
On derivation of stagewise second-order backpropagation by
invariant imbedding for multi-stage neural-network learning

Eiji Mizutani and Stuart Dreyfus

Abstract— We present a simple, intuitive argument based
on “invariant imbedding” in the spirit of dynamic program-
ming to derive a stagewise second-order backpropagation (BP)
algorithm. The method evaluates the Hessian matrix of a
general objective function efficiently by exploiting the multi-
stage structure embedded in a given neural-network model
such as a multilayer perceptron (MLP). In consequence, for
instance, our stagewise BP can compute the full Hessian matrix
“faster” than the standard method that evaluates the Gauss-
Newton Hessian matrix alone by rank updates in nonlinear least
squares learning. Through our derivation, we also show how
the procedure serves to develop advanced learning algorithms;
in particular, we explain how the introduction of “stage costs”
leads to alternative systematic implementations of multi-task
learning and weight decay.

I. INTRODUCTION

Learning with multilayer-perceptron (MLP) neural net-
works is a multiple N -stage decision-making (or discrete-
time optimal control) problem [1]. The optimal-control the-
ory available in control engineering dictates to us a variety
of elaborate learning schemes in the context of N -layered
MLP-learning with Ps nodes at layer s (s = 1, ..., N). For
concreteness, we consider the following objective function J ,
known as the problem of Bolza in classical optimal control:

J(θ) =

N−1∑

s=1

Ls(ys,θs) + E(yN), (with y1 given) (1)

where E(.) is the terminal cost at stage N that depends only
on yN , and Ls(., .) is the cost at stage s, which generally
depends on the Ps-dimensional state vector ys of “after-
node” outputs and the ns-dimensional control vector θs

of weight parameters, which includes threshold parameters;
hence, the length ns ≡ (1 + Ps)Ps+1. Introduction of
such Ls(., .) at intermediate stages (i.e., at hidden layers;
1 < s < N) leads to more advanced learning schemes (to
be described in detail later). Both E(.) and Ls(., .) could be
chosen as the sum of squared residuals over D data between
node outputs ys and target outputs ts of length Ps on each
(training) datum d (for d=1, ..., D. That is, E(.) is given by

E(yN) =
1

2

D∑

d=1

PN∑

k=1

(yN

k,d − tN

k,d)
2

=
1

2

D∑

d=1

‖yN

d − tN

d ‖
2
2 =

1

2

D∑

d=1

rN
T

d rN

d ,

(2)

Eiji Mizutani is with the Department of Computer Science, Tsing Hua
University, Hsinchu, 300, TAIWAN (email: eiji@cs.nthu.edu.tw).

Stuart Dreyfus is with the Department of Industrial Engineering and
Operations Research, University of California at Berkeley, CA 94720, USA
(email: dreyfus@ieor.berkeley.edu).

and the stage cost Ls(., .) (1 < s < N) can be defined
similarly as

Ls(ys,θs) =
1

2

D∑

d=1

Ps∑

k=1

(ys
k,d − tsk,d)

2

=
1

2

D∑

d=1

‖ys
d − ts

d‖
2
2 =

1

2

D∑

d=1

rsT

d rs
d,

(3)

where rs
d is the Ps-length vector of residuals on datum d

evaluated at intermediate layer s (1 < s < N). Although
the above form of Ls is a natural extension of terminal
cost E(.) defined in Equation (2), this is a very special case
in the theory of optimal control because, in MLP-learning,
the posed form of Ls becomes independent of θs; namely
Ls(ys,−), which is what we call hidden-node teaching [2]
to be discussed in Section III-A.

For minimizing J in Equation (1) (often with early stop-
ping), the widely-employed first-order stagewise backpropa-
gation (BP) algorithm can be summarized as follows: Given
fixed weights and thresholds, the forward pass per datum
(with subscript d omitted) evaluates the “after-node” outputs
[see Figure 1(a)] in three steps below







(1) Forward pass from stage s to stage s+1
to evaluate the “before-node” net inputs:
xs+1
︸︷︷︸

Ps+1×1

= Θs

︸︷︷︸

Ps+1×(1+Ps)

ys
+

︸︷︷︸

(1+Ps)×1

(2) After-node output evaluation at stage s:

ys

︸︷︷︸

Ps×1

= fs(xs)⇐⇒

{
ys

j = fs
j

(
xs

j

)
,

for j = 1, . . . , Ps

(3) Residual (stage cost) evaluation at stage s:
rs

︸︷︷︸

Ps×1

= ys − ts. [when Eq.(3) is used]

(4)

Initially at stage 1 (namely, s = 1 at the first input layer),
y1 =x1 (given). Subsequently, at stage s (> 1), a vector ys

of Ps after-node outputs are generated [see step (2)] by f s
j (.),

a certain nonlinear node output function (e.g., tanh). Notice
that subscript “+” on ys

+ in step (1) implies inclusion of a
constant output of a bias node (node 0): This implies that
ys

+, the (1 + Ps)-dimensional vector of “after-node” outputs
at stage s, consists of the constant output (ys

0 =1.0) of bias-
node 0 as the first element, and thus Θs, a Ps+1-by-(1+Ps)
matrix of parameters between adjacent layers s and s+1,
includes the Ps+1-length vector θs

0,. of threshold parameters

y2 y3 y4

3r 4r

1
y 4

y 4
2

r 2

y 4
3

Forward pass: Θsxs+1= ys

+

Node dynamics (scalar): =y s
j j

s
()x j

s

y1=x1

(given)

g1 g2 g3

g =

g1

g2

g3

Stagewise

computation

Stagewise−partitioned

gradient vector

Node sensitivity (scalar):

Θs rδs+1ξsBackward pass: = s+
void

Reshape

gs vector

Rank−one matrix

= δs+1TGs ys
+

T

=δs+1

k xs+1

k
()

s+1

k ξs+1

k

(a) (b)

Fig. 1. First-order stagewise backpropagation in two-hidden-layer MLP-learning for the objective function J defined in Equation (1): (a) By forward
pass, the “after-node” outputs y s are propagated to the next stage as the “before-node” net-inputs x s+1; and (b) By backward pass, the “before-node”
sensitivities δs+1 are propagated back to the previous stage as the “after-node” sensitivities ξ s. During the propagation process, the “hidden residual”
vector rs in (a) and the gradient vector gs in (b) are also evaluated at each stage s in a stagewise fashion. Note in (a) that rs =ys−ts (with ts, the
vector of desired “hidden” outputs, for hidden-node teaching in Sec.III-A).

