
Journal of Industrial and Systems Engineering
Vol. 4, No. 3, pp 152-155
Fall 2010

Modern Computational Applications of Dynamic Programming

Stuart Dreyfus

Department of Industrial Engineering and Operations Research, University of California at Berkeley,
CA 94720, USA

dreyfus@ieor.berkeley.edu

ABSTRACT

Computational dynamic programming, while of some use for situations typically encountered in
industrial and systems engineering, has proved to be of much greater significance in many areas
of computer science. We review some of these applications here.

Keywords: Dynamic programming applications

1. INTRODUCTION

In September 2010 the Princeton University Press published in its Landmarks in Mathematics series
a paperback reproduction of Richard Bellman’s 1957 classic book Dynamic Programming. This
important book contained mathematical analyses yielding the structure of the optimal policies for a
great variety of multistage decision problems. I was invited to write an introduction to that
reproduction.

Following, with the Press’s permission, is a slightly modified version of my introduction. In it I
chose to describe fertile areas of recent computational applications of dynamic programming. I have
deleted here some remarks concerning the importance of the original book and have added
references that seemed inappropriate in the book introduction.

While demonstrating his impressive mathematical ingenuity in his 1957 book, Bellman informs the
reader in his preface that research is already underway on the computational solution of problems
for which general solution structures are unattainable. He clearly believes that dynamic-
programming problems can be mathematically intractable yet, when approached with formulational
ingenuity, yield results of practical value. I was privileged to join him in this effort.

We illustrated and attempted to popularize this computational application of dynamic programming
using largely military and industrial planning problems of the kind faced by members of our
operations-research community. Despite our best efforts, however, surveys of applied practitioners
in our area regularly, and painfully for us, showed dynamic programming to be used much less than
our planning competitor, linear programming. In the real world of operational planning, the number

ISSN: 1735-8272, Copyright © 2010 JISE . All rights reserved.

Modern Computational Applications of Dynamic Programming 153

of state-variable values needed to describe any particular situation that might be encountered during
a sequential planning process had frequently turned out to be too large for computational treatment.
Dynamic programming seemed to have fallen victim to what Bellman has called the “curse of
dimensionality.”

One might well wonder, why reprint Bellman’s original book if dynamic programming has been
shown to be of limited value in the field of its birth? I discovered a very good reason when I began
my research leading to my introduction. Computational dynamic programming, I learned, had found
its rightful home away from home in the subfield of bioinformatics called computational genomics
and in many areas of computer science. There, the number of state variables is small, usually one or
two, and the payoffs are large when measured by usefulness. Since linear programming can claim
only a few applications to engineering design beyond its traditional operations-research problem
domain, my veil of inferiority has lifted.

2. SEQUENCE ALIGNMENT

Two classes of situations account for a significant number of important dynamic-programming
applications. The first is termed “sequence alignment” (Wikipedia, 2010a). A prototypical
alignment problem is: given sequences A of n data elements and B of m data elements (m>>n), find
the possibly perturbed subsequence of B that best matches A. Depending on the application,
allowable perturbations are d in number and include such modifications of B as inserting duplicates
of elements, deleting elements, sometimes even changing elements. For each particular application
a cost structure must be created whereby the cost of the mismatch of A and a candidate perturbed
subsequence of B is defined and a cost of the perturbations required to produce the subsequence
must be found so that the algorithm does not play too fast and loose with its perturbations. Then the
perturbed subsequence of B with minimum total cost is sought. This problem, when solved by
dynamic programming, can be viewed as an m-stage problem with its single state variable assuming
n values at each stage and with d decisions per state and stage, so computation of the solution is of
order mnd. Algorithms of this sort constitute the most valuable optimization-guaranteed
mathematical tools of computational genomics, wherein the genome is searched for genes or for
other significant sequences.

This area of application, since it often has medical significance, would have greatly pleased Richard
Bellman. During his post-RAND career as a professor at the University of Southern California he
was, among his three departments, a professor in the medical school, due to his passion for finding
medical applications for mathematics.

Sequence alignment has also proved useful in automatic speech recognition. Here, dynamic-
programming time-warping algorithms seek, among the sequences of elements representing a
dictionary, the one best matching the representation of a spoken word. Perturbations of the spoken
word are allowed by duplication or deletion of elements to account for the fact that a user’s speech
speed may shorten or lengthen all or part of a word compared to the dictionary’s version. These are
just two examples of the large class of sequence-alignment dynamic-programming applications.
Several of the additional areas of applications of dynamic programming to be noted below are
alignment situations.

