2.2. Note in the AC-
network architecture ∗ that the following two final out-

∗An alternative NN model is a two-output Elman-network with a
subset of hidden nodes used as the context units; see details in [4].

0 2 4 6 8 10

x 10
5

0

5

10

15

20

25

30

35
Critic−node outputs

(a) Epoch

Vertex A
Vertex C
Vertex E
Vertex I

0 2 4 6 8 10

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Actor−node outputs

(b) Epoch

Vertex A
Vertex C
Vertex E
Vertex I

Vertex A

Vertex C

Vertex E

Vertex I

Vertex A

Vertex C

Vertex E

Vertex I

Figure 2. A sample AC-learning curve till
epoch 1,000,000, obtained at (left) Critic node
and (right) Actor node: At an early stage, our AC-
agent happened to dictate a sub-optimal sequence
of actions “u-u-u-u.” After many epochs, how-
ever, the agent found the optimal sequence “u-d-
u-d.” The estimated values at epoch 2,000,000
at vertices A, C, E, and I, respectively, with all
the values averaged over the last 1,000 epochs
and the bracketed values denoting the desired
ones, were: Actor’s outputs (Pdown): 0.02 [0.0],
0.99 [1.0], 0.06 [0.0], and 0.91 [1.0], and Critic’s
outputs (total rewards): 32.4 [34.0], 29.4 [31.0],
25.6 [27.0], and 10.3 [11.0].

put nodes suffice to solve the “two-action” problem:
Critic node that produces the current estimated value,
and Actor node that generates Pdown, the current prob-
ability of action d “going down.” Actor node has the
sigmoidal logistic activation function constrained to lie
between zero and one, whereas Critic node has the lin-
ear identity function. Hence, Critic’s residuals are likely
to be larger than Actor’s; so, Critic’s value-updates tend
to be faster than Actor’s policy updates, although Critic
and Actor share a subset of parameters connecting to
the first input layer. Our AC-net has 25 context nodes
(hence, a 2-25-2 NN), receiving only two inputs (two-
dimensional coordinates of the current vertex alone),
and is trained by the backpropagation (or incremental
gradient) method with a fixed momentum term (0.8) us-
ing TD(0). At vertex A (task-stage 1), just as hidden-
node activations a(0) were reset to 0, likewise the mo-
mentum term was reset to 0. In addition, all βi were set
equal to the same constant (0.5 in the posed problem).

4 Discussion
The simulation results show that our AC-net can pro-
duce outputs close to the desired values but converged
very slowly because the agent learned in a totally model-

free fashion with current observable states only as input
without explicitly learning what enlargement of state
would render the situation Markovian. Learning accel-
eration algorithms described in [13, 17] might be worth
trying after suitable modifications if applicable. In ad-
dition, the parameter setups (e.g., β and learning rates)
greatly affected learning behaviors, and we observed
that the performance appeared better when β was set
closer to 0.5. Choosing proper parameters are still a
matter of art and found by the process of trial and er-
ror. Some choices appeared to lock-in on non-optimal
solutions, although the possibility of finding the opti-
mal path after additional epochs cannot be ruled out; see
Figure 2 for a sample AC-learning curve with β = 0.5.

Furthermore, we compared an agent comprising two
separate networks: a single-output Actor Elman-net (7-
5-1 NN) with five context units, and a single-output
Critic net (2-15-1 NN) with Eqs. (3) and (4) applied
(with β=0.5) to the 15 hidden nodes with the activation-
resetting. In this agent, Actor and Critic have no shared
parameters; hence, Actor’s policy-updates can be read-
ily made slower (e.g., by using smaller learning rates)
than Critic’s value-updates in an attempt to achieve bet-
ter convergence [12, 13]. In fact, we feel that the perfor-
mance improvement was relatively more easily accom-
plished for the two-net agent than that for the single-net
agent in Figure 1(right). As a result, among 100 trials,
the two-net agent found an optimal sequence 39 times
by epoch 2,000,000, whereas the single-net agent found
it only 10 times. Of course, if the learning rates are care-
fully fine-tuned specially for each trial, then the success
rates of both nets may not differ greatly.

5 Conclusion and Future Work
Discretized Cohen-Grossberg dynamic formulas (3) and
(4) are readily applicable to an MLP (without changing
its size), resulting in a partially-recurrent NN. In con-
sequence, the NN has the same ability as Elman and
Jordan-type networks in developing sensitivity of value
and action to whatever in the prior path history is poten-
tially relevant to environmental dynamics and reinforce-
ment, and thus can solve non-Markov decision prob-
lems in a totally model-free fashion.

We have chosen a toy, discrete decision variable, de-
terministic problem with non-Markovian reinforcement
but Markovian dynamics to illustrate our model-free
approach even though this problem could have been
solved merely by trying all 16 possible sequences of
four decisions. While it is ideal for determining by hand
the optimal solution and for presenting results, this type
of problem (involving discrete values and decisions) is
difficult for neural networks, which perform best when
learning smooth continuous data.

