IEOR - Designing a More Efficient World

Certainty Equivalent Planning for Multi-Product Batch Differentiation: Analysis and Bounds

Publication Date: December 16, 2015

H-S. AHN, S. JASIN, P. KAMINSKY, AND Y. WANG. 2017. Analysis of Deterministic Control and Its Improvements for an Inventory Problem with Multiproduct Batch Differentiation. Operations Research, 66 (1), pp. 58-76.


Abstract: We consider a multi-period planning problem faced by a firm that must coordinate the production and allocations of batches to end products for multiple markets. Motivated by a problem faced by a biopharmaceutical firm, we model this as a discrete-time inventory planning problem where in each period the firm must decide how many batches to produce and how to differentiate batches to meet demands for different end products. This is a challenging problem to solve optimally, so we derive a theoretical bound on the performance of a Certainty Equivalent (CE) control for this model, in which all random variables are replaced by their expected values and the corresponding deterministic optimization problem is solved. This is a variant of an approach that is widely used in practice. We show that while a CE control can perform very poorly in certain instances, a simple re-optimization of the CE control in each period can substantially improve both the theoretical and computational performance of the heuristic, and we bound the performance of this re-optimization. To address the limitations of CE control and provide guidance for heuristic design, we also derive performance bounds for two additional heuristic controls — (1) Re-optimized Stochastic Programming (RSP), which utilizes full demand distribution but limits the adaptive nature of decision dynamics, and (2) Multi-Point Approximation (MPA), which uses limited demand information to model uncertainty but fully capture the adaptive nature of decision dynamics. We show that although RSP in general outperforms the re-optimized CE control, the improvement is limited. On the other hand, with a carefully chosen demand approximation in each period, MPA can significantly outperform RSP. This suggests that, in our setting, explicitly capturing decision dynamics adds more value than simply capturing full demand information.