(between bias node 0 at layer s and Ps+1 nodes at layer s+1)
in the first column, as shown next:

ys
+

︸︷︷︸

(1+Ps)×1

=







1.0

ys







; Θs

︸︷︷︸

Ps+1×(1+Ps)

=







θs
0,.

︸︷︷︸

Ps+1×1

Θs
void

︸︷︷︸

Ps+1×Ps







, (5)

where Θs
void is a Ps+1-by-Ps matrix of parameters (with no

thresholds) (to be used in backward pass). It should be clear
that the kth element of xs+1, the Ps+1 vector of before-node
net-inputs at layer s+1, is given (with ys

0 =1.0) by

xs+1
k =

Ps∑

j=0

ys
jθ

s
j,k for k = 1, . . . , Ps+1, (6)

where θs
j,k is a control parameter (or weight) between node j

at layer s and node k at the next layer.
Likewise, the backward pass [see Figure 1(b)] evaluates

the node sensitivities (defined below) and obtains the gradient
vector of J [defined in Eq.(1)] at each stage:







(1) Before-node sensitivity evaluation at stage s+1:
δs+1
k = fs+1′

k

(
xs+1

k

)
ξs+1
k , for k = 1, . . . , Ps+1.

(2) Gradient evaluation for Θs:

Gs

︸︷︷︸

(1+Ps)×Ps+1

= ys
+δs+1T

⇐⇒







gs
j,k = ys

jδ
s+1
k ,

for j =0, . . . , Ps;
and k=1, . . . , Ps+1

(3) Backward pass from stage s+1 down to s:

ξs

︸︷︷︸

Ps×1

= ΘsT

void
︸︷︷︸

Ps×Ps+1

δs+1
︸︷︷︸

Ps+1×1

+ rs

︸︷︷︸

Ps×1

,

(7)

TABLE I

A COMPARISON BETWEEN NEURAL-NETWORK AND OPTIMAL-CONTROL

CONVENTIONS.

Notation Optimal Control Neural Networks

θ decision / control weight parameters
y=f(x) state “after-node” output

x N/A “before-node” net input
s stage layer

costate
ξs =

∂J

∂ys
adjoint variable N/A

influence function
Lagrange multiplier

δs =
∂J

∂xs
N/A delta

where the two forms of node sensitivities are defined as:






• After-node sensitivity at stage s: ξs def
=

∂J

∂ys
,

• Before-node sensitivity at stage s: δs def
=

∂J

∂xs
.

The procedure begins at terminal stage N , where ξN = rN ,
the terminal residual vector [see Eq.(2)] when s+1 = N .
Steps (1) and (3) in Equation (7) can be combined as

δs =
[
∂ys

∂xs

]T

ξs =
[
∂ys

∂xs

]T {

ΘsT

void δ
s+1 + rs

}

. (8)

Table I compares the terminologies used in optimal-control
and neural-network literatures. In the best-known BP formu-
lation due to Rumelhart et al. [3], xs, the vector of “before-
node” net inputs [see Equation (6)], is treated as the state
vector, whereas in optimal control, ys, the vector of “after-
node” outputs, is chosen as the state vector.

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14
0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

(a) (b)

Fig. 2. Two sparse patterns of the Hessian matrix in learning with a three-
layered (N =3) 1-2-3 MLP with a single input (P1 =1), two hidden nodes
(P2 =2), and three terminal outputs (F ≡P3 =3); hence, 13 parameters in
total including threshold parameters: (a) The desired block-arrow Hessian
matrix, whose arrowhead should point downward to the right (see [4], [5]),
with F (= 3) diagonal blocks; (b) A Hessian matrix with a complex sparse
pattern, which is hard to exploit, obtained by the NETLAB (MATLAB-
based software) (see mlphess.m at http://www.ncrg.aston.ac.uk/netlab/).
For large-scale optimization, it is not recommendable to approximate the
inverse of the Hessian because it always becomes dense. The posed sparsity
can be exploited with Krylov subspace methods for optimization [4].

II. SECOND-ORDER STAGEWISE BACKPROPAGATION

To exploit the stagewise structure embedded in a given
multi-stage MLP model, both the Hessian matrix and the
gradient vector are stagewise-partitioned, being evaluated
block by block. In two-hidden-layer (N =4) MLP-learning,
for instance, we consider the following partitioned form:

Hessian matrix gradient vector

H
︸︷︷︸

n× n

=

















H3,3
︸︷︷︸

n3×n3

H2,3T

H1,3T

H2,3
︸︷︷︸

n2×n3

H2,2 H1,2T

H1,3
︸︷︷︸

n1×n3

H1,2 H1,1

















; g
︸︷︷︸

n× 1

=


















g3

︸︷︷︸

n3×1

g2

︸︷︷︸

n2×1

g1

︸︷︷︸

n1×1


















.

