Region partitioning heuristic

1. Rectangle containing customers,
2. Partition so that there are \(q \) customers in each region,
3. Find optimal TSP in each region,
4. Connect these to find a tour.

An \(O(q^22^q) \) forward DP based algorithm for the TSP

\(-\text{Held and Karp(1962)}\)

Notations

\(S \): set of cities.

\(S_l \): an \(l-1 \) city subset of \(S\setminus\{1\} \).

\(cost(S_l, i) \): the minimum cost of an \(l \)-city path starting at 1 and ending at \(i \) for a particular \(S_l \).

\[
\text{cost}(S^l, i) = \min_{k \in S^l \setminus \{i\}} \{\text{cost}(S^l \setminus \{i\}, k) + c_{ki}\}.
\]

Algorithm

for \(i = 1, 2, \ldots, n \) \(\text{cost}(\{i\}, 1) = c_{1i}, \text{bestpath}(\{i\}, 1) = (1, i) \).

\[
C \left\{ \begin{array}{l}
\text{for } j = 2, 3, \ldots, n \\
\quad \text{for each } S^j \\
\quad \quad \text{for each } i \in S^j \\
\quad \quad \quad \text{cost}(S^j, i) = \min_{k \in S^j \setminus \{i\}} \{\text{cost}(S^j \setminus \{i\}, k) + c_{ki}\} \\
\quad \quad k \text{ is the city that achieves the minimum} \\
\quad \quad \text{bestpath}(S^j, i) = \text{bestpath}(S^j \setminus \{i\}, k) + \{i\}
\end{array} \right.
\]
mincost = min_{k\neq 1} \{ \text{cost}(S^{n-1}\setminus\{i\}, k) + c_k \}

k the city that achieves this.

bestpath = bestpath(S^{n-1}, k) + \{i\}.

Complexity

A : for each \(i \in S^j \), \(j \) times \(\rightarrow O(j^2) \),

B : \(\binom{n-1}{j-1} \) possible \(S^j \),

C : for all \(j \), \(\sum_{j=2}^{n} \left(\frac{n-1}{j-1} \right) j^2 \).

This is not polynomial but if \(q = \sqrt{\log n} \) then the running time for a subregion is \(O(n \log n^2) \). And since there are at most \(\frac{n}{\log n} + 1 \) subregions, the running time to solve all the TSPs is \(O\left(\frac{n}{\log n} \log n^2 \right) = O(n^2 \log n) \).

The region partitioning

Given a rectangle with width \(a \) and length \(b \) containing all the points, subdivide the rectangle into regions containing \(q \) customers.

Divide the region with \(t \) vertical lines and \(h \) horizontal lines.

Index customers in order of horizontal coordinate.

Place the \(j \)-th vertical line, \(j = 1, 2, \ldots, t \) through customer with index
$j(k + 1)q$.
This leads to $t + 1$ vertical strips each with $(h + 1)q$ customers.
Now use h horizontal lines to partition each strip into $h + 1$ smaller subregions.

Each subregion has q customers, except possibly the last one (counting right, bottom).
Now solve TSP for each subregion (up to $q + 2$ point in interior regions).
This is an eulerian graph, so convert the TSP tour using shortcuts.

Bounds

The following hold:

\[
\begin{align*}
t &= \left\lceil \frac{n}{(h + 1)q} \right\rceil - 1 \leq \sqrt{\frac{n}{q}} \\
t(h + 1)q &< n \leq (t + 1)(h + 1) \\
h &= \left\lceil \sqrt{\frac{n}{q}} - 1 \right\rceil \leq \sqrt{\frac{n}{q}}
\end{align*}
\]

Theorem:

If X_i are i.i.d. random variables with compact support in \mathbb{R}^2, then:

\[
\lim_{n \to \infty} \frac{L^*}{\sqrt{n}} = \lim_{n \to \infty} \frac{L^{RP}}{\sqrt{n}}.
\]

To prove this, we need the following lemma (we will apply it this class and prove it next class).

Lemma:

\[
L^* \leq L^{RP} \leq L^* + \frac{3}{2}p^{RP}
\]

where p^{RP} is the sum of perimeters of subregions.

Proof of the theorem

- added vertical lines $t \leq \sqrt{\frac{n}{q}}$, counted twice, length a,

– added horizontal lines $h \leq \sqrt{\frac{n}{q}}$, counted twice, length b,
– a, b counted twice.
So :

$$p^{RP} \leq 2\sqrt{\frac{n}{q}}(a + b) + 2(a + b).$$

Since $q = \lceil \log n \rceil$:

$$p^{RP} \leq 2\sqrt{\frac{n}{\log n}}(a + b) + 2(a + b).$$

Applying the lemma :

$$L^* \leq L^{RP} \leq \frac{L^*}{\sqrt{n}} + \frac{3p^{RP}}{\sqrt{n}} \leq \frac{L^*}{\sqrt{n}} + 3(a + b)(\frac{1}{\sqrt{\log n}} + \frac{1}{\sqrt{n}}).$$

Taking the limit $n \to \infty$ completes the proof.