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Abstract. It has been a challenge for mathematicians to theoreti- 
cally confirm the extremely good performance of simplex-type algo- 
rithms for linear programming. In this paper we analyze the average 
number of steps performed by a simplex algorithm so-called the self- 
dual method. Instead of starting the algorithm at the traditional 
point ( 1 , - . . ,  1) T, we use points of  the form (1,4, e2, . . . ) v ,  with 
e sufficiently small. The result that we get is much better, in two 
respects, than those of the previous analyses. First, we show that the 
expected numbcr of stcps is bounded between two quadratic functions 
cl(min(m, n)) 2 and e2(min(m, n)) 2 of the smaller dimension of  the 
problem. This should be compared with the previous two major results 
in the field. Borgwardt proves an upper botmd of o(narn t/('~-l)) 
under a restrictive rnodcl which implies that the zcru-vector satisfies 
all the constraints, and also the algorithm under his consideration 
solves only problems from thc particular subclass. Smale analyzes 
a less restrictive algorithm. He shows that for any fixcd m there 
is a constant c(m) such the expected number of steps is less than 
e(m)(ln n)m(m+O; Megiddo has shown that, under Smale's model, an 
upper-bound C(m) cxists. Thus, we prove for the first time a polyno- 
mial upper bound with no restrictions (exccpt for non-degeneracy) on 
thc problem, and establish for the first time a nontrivial lower bound 
of prccisely the same order of magnitude. Secondly, our probabilistic 
model is much less restrictive than the previous ones. Both Borgwardt 
and Smale require the input vectors to be drawn from spherically 
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symmetric distributions. In our model we require invariance only 
under certain reflections and not under every possible rotation. The 
fact that ( has to be sufficiently small raises no difficulties whatsoever. 
The algorithm can either determine the correct value while solving the 
problem, or simply operate on ( symbolically, using "'lexicographic" 
rules. 

1. Introduction. The "simplex" algorithm for linear programming, 
which was developed by Dantzig [D], is not just a single algorithm 
but, as matter of fact, a class of algorithms. Their common feature is 
that they iteratively change the basis of a linear system of equations, 
until they reach an "optimal" basis, or a basis that exhibits that no 
optimal solution exists. For a linear programming problem with n 

(nonnegative) variables and rn constraints, the number of bases is 
(mm+'~) and hence this quantity is an obvious upper-bound on the 
number of steps that any simplex-type algorithm can make. However, 
the vast computational experience accumulated to date has shown 
that the number of steps is usually much smaller. This has been