Here, we want to evaluate (the lower triangular half of) three
diagonal Hessian blocks Hs,s (for s = 1, 2, 3) and three off-
diagonal Hessian blocks Hs,t (for s < t; s = 1, 2; t = 2, 3)
because H is symmetric. Note in multiple-output (PN > 1)
problems, the Hessian matrix H has a so-called block-arrow
form, as shown in Figure 2(a). Our stagewise second-order
BP efficiently organizes the computed Hessian elements
into such a block-arrow form with its arrowhead pointing
downward to the right so as to exploit the posed sparsity [4].

We shall derive stagewise second-order backpropagation
(BP) algorithm [5] that evaluates the above stagewise-
partitioned Hessian matrix H of J [in Eq.(1)] using so-called
invariant imbedding recurrence relations (i.e., dynamic-
programming like recurrence relations with no optimization
aspect). To this end, we define two “(non-optimal) cost-to-go
value functions” and their “recurrence relations,” as well as
the “boundary condition” in the following way:

Value functions:

T s(xs,θs)
def
= (non-optimal) cost-to-go, starting

at state xs at stage s, using a guessed policy θs.
(9)

V s(xs,θs,θt)
def
= (non-optimal) cost-to-go, starting

at state xs at stage s, using guessed policies θs

and θt for stages s and t (s < t).
(10)

By definition in Equation (9), the cost-to-go function T s

depends on all future controls (i.e., decision parameters)
starting at stage s; however, only its dependence on the
control at the current stage s matters, and therefore, all the
other subsequent controls θt (s < t) are suppressed in the
argument of T s, which can be used to evaluate diagonal
Hessian blocks Hs,s as well as the gradient vector gs. In
order to get off-diagonal Hessian blocks Hs,t, we need
another value function V s, for which we are interested in
controls at two different stages s and t (s < t); that is, we
define V s in Equation (10) as a function of two controls
at those two different stages that matter, suppressing the
dependence on controls at all other future stages.

Recurrence relations:
• For adjacent stages s and t: t = s + 1,

T s(xs,θs) = Ls(xs,θs) + T s+1(xs+1,θs+1), (11)

and

V s(xs,θs,θs+1) = Ls(xs,θs) + T s+1(xs+1,θs+1). (12)

• For non-adjacent stages s and t: t > s + 1,

V s(xs,θs,θt) = Ls(xs,θs)+V s+1(xs+1,θs+1,θt). (13)

Notice here that θt appears on both sides.

Boundary condition [see Equation (2)]:

T N(xN ,−) = E(fN(xN)) =
1

2

PN∑

k=1

‖yN

k − tN

k ‖
2
2. (14)

In MLP-learning, an initial (nominal) guessed policy is
often chosen as a randomly-initialized weight-parameter set.
For deriving first-order BP (see [2]), we only need re-
currence relation (11) to obtain the backward-pass recur-
rence relation between the two forms of node-sensitivity
vectors ξs and δs+1 in Equation (7−3). The procedure [in
Fig.1(b)] evaluates the stagwise-partitioned gradient vector
sequence gs = ∂T s

∂θs , which represents the first-order effect
on J in terms of control changes at each stage s along
the nominal state trajectory xs. By extension, the second-
order BP procedure allows us to investigate the second-order
effects on how gs = ∂T s

∂θs varies when

(1) the control changes as θs ← θs + δθs; and
(2) the state changes as xs ← xs + δxs.

For effect (1), we seek Hs,s ≡
[

∂2T s

∂θs

∂θs

]

, diagonal Hessian

blocks. For effect (2), we pursue Fs,s ≡
[

∂2T s

∂xs∂θs

]

, which

requires to evaluate Zs≡
[

∂2T s

∂xs∂xs

]

, and then Fs,u≡
[

∂2T u

∂xs∂θu

]

(for s < u), yielding the evaluation of off-diagonal Hessian

blocks Hs,u. In other words, how gs varies when controls
at two different stages s and u change is translated by the
propagation of effect (2) through the perturbations of the
states between those stages, leading to the evaluation of off-
diagonal Hessian blocks Hs,u.

Our derivation of the backward-pass recursive formula
of stagewise second-order BP begins at terminal stage N

(i.e., s = t = N), by evaluating a matrix of second partial
derivatives of the scalar terminal cost E(.) with respect to
xN , the PN -vector of terminal before-node net inputs:

ZN

︸︷︷︸

PN×PN

def
=

∂2T N

∂xN∂xN
=

[
∂2E

∂xN∂xN

]

=

[
∂δN

∂xN

]

, (15)

=

[
∂yN

∂xN

]T

︸ ︷︷ ︸

PN×PN

[
∂2E

∂yN∂yN

]

︸ ︷︷ ︸

PN×PN

[
∂yN

∂xN

]

︸ ︷︷ ︸

PN×PN

+

〈[
∂2yN

∂xN∂xN

]

, ξN

〉

︸ ︷︷ ︸

PN×PN

.

Here, as defined just after Equation (7), δN = ∂T N

∂xN = ∂E
∂xN is

the terminal before-node sensitivity vector, obtainable from
Equation (7-1) with ξN =rN when Equation (2) is used, and
the (i, j)-element of the last PN -by-PN symmetric matrix is
obtainable from the following particular 〈., .〉-operation (set
s=N below):

〈[
∂2ys

∂xs∂xs

]

, ξs

〉

ij

def
=

Ps∑

k=1

Ps∑

j=1

Ps∑

i=1

ξs
k

[

∂2ys
k

∂xs
i ∂xs

j

]

, (16)

which is just a diagonal matrix in standard MLP-learning.
At non-terminal stage s (for s = N−1, N−2, . . ., 2, 1),

when s = t (< N), we evaluate the following quantities:







(a) δs

︸︷︷︸

Ps × 1

def
=

∂T s

∂xs
; (b) gs

︸︷︷︸

Ps × 1

def
=

∂T s

∂θs

(c) Zs

︸︷︷︸

Ps × Ps

def
=

∂2T s

∂xs∂xs
—— see Eq.(27)

(d) Fs,s

︸︷︷︸

Ps × ns

def
=

∂2T s

∂xs∂θs —— see Eq.(29)

(e) Hs,s

︸︷︷︸

ns × ns

def
=

∂2T s

∂θs∂θs —— see Eq.(31)

(17)

Next, we consider a case where s = N−2 and t = N−1
for adjacent stages s and s+1(= t); the recurrence relation
in Equation (12) is given by

V N−2(xN−2,θN−2,θN−1)

= LN−2(xN−2,θN−2) + TN−1(xN−1,θN−1).
(18)

By differentiating Equation (18) once and twice, we obtain a
gradient vector and an off-diagonal Hessian block, as shown

next:






(a)
∂V N−2

∂θN−1
=

∂
(
LN−2 + TN−1

)

∂θN−1

=
∂TN−1

∂θN−1
= gN−1

(b)
∂2V N−2

∂θN−2∂θN−1
=

∂2TN−1

∂θN−2∂θN−1

=

[
∂xN−1

∂θN−2

]T [
∂2TN−1

∂xN−1∂θN−1

]

=

[
∂xN−1

∂θN−2

]T

FN−1,N−1
︸ ︷︷ ︸

PN−1 × nN−1

= HN−2,N−1
︸ ︷︷ ︸

nN−2 × nN−1

.

(19)

For non-adjacent stages s and u, such as when s=N−3
(and u=N−1), the recurrence relation in Equation (13) is
given by

V N−3(xN−3,θN−3,θN−1)

= LN−3(xN−3,θN−3) + V N−2(xN−2,θN−2,θN−1).
(20)

Differentiating Equation (20) once [with Eq.(18)] and twice
yields the following:







(a)
∂V N−3

∂θN−1
=

∂V N−2

∂θN−1
=

∂TN−1

∂θN−1
= gN−1

(b)
∂2V N−3

∂θN−3∂θN−1
=

∂2V N−2

∂θN−3∂θN−1

=

[
∂xN−2

∂θN−3

]T [
∂2V N−2

∂xN−2∂θN−1

]

=

[
∂xN−2

∂θN−3

]T

FN−2,N−1
︸ ︷︷ ︸

PN−2×nN−1

= HN−3,N−1
︸ ︷︷ ︸

nN−3 × nN−1

.

(21)

In (a), Equation (20) is differentiated once and then Equa-
tion (18) is used, and in (b) a rectangular matrix Fs,u below
is used for different stages s and u (s < u)

Fs,u

︸︷︷︸

Ps×nu

def
=

[
∂2V s

∂xs∂θu

]

=

[
∂2Tu

∂xs∂θu

]

; (for s < u). (22)

In general, Fs,u (for s < u) is given with a suitable number
of Ns,s+1 ≡

[
∂x

s+1

∂xs

]

, which is a so-called before-node state

transition matrix of size Ps+1 × Ps (see [5]). That is,

Fs,u

︸︷︷︸

Ps × nu

= Ns,s+1T

︸ ︷︷ ︸

Ps×Ps+1

Ns+1,s+2T

︸ ︷︷ ︸

Ps+1×Ps+2

, . . . , Nu−1,uT

︸ ︷︷ ︸

Pu−1×Pu

Fu,u

︸︷︷︸

Pu×nu

. (23)

In reality, this chain matrix multiplication is performed by
using the second-order backward-pass recurrence below

F
s,u
(new)

︸ ︷︷ ︸

Ps × nu

= Ns,s+1T

︸ ︷︷ ︸

Ps × Ps+1

F
s+1,u
(old)

︸ ︷︷ ︸

Ps+1 × nu

=

[
∂ys

∂xs

]T

Θs,s+1T

void F
s+1,u
(old) , (24)

where the last matrix is computed already at a previ-
ous stage; hence, the subscript old attached. Here, notice
in standard MLP-learning that the first matrix

[
∂y

s

∂xs

]

on
the right-hand side becomes diagonal with the jth ele-
ment fs′

j (.) (j =1, ..., Ps) [see Eq.(8)]. Furthermore, there is
no need to form all those N matrices explicitly [5] unlike
another second-order BP that evaluates H differently in a
nodewise manner described on pp.155–157 in [6].

When s = N − 4 (and t = N − 1), we proceed in the
same manner as in the aforementioned case where s=N−3
for non-adjacent stages. We first write down the recurrence
relation (13) as below:

V N−4(xN−4,θN−4,θN−1)

= LN−4(xN−4,θN−4) + V N−3(xN−3,θN−3,θN−1).
(25)

By differentiating recurrence relation (25) once and twice
[see Eq.(21)], we obtain the following:







(a)
∂V N−4

∂θN−1
=

∂V N−3

∂θN−1
=

∂TN−1

∂θN−1
= gN−1

(b)
∂2V N−4

∂θN−4∂θN−1
=

∂2V N−3

∂θN−4∂θN−1

=

[
∂xN−3

∂θN−4

]T [
∂2V N−3

∂xN−3∂θN−1

]

=

[
∂xN−3

∂θN−4

]T

FN−3,N−1
︸ ︷︷ ︸

PN−3 × nN−1

= HN−4,N−1
︸ ︷︷ ︸

nN−4 × nN−1

.