3. HIDDEN MARKOV MODELS

A second large class of dynamic-programming algorithms frequently falling outside the usual
purview of operations research involves hidden Markov model problems (Wikipedia 2010b). This is

154 Dreyfus

a statistical application of dynamic programming where one member of a set of Markov process
models, each with its known state transition probabilities, is assumed best to explain a particular
observed sequence of states. What is observed, however, is not the true sequence, but an error-
corrupted representation; hence the term “hidden” in the topic name. This type of problem arises in
a popular approach to automatic speech recognition where each word in the dictionary is
represented, not by a given sequence, but by a Markov model. Other recognition problems
involving handwriting, musical scores, and topics in bioinformatics have been treated by applying
dynamic programming to hidden Markov models.

4. OTHER APPLICATION AREAS

A partial list of other areas employing computational dynamic programming includes the
determination of optimal play in chess endgames, the optimal order for performing chain matrix
multiplication, relational database query optimization, edge- following methods used in Photoshop
and in artificial vision schemes, and finding the most pleasing justification and hyphenation of text
in programs such as TeX (Wikipedia, 2010c). I was recently intrigued by an announcement that a
cipher presented to President Jefferson by a mathematician friend who believed it to be
undecipherable had been decoded after two hundred years by a method computationally feasible in
Jefferson’s day although vastly accelerated by computer. The culminating step in the decryption
process, unavailable until recently, turned out to be a dynamic-programming sequence-alignment
algorithm (Smithline, 2009). Can linear programming top that?

5. TEMPORAL DIFFERENCE LEARNING

Quite different from the above ingenious ways of using computational dynamic programming is a
current approach to machine learning that is called “temporal difference reinforcement learning,” or
TDRL (Wikipedia, 2010d). A computer is required to learn an optimal, or at least a very good,
decision policy controlling either a deterministic or a stochastic sequential decision process by
means of process observations. Reward, which is to be maximized, is obtained either at the end of
the process, or during the evolution of the process, or both. The algorithm to be used to solve the
problem is not told the rules for the decision-dependent evolution of the state or for the
determination of reward. All that the training algorithm allows is the exploration of various
decisions in various states and the observation of the results. These results that inform the computer
may be produced by actually observing real-world situations or they may be computer-produced
using rules that are inaccessible to the algorithm being trained.

The conventional approach of physical scientists or engineers would be to observe a great many
realizations of the sequential decision process using various decision policies and to thereby gather
information that might include probability data. This information would then be used to create and
refine a model of the situation that would be used to determine a good or optimal decision policy,
perhaps using conventional dynamic programming. (In fact, on page x of the preface to Bellman’s
original book, observation-based model building is described as a necessary step in learning to
predict and thereby control.)

What is intriguing about temporal difference learning is that model building is shown to be
unnecessary for learning to predict and control. What can be learned directly from experience is a
successive approximation of the optimal-value function and the optimal-policy function of dynamic
programming. The term “temporal difference” in the name of this machine-learning procedure
refers, during learning of these functions by observation of each step in a process realization, to the
difference between the left-hand side of the mathematical equation expressing Bellman’s principle

Modern Computational Applications of Dynamic Programming 155

of optimality involving a reward-to-go function at time t and the right-hand side during the
realization of a step of the sequential decision process that involves that function at time t+1. This
difference, for a deterministic process, is zero when the optimal reward-to-go values on both sides
are correct and when the decision is optimal. During learning, if it is not zero, this temporal
difference becomes the basis of improving the estimates of both optimal reward-to-go value and
decision. (For a stochastic process, the difference between the left-hand side and the expected value
of the right-hand side is zero and the same procedure is applied at each step of a realization of the
process.)

This model-free learning of optimal reward-to-go values and optimal decisions, based on
observations of realizations of the sequential process as various decisions are explored, was, as far
as I know, never contemplated by Bellman. It is now an active area of research in the machine-
learning community.

6. BEHAVIORAL NEUROSCIENCE

Remarkably, a school of behavioral neuroscientists studying how real brains learn skilled behavior
based on experiences has speculated, supported by a growing body of evidence, that both human
and lower-animal brains use this model-free TDRL dynamic-programming approach (Dreyfus,
2010). I have no doubt that Richard Bellman would have felt both pleased and honored to learn that
evolution may, before him, have discovered and exploited his beloved principle of optimality.

REFERENCES

[1] Smithline L.M. (2009); American Scientist 97(2); 142-147.

[2] Dreyfus S., http://www.lionhrtpub.com/orms/orms-4-10/forum.html, 2010.

[3] Wikipedia, http://en.wikipedia.org/wiki/Sequence_alignment, 2010a.

[4] Wikipedia, http://en.wikipedia.org/wiki/Hidden_Markov_model, 2010b.

[5] Wikipedia, http://en.wikipedia.org/wiki/Dynamic_programming, 2010c.

[6] Wikipedia, http://en.wikipedia.org/wiki/Temporal_difference_learning, 2010d.

