NP-Completeness

3-Satisfiability

Given a set of literals \((X_1, X_2, ..., X_n)\) and an expression \(F = C_1 \cdot C_2 \cdot ... \cdot C_m\) such that \(|C_i| = 3\) for all \(i\), is there an assignment of labels to literals such that every clause is satisfied?

Theorem: 3-SAT is NP-complete.

Sketch of Proof:

1. In NP.
2. Show SAT polynomially transforms to 3-SAT.
 (i.e. Given an expression that is satisfiable, construct an expression consisting of clauses with 3 literals that is satisfiable if and only if the initial expression is satisfiable.)

Consider an instance of SAT with \(X_1, X_2, ..., X_n\) literals.

\[F = C_1 \cdot C_2 \cdot ... \cdot C_m \]

Consider a new instance

\[F' = C'_1 \cdot C'_2 \cdot ... \cdot C'_m \]

such that \(|C'_i| = 3\) and \(F'\) is satisfiable if and only if \(F\) is satisfiable.

Replace each \(C_j\) by a number of new clauses utilising the original literals and some new ones: \(Y^1_j, Y^2_j\), etc.

If \(|C_j| = 1\), \(C_j = X_i\)

\[C'_j = (X_i + Y^1_j + Y^2_j) \cdot (X_i + \overline{Y}^1_j + Y^2_j) \cdot (X_i + Y^1_j + \overline{Y}^2_j) \cdot (X_i + \overline{Y}^1_j + \overline{Y}^2_j) \]

If \(|C_j| = 2\), \(C_j = X_i + X_2\)

\[C'_j = (X_i + X_2 + Y^1_j) \cdot (X_i + X_2 + \overline{Y}^1_j) \]

If \(|C_j| > 3\), \(C_j = X_i, X_2, ..., X_L\)
\[C'_j = (X_1 + X_2 + Y^j_1) \cdot (\overline{Y^j_1} + X_3 + Y^2_1) \cdot (\overline{Y^2_1} + X_4 + Y^3_1) \cdot \ldots \cdot (\overline{Y^{L-3}_1} + X_{L-2} + Y^{L-3}_1) \cdot (\overline{Y^{L-3}_1} + X_{L-1} + X_L) \]

For the proof, we need to show that \(F' \) is satisfiable if and only if \(F \) is satisfiable.

First 2 cases are easy; final case:

Let \(l \) be minimizing \(i \) such that \(X_i \) is true in \(F \).

If \(l = 1, 2, \) \(Y^j_i = \text{FALSE} \), \(F' \) is satisfied.

If \(l = L - 1, L - 2, \) \(Y^j_i = \text{TRUE} \), \(F' \) is satisfied.

Otherwise, set \(Y^j_i = \text{TRUE} \) for all \(i \) up to \(l - 2 \), and \(\text{FALSE} \) for the rest.

Vertex Cover

Given a graph \(G (V,E) \) and a positive integer \(K \leq |V| \), is there a vertex cover of size \(K \) or less?

Equivalently, is there \(V' \leq V \) with \(|V| \leq K \) such that \((i,j) \in E\), either \(i \) or \(j \) or both are in \(V' \)?

Example:

<table>
<thead>
<tr>
<th>(V') = 2, select 1 & 3 for VC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Theorem: VC is NP-complete.

Sketch of Proof:

1. Clearly, VC is in NP.
2. Show that 3-SAT polynomially transforms to VC.
 (i.e. Given an instance of 3-SAT, construct an instance of VC such that solution to one is yes if and only if solution the other is yes.)
Consider the literals \(X_1, X_2, \ldots, X_n \) (\(n \) terms) and the expression \(F = C_1 \cdot C_2 \cdot \ldots \cdot C_m \) (\(m \) terms) where \(|C_j| = 3 \). We construct a graph \(G(V,E) \) and define a positive integer \(K \) such that \(G \) has a vertex cover of size \(\leq K \) if and only if \(F \) is satisfied.

Constructing the graph:

- For every literal \(X_i \), we build 2 nodes \(X_i, \overline{X_i} \) and connect them with an edge.
- For every clause \(C_j \), construct 3 nodes \(a_j^1, a_j^2, a_j^3 \), and connect them to form a triangle.
- For every clause \(C_j \), \(C_j = \{ \alpha_j + \beta_j + \gamma_j \} \), connect \(a_j^1 - \alpha_j, a_j^2 - \beta_j, a_j^3 - \gamma_j \).

Example: \(F = (X_1 + \overline{X}_3 + \overline{X}_4) \cdot (\overline{X}_1 + X_2 + \overline{X}_4) \)

Now, let \(K = n + 2m \).

First, we show that \(\text{VC} \) “Yes” \(\rightarrow \) \(3\text{-SAT} \) “Yes”.

- Let \(V' \) be the VC with \(|V'| \leq K \).
- \(V' \) must contain at least one vertex from each \(X_i, \overline{X}_i \) pair (since each pair is disconnected).
- \(V' \) must contain at least 2 vertices from each triangle (to cover all 3 arcs in the triangle).

\[
\begin{align*}
 n + 2m & \geq |V'| \geq n + 2m \\
 \Rightarrow |V'| &= n + 2m
\end{align*}
\]

Thus, \(\text{VC} \) has exactly one of each \(X_i, \overline{X}_i \) pair and 2 from each triangle.

Claim: If \(X_i \in V' \), \(X_i \) is TRUE

\(\overline{X}_i \in V' \), \(\overline{X}_i \) is TRUE
is the 3-SAT solution set.

To see that this is true, consider the edges $a_i^1 - \alpha_i, a_i^2 - \beta_i, a_i^3 - \gamma_i$. Since only 2 of a_i^1, a_i^2, a_i^3 are in V', one of the arcs is covered by a vertex that represents a literal that is true. So the clause is true. ■

Next, show that 3-SAT “Yes” \rightarrow VC “Yes”.

If F is satisfiable, construct $V' \subseteq V$ with $|V'| \leq K$ such that

If X_i is TRUE, $X_i \in V'$.

If X_i is TRUE, $\overline{X_i} \in V'$.

Therefore all “literal” arcs are covered, and one “critical-clause” arc from each clause is covered. Pick 2 other nodes in each triangle to cover the rest. ■

Hamiltonian Cycle Problem

Given graph $G (N,A)$, does G contain a cycle that visits each node exactly once?

1. Clearly in NP.
2. VC polynomially transforms to HCP.

TSP-Recog-I

1. We have seen that it is in NP.
2. Show that HCP polynomially transforms to TSP.

Sketch of Proof:

Given a HCP, create a complete graph with the same nodes as HCP. For each arc in TSP, if it is in HCP, set cost = 1. Otherwise, set cost = 2.

$$B = |N|$$

- If a TSP solution with cost $\leq N$ exists, it only uses arcs in HCP, since it only uses arcs of cost 1.
- If HCP exists, it is also a TSP tour in the new graph with cost $\leq |N|$.