(26)

For completeness, we show recursive formulas for Zs,
Fs,s, and Hs,s in Equation (17). To obtain Zs in Equa-
tion (17)(c) for non-terminal stage s for s=N−1, · · · , 2, we
differentiate twice the recurrence relation (11) with respect
to the state vector, yielding

Zs

︸︷︷︸

Ps×Ps

def
=

[
∂2T s

∂xs∂xs

]

(27)

=

[
∂2Ls

∂xs∂xs

]

+ Ns,s+1T

︸ ︷︷ ︸

Ps×Ps+1

Zs+1
︸ ︷︷ ︸

Ps+1×Ps+1

Ns,s+1
︸ ︷︷ ︸

Ps+1×Ps

+

〈[
∂2ys

∂xs∂xs

]

, ξs

〉

︸ ︷︷ ︸

Ps×Ps

where the (i, j)-element of the last matrix is obtainable from
〈[

∂2ys

∂xs∂xs

]

, ξs

〉

ij

=

Ps∑

k=1

ξs
k

[

∂2ys
k

∂xs
i ∂xs

j

]

. (28)

We derive another key recursive formula for matrix Fs,s

in Equation (17)(d) by differentiating twice the recurrence
equation (11) with respect to state and control vectors,
yielding (after a little algebra)

Fs,s

︸︷︷︸

Ps × ns

def
=

[
∂2T s

∂xs∂θs

]

(29)

=

[
∂2Ls

∂xs∂θs

]

+

[
∂ys

∂xs

]T

︸ ︷︷ ︸

Ps×Ps







Θs,s+1T

void
︸ ︷︷ ︸

Ps×Ps+1

Zs+1
︸ ︷︷ ︸

Ps+1×Ps+1

[
∂xs+1

∂θs,s+1

]

︸ ︷︷ ︸

Ps+1×ns

+

〈[
∂θs,s+1

void

∂θs,s+1

]

, δs+1

〉

︸ ︷︷ ︸

Ps×ns







,

where the (i, j)-element of the last Ps-by-ns rectangular
matrix is given by

〈[

∂θ
s,s+1
void

∂θs,s+1

]

, δ
s+1

〉

ij

def
=

Ps+1∑

k=1

Ps∑

i=1

Ps∑

l=0

δs+1
k

[

∂θ
s,s+1
i,k

∂θ
s,s+1
l,k

]

. (30)

Here, index j is subject to j = (1 + Ps)(k − 1) + l + 1, and
θs

void and θs are the vector forms of the parameter matri-
ces Θs

void and Θs in Equation (5), respectively.
The diagonal Hessian block Hs,s is obtainable from twice

differentiation of the recurrence equation (11) with respect
to the control vector:

Hs,s

︸︷︷︸

ns × ns

def
=

[
∂2T s

∂θs∂θs

]

(31)

=

[
∂2Ls

∂θs∂θs

]

+

[
∂xs+1

∂θs

]T

︸ ︷︷ ︸

ns×Ps+1

Zs+1
︸ ︷︷ ︸

Ps+1×Ps+1

[
∂xs+1

∂θs

]

︸ ︷︷ ︸

Ps+1×ns

.

The off-diagonal Hessian blocks can be obtained in conjunc-
tion with Equation (24), as shown next

Hr,s

︸︷︷︸

nr × ns

=

[
∂xr+1

∂θr

]T

︸ ︷︷ ︸

nr × Pr+1

Fr+1,s

︸ ︷︷ ︸

Pr+1 × ns

(for r + 1 ≤ s), (32)

where nr ≡ (1 + Pr)Pr+1; Fr+1,s is obtainable from
Equation (24); and the nr-by-Pr+1 transposed matrix has
a “block-diagonal” form below in MLP-learning

[
∂xr+1

∂θr

]T

︸ ︷︷ ︸

nr × Pr+1

=






∗
∗

. . .
∗




.

Here, there are Pr+1 identical blocks, denoted by the same
symbol “∗” (hence, need to store one block “∗” alone)
because each block is just a (1+Pr)-length vector yr

+ defined

in Equation (5) with s = r, where the first component is a
bias-node constant output yr

0 (e.g., yr
0 = 1.0). Our stagewise

second-order BP can be summarized as follows:

Algorithm: Stagewise second-order BP on each datum.

(0) Do forward pass from stage 1 to N for evaluating J in
Equation (1) on a given training datum.

(1) At terminal stage N , obtain ZN by Equation (15).
• Set s=N−1, and repeat the following steps:

(2) Evaluate diagonal Hessian blocks Hs,s at each stage s

by Equation (31).
• When s=N−1, go to Step (5); otherwise, continue:

(3) Obtain off-diagonal Hessian blocks Hs,t (s < t ≤ N−1)
by Equation (32).

• If s=1, then terminate; otherwise, continue:
(4) Compute rectangular matrices Fs,t (s < t ≤ N−1) by

Equation (24).
(5) Evaluate a new Ps-by-ns rectangular matrix Fs,s by

Equation (29) for the current stage s.
(6) Compute a Ps-by-Ps matrix Zs by Equation (27).

• Set s=s−1, and go back to Step (2). 2 (End) 2

All the foregoing formulas are derived by choosing the
before-node net-input vector xs as the state vector at stage s

to conform with neural-network (NN) convention; see Ta-
ble I. In optimal control, the after-node output vector ys is
used as the state vector. Despite this distinction and some
others, using a state vector as a basic ingredient allows
us to adopt analogous formulas available in the second-
order optimal control theory (see [1] and references therein).
Therefore, in the table below, we show which equations in
this paper “loosely” match up to the formulas appeared in
three other papers [5], [7], [1] for further reference:

This paper Paper [5] Paper [7] Paper [1]
Zs in Eq.(27) Eq.(13) Eq.(17) Eq.(9)
Fs,s in Eq.(29) Eq.(11) Eq.(16) Eq.(10)
Fs,u in Eq.(24) Eq.(10) N/A N/A
Hs,s in Eq.(31) Eq.(8) Eq.(22) N/A
Hr,s in Eq.(32) Eq.(9) N/A N/A

For details on algorithmic descriptions of the posed stage-
wise second-order BP, refer to [5], where the formulas do
not include the terms associated with the stage costs Ls. In
what follows, we describe the methods that use Ls.