We have also applied our method to simulation of a
baseball outfielder learning from experience to move to

the proper location for catching a batted ball (see [18]
for a reinforcement learning approach). The fielder ob-
serves the angle of the ball’s elevation. In [18], it is
also assumed that the fielder observes such stimuli as the
second derivative of the tangent of the ball’s elevation
angle, a feature that is not directly observable. Using
only the angle plus the fielder’s velocity as inputs but
using a past-sensitive recurrent network as we have in
this paper, our simulated fielder learned fairly success-
ful behavior. The work remains unpublished since our
fielder always starts moving in the same direction inde-
pendent of whether he should run in toward the batter
or out toward the outfield fence, before correcting him-
self, and because our current procedure often leads to
the fielder accelerating until his velocity exceeds what
is humanly possible. We feel, however, that the base-
ball problem, involving fielder acceleration decisions at
about 50 discretized slices of time, shows that our pro-
cedure can, in principle, solve large problems with suit-
ably large, complex neural networks and perhaps better
learning rules.

Furthermore, in principle, our method is applicable
to large stochastic problems with continuous decision
variables and non-Markovian dynamics as well as rein-
forcement. Extension of our longest path problem to
stochastic version leads to at least two distinct prob-
lems: one with prior-action dependent bonus rules,
and another with prior-transition dependent bonus rules.
We are currently investigating the generalization of
our longest path problem to the version with a prior-
transition dependent bonus rule: A decision at a ver-
tex only determines the probability of moving diago-
nally up or down in Figure 1 (left). Needless to say,
our fundamental concept is not confined to the actor-
critic learning with total reward criteria; so, it would be
of interest to apply it in other contexts (e.g., actor-only
learning [15, 13, 16] with average-reward criteria and
stochastic problems) for performance comparison in the
future.

References

[1] Stuart E. Dreyfus and Averill M. Law. The Art and
Theory of Dynamic Programming, volume 130 of Math-
ematics in Science and Engineering. Academic Press
Inc., 1977.

[2] A. K. McCallum. Reinforcement Learning with Selective
Perception and Hidden State. PhD thesis, Department of
Computer Science, University of Rochester, Rochester,
NY, 1995. revised in 1996.

[3] Barak A. Pearlmutter. Gradient calculations for dynamic
recurrent neural networks: A survey. IEEE Transactions
on Neural Networks, 6(5):1212–1228, 1995.

[4] Eiji Mizutani and Stuart E. Dreyfus. Totally model-
free reinforcement learning by actor-critic Elman net-
works in non-Markovian domains. In Proceedings of
the IEEE International Conference on Neural Networks,

part of the World Congress on Computational Intelli-
gence (Wcci’98), pages 2016 – 2021, Alaska, USA, May
1998.

[5] J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the
theory of neural computation. Addison-Wesley, Read-
ing, MA, 1991.

[6] Eiji Mizutani. Chapter 10: Learning from Reinforce-
ment. In Neuro-Fuzzy and Soft Computing: a compu-
tational approach to learning and machine intelligence,
pages 258–300. J.-S. Roger Jang, C.-T. Sun and E. Mizu-
tani. Prentice Hall, 1997.

[7] Michael A. Cohen and Stephen Grossberg. Absolute sta-
bility of global pattern formation and parallel memory
storage by competitive neural networks. IEEE Trans. on
Systems, Man, and Cybernetics, 13(5):815–826, 1983.

[8] Fernando J. Pineda. Generalization of back-propagation
to recurrent neural networks. Physical Review Letters,
59(19):2229–2232, November 1987.

[9] Shun-Ichi Amari. Characteristics of random nets of ana-
log neuron-like elements. IEEE Trans. on Systems, Man,
and Cybernetics, 2(5):643–657, November 1972.

[10] Paul J. Werbos. Backpropagation through time: What
it does and how to do it. Proceedings of the IEEE,
78(10):1550–1560, October 1990.

[11] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-
Dynamic Programming. Athena Scientific, Belmont,
MA, 1996.

[12] V. R. Konda and J. N. Tsitsiklis. Actor-critic algorithms.
In Advances in Neural Information Processing Systems
(NIPS 1999), volume 12, pages 1008–1014. MIT Press,
2000.

[13] Vijaymohan R. Konda. Actor-Critic Algorithms. PhD
thesis, EECS Department, Massachusetts Institute of
Technology, Cambridge, MA, 2002.

[14] Richard S. Sutton and Andrew G. Barto. Reinforce-
ment Learning: An Introduction. MIT Press, Cambridge,
MA., 1998.

[15] Peter Marbach and John N. Tsitsiklis. Simulation-based
optimization of Markov reward processes. IEEE Trans-
actions on Automatic Control, 46(2):191–209, 2001.

[16] Eiji Mizutani. Sample path-based policy-only learning
by actor neural networks. In Proceedings of the IEEE
International Conference on Neural Networks (vol. 2),
pages 1245–1250, Washington, D.C., July 1999.

[17] Michail G. Lagoudakis and Ronald Parr. Model-free
least squares policy iteration. In T. G. Dietterich,
S. Becker, and Z. Ghahramani, editors, Advances in Neu-
ral Information Processing Systems (NIPS 2002), vol-
ume 14. MIT Press, 2002.

[18] Rajarshi Das and Sreerupa Das. Using reinforcement
learning to catch a baseball. In Proceedings of the
IEEE International Conference on Neural Networks,
part of the World Congress on Computational Intelli-
gence (Wcci’94), volume 5, pages 2808 – 2818, Orlando,
Florida, USA, July 1994.