III. INTRODUCTION OF STAGE COSTS

We shall show how stage costs Ls serve to develop
advanced learning schemes.

A. Hidden-node teaching

In certain learning situations, some additional (or extra)
information related to a posed learning task might be avail-
able. Hidden-node teaching supplies such information to any
nodes at any intermediate stage s (s = 2, ..., N−1) as the
“desired” hidden outputs, leading to stage costs Ls; e.g., see
Equation (3). Here are three major purposes for using hidden-
node teaching:

(α) Provide useful hints related to a given target task [2];

(β) Alleviate hidden-node saturations;
(γ) Perform “desired” signal encoding or decoding.

For purpose (α), one might resort to the methods of hints [8]
and multi-task learning [9]; however, those methods need
to set up additional nodes at terminal layer to receive addi-
tional information. Accordingly, the number of parameters is
increased, resulting in slower learning. Furthermore, for the
second-order methods, due to increase in size of the Hessian
matrix H of the objective function J , more sparsity would
be inevitably involved in the “block-arrow” Hessian H in
Figure 2 (hence, worth exploiting such sparsity). On the other
hand, hidden-node teaching can supply such information
without altering a given NN structure for the purpose of (α).

Aim (β) above is specially designed to circumvent the
hidden-node saturation problems: When all the sigmoidal
hidden-node functions (e.g., tanh) get driven to their sat-
uration limits, the associated Hessian matrix H becomes
rank deficient (consequently, trapped in a lower-dimensional
subspace). To alleviate this concern, we could supply certain
target signals at (a subset of) hidden nodes to avoid hidden-
node saturations. For showing the value of this concept, a
sample MATLAB code has been made available on the web
at http://www.ieor.berkeley.edu/People/Faculty/dreyfus-
pubs/hidteach.m: The code attacks the well-known 7-bit
parity problem, the 7-dimensional XOR-problem with 27(=
128) data, by a 7-4-1 MLP with only four hidden (tanh)
nodes (hence, 37 parameters in total), demonstrating that an
on-line hidden-node teaching algorithm can render the 7-4-
1 MLP able to solve the posed problem always perfectly
as long as the initial parameters are randomly generated
uniformly in a small range (e.g., [-0.2, +0.2]). Furthermore,
the number of epoch required for solution does not differ
greatly. That is, owing to the hidden-node teaching, the 7-4-
1 MLP can successfully develop insensitivity to the initial
parameters, and thus never fails to solve the 7-bit parity
problem perfectly (see hidteach.m and references therein).

In Sec. IV, we shall demonstrate our hidden-node teaching
for accomplishing two goals (α) and (γ) simultaneously.

B. Stage costs for weight decay

Our neural-network (NN) model is expected to perform
well when previously-unseen “test” data are presented, which
are outside the “training” data set. This is an important
matter of generalization. Often, the optimization process
is to be stopped partway before the training-error measure
is minimized (i.e., early stopping). Furthermore, one may
consider regularization by adding some penalty cost C (to
be imposed on control parameters) to the objective function.
One regularization approach is to penalize large control
parameters, which is known as weight decay; an easily-
implementable scheme is to employ the sum of squared
controls (i.e., decision parameters) as C (e.g., see [10] and
pp.338–343 in [6]), given with some scalar constant µ as
C ≡ 1

2µ2θTθ. In the spirit of optimal control, the cost C for
such a simple weight decay can be merged at each stage s

into the stage cost Ls (scalar) with (or without) hidden-node

teaching in Equation (3), leading to J in Equation (1) with
Ls (per datum) below:

Ls(ys, θs) =
1

2
µ

2
θ

sT
θ

s

| {z }

weight decay

+
1

2
‖ys − t

s‖2

2

| {z }

hidden-node teaching

. (33)

The gradient vector g of the posed J can be derived by
recurrence (11); for parameter θs

j,k [see Eq.(6) for notations],
an element of gs at stage s (per datum) is given as

gs
jk =

∂T s(ys, θs)

∂θs
j,k

=
∂Ls(ys, θs)

∂θs
j,k

+
∂T s+1(ys+1, θs+1)

∂θs
j,k

= µ
2
θ

s
j,k +

∂xs+1

k

∂θs
j,k

∂ys+1

k

∂xs+1

k

!8

<

:

`
y

s+1

k − t
s+1

k

´
+

Ps+2X

l=1

θ
s+1

kl δ
s+2

l

9

=

;

| {z }

weight decay
| {z }

residual rs+1

k

| {z }

backward pass

= µ
2
θ

s
j,k + y

s
j δ

s+1

k .
(34)

Because
h

∂2Ls

∂θs
∂θs

i

=µ2
h

∂2C
∂θs

∂θs

i

=µ2I, the n-by-n symmetric
Hessian matrix H of J is given with the identity matrix I

as H+µ2I. Consequently, weight-decay methods encourage
the magnitude of decision parameters θs to be kept small
by penalizing large controls in magnitude, which can be
implemented by introducing stage costs Ls.

This should not be confused with the widely-employed
Levenberg-Marquardt method in the nonlinear least squares
(with no weight decay) context, where the n-by-n full
Hessian matrix H of J [with weight-decay terms excluded
from Ls in Eq.(33)] has such a special form as H = JT J+S;
here, JTJ is called the Gauss-Newton Hessian, J the m-by-
n Jacobian matrix of the m-dimensional residual vector r,
and S a matrix of terms involving the second derivatives of
residuals. In normal-equation approach, the method may use
JTJ + µ2I for solving approximately the subproblem below

min
∆θ

n

‖r + J∆θ‖2
2 + µ‖∆θ‖2

2

o

⇐⇒ min
∆θ

n

‖r + J∆θ‖2
2

o

subject to ‖∆θ‖2
2 < R2

,
(35)

where R is called trust-region radius. There is a vast literature
on trust-region methods that solve the above trust-region
subproblem at each epoch efficiently for parameter optimiza-
tion; e.g., see [11]. The trust-region methods may employ
the same form of the Hessian matrix, but uses the ordinary
gradient vector g = JT r of J excluding such a weight-
decay term from Equation (34); therefore, the trust-region
methods penalize the large step ∆θ (or implicitly avoids
making control parameters “large”) by solving the trust-
region subproblem, whereas weight-decay methods impose
a penalty explicitly on large control without telling us how
to determine µ efficiently. Overall, we recommend trust-
region regularization (e.g., see [4]) rather than weight-decay
type. Notice that when hidden-node teaching is employed,
J has more “sparse” rows due to hidden residuals at Ls

in Equation (3), but our stagewise second-order BP can
efficiently compute H; Section IV shows our numerical
evidence with and without hidden-node teaching under trust-
region regularization.

IV. NUMERICAL RESULTS AND DISCUSSIONS

First, we show how efficiently our stagewise second-order
BP evaluates the n-by-n full Hessian matrix of E(.) defined
in Equation (2): H = JT J+S [recall discussion for Eq.(35)].
In simulation on a 2-GHz Pentium-4 PC, we employed a
single-hidden-layer (i.e., three-stage: N = 3) 5-130-3 MLP
with three linear outputs (F =3) on 400 data (D=400); i.e.,

N =3; P1 =5; P2 =130; P3(≡F)=3; CA =1+P2 =131;
nB =(1+P1)P2 =780; n=FCA+nB =1, 173; m=FD=1, 200.

We compared performance in speed to obtain a “block-
arrow” Hessian matrix with F (= 3) diagonal blocks [recall
sparsity in Fig.2(a)] between the following four algorithms:
(A) Stagewise second-order BP that evaluates the full Hessian
matrix H = JT J+S; (B) A simplified version that evaluates
the Gauss-Newton Hessian JT J alone (see [12]); (C) A
standard method that computes row vectors uT of J per
datum, and then forms JT J alone by rank updates uuT with
sparsity-exploitation, and (D) the same standard method as
(C) but with such sparsity totally ignored as in calcjejj.m
(for trainlm.m) on the MATLAB Neural Network Toolbox.
The average execution time measured in (C) was 3.8 sec-
ond (averaged over 30 trials) and was 6.8 second in (D),
whereas it was 2.9 second in (A) and (B); remarkably, no
time difference between (A) and (B). This implies that our
stagewise algorithm economically evaluates S during the
backward process; see Equations (16), (28), and (30), which
yield sparse matrices in MLP-learning (see [5]).

Next, we shall demonstrate hidden-node teaching for data
compression using an encoder neural network with a bottle-
neck structure. In our experiments, we used a 8-3-8 MLP
(with three tanh hidden nodes) illustrated in Figure 3 for
solving a classical eight-bit encoding problem described on
pages 336-337 in [3]. Their original concept is “automatic”
encoding; that is, present the same eight-bit binary data (see
the first column in table below) both at the first and the
terminal layers for training purposes, and read off the three
hidden-node outputs. Their resulting values are tabulated
below in symbol as the PDP-patterns (see the last column),
which contain an intermediate value labeled middle (nearly 0)
between ON (+1) and off (−1):

Eight-bit patterns (Inputs/Targets) HID-patterns PDP-patterns
(ON,off,off,off,off,off,off,off) (ON,off,off) (middle,off,off)
(off,ON,off,off,off,off,off,off) (off,ON,off) (off,ON,off)
(off,off,ON,off,off,off,off,off) (ON,ON,off) (ON,ON,off)
(off,off,off,ON,off,off,off,off) (off,off,ON) (ON,ON,ON)
(off,off,off,off,ON,off,off,off) (ON,off,ON) (off,ON,ON)
(off,off,off,off,off,ON,off,off) (off,ON,ON) (middle,off,ON)
(off,off,off,off,off,off,ON,off) (ON,ON,ON) (ON,off,middle)
(off,off,off,off,off,off,off,ON) (off,off,off) (off,off,middle)

However, the posed automatic scheme is highly questionable
because the three hidden-node outputs very often represented
meaningless signals (including unexpectedly many middle
values), and learning those eight-bit training patterns hardly
succeeded by the 8-3-8 MLP. The next table present our
simulation results obtained by two methods: (F) First-order
on-line incremental gradient method (limit epoch 1,000), and

2
log B bits

B bitsB bits

Fig. 3. A B-bit encoder MLP with hidden-node teaching. For attacking the
eight-bit (B =8) encoding problem posed on pages 336-337 in [3] by this
single-hidden-layer 8-3-8 MLP, one may use tanh hidden-node functions.
The same eight-bit patterns are used as input and terminal desired output,
while user-oriented three-bit patterns are supplied as hidden target signals.

(S) Second-order batch-mode trust-region method with our
stagewise second-order BP (limit epoch 100):

Automatic scheme Hidden-node teaching
Success Epoch RMSE Success Epoch RMSE H-RMSE

(F) 12% 477.5 0.531 100% 105.0 0.543 0.328
(S) 16% 6.8 0.506 100% 4.7 0.509 0.159

Here, “Success” in columns 2 and 5 shows the success rate
for learning the eight-bit patterns in the sense that the largest
terminal output node matches the ON-bit on all the eight data,
which can occur even when the terminal residual error E(.)
[in Eq.(2)] was greater than 0.5 in terms of root mean square
error (RMSE); see columns 4 and 7. The above results were
averaged over the successful cases among 50 trials (using 50
sets of initial parameters randomly generated uniformly in a
small range [-0.2,+0.2]). For hidden-node teaching, the HID-
patterns in the first table were used as the desired hidden
outputs for L2 [s = 2 in Eq.(3)]. The following three ob-
servations confirm that hidden-node teaching with stagewise
second-order BP can work efficiently: (1) The 8-3-8 MLP
can reduce the hidden residuals L2 (see “H-RMSE” in the
last column) faster than the terminal residuals E(.) (compare
“RMSE” columns); (2) Second-order method (S) decreased
both terminal and hidden residuals more efficiently than first-
order method (F) (see the difference in “H-RMSE”); and
(3) Hidden-node teaching helped increase the success rate
for learning the eight-bit patterns also (compare columns 2
& 5). Interested readers are encouraged to attack the posed
problem by a 8-3-8 MLP using the data in the first table.

Without hidden-node teaching, the 8-3-8 MLP most likely
failed to learn the training patterns; under this poor learning
situation, it is hopeless to expect meaningful signals auto-
matically “encoded” at the three hidden nodes. By contrast,
“hidden-node teaching” can control the hidden-node outputs
by presenting certain desired hidden outputs (i.e., by intro-
ducing stage costs L2), as discussed in Section III-A. Of
course, by hidden-node teaching, it is no longer “automatic,”
but in a certain circumstance, where the test data (beside the
training data) are available to check generalization capacity,
hidden-node teaching would undoubtedly ensure better qual-
ity of “encoded” signals produced at (a subset of) hidden
nodes on test data in the context of multi-task learning.

V. CONCLUSION

We have shown a simple derivation of stagewise second-
order BP by invariant-imbedding recurrences. The procedure
exploits “stagewise” structure embedded in an N -stage neu-
ral network and is based on the optimal-control theory, where
N is usually very large and the objective function can be
of any form (see [1]). This leads to a systematic evaluation
of the Hessian even with hidden-node teaching and weight-
decay regularization. In nonlinear least squares, where the
Hessian matrix (H=JT J + S) is of block-arrow form [see
Fig.2(a)], the usual practice is to use only the Gauss-Newton
Hessian JT J because S is expensive to compute. In Sec.IV,
however, our numerical results verify that our stagewise
second-order BP forms H faster than the standard method
that obtains JT J alone by rank updates [12]. This is signif-
icant because S is important to efficiency in large-residual
problems, and the trust-region method works excellently with
the indefinite Hessian H as well as positive (semi-)definite
H. Furthermore, the results indicate that stagewise-BP can
improve the efficiency of trust-region second-order learning
with hidden-node teaching in a classical encoding problem.
For a more realistic application, one might employ a five-
stage (N = 5) bottleneck MLP with three hidden layers,
where (a subset of) hidden nodes in the middle layer (i.e.,
stage 3) may be used for encoding by hidden-node teaching.
In this multi-task learning with such a larger N , the utility
of our stagewise second-order BP would be magnified.

REFERENCES

[1] Eiji Mizutani and Stuart E. Dreyfus. Stagewise newton, differential
dynamic programming, and neighboring optimum control for neural-
network learning. In Proc. of the 24th American Control Conference
(ACC 2005), pages 1331–1336, Portland, Oregon, USA, June 2005.

[2] E. Mizutani, S.E. Dreyfus, and K. Nishio. On derivation of MLP back-
propagation from the Kelley-Bryson optimal-control gradient formula
and its application. In Proc. of the IEEE International Conference on
Neural Networks (vol.2), pages 167–172, Como, Italy, July 2000.

[3] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning
internal representations by error propagation, volume 1. MIT press,
Cambridge, MA., 1986.

[4] Eiji Mizutani and James W. Demmel. On structure-exploiting trust-
region regularized nonlinear least squares algorithms for neural-
network learning. Neural Networks, 16:745–753, 2003.

[5] Eiji Mizutani, Stuart E. Dreyfus, and James W. Demmel. Second-
order backpropagation algorithms for a stagewise-partitioned separable
Hessian matrix. In Proc. of 2005 Int’l Joint Conf. on Neural Networks
(see www.ieor.berkeley.edu/People/Faculty/dreyfus-pubs/ijcnnESJ05.pdf).

[6] Christopher M. Bishop. Neural Networks for Pattern Recognition.
Oxford Press, 1995.

[7] Stuart E. Dreyfus. The numerical solution of non-linear optimal control
problems. In D. Greenspan, editor, Numerical Solutions of Nonlinear
Differential Equations: Proceedings of an Advanced Symposium, pages
97–113. John Wiley & Sons, Inc., 1966.

[8] Yaser S. Abu-Mostafa. Hints. Neural Computation, 7:639–671, 1995.
[9] Rich Caruana. A dozen tricks with multitask learning. In G. B. Orr

and K.-R. Muller, editors, Neural networks : tricks of the trade, pages
165–191. Springer, 1998. Lecture notes in computer science 1524.

[10] A. Krogh and J. A. Hertz. A simple weight decay can improve
generalization. In Advances in Neural Information Processing Systems,
vol.4, pp.950–957. Morgan Kauffmann Publishers, 1995.

[11] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust-Region Methods.
SIAM MPS/SIAM Series on Optimization, 2000.

[12] Eiji Mizutani. On computing the Gauss-Newton Hessian matrix for
neural-network learning. In Proc. of the 12th Int’l Conf. on Neural
Information Processing (ICONIP 2005), pp.43–48, Taipei, 2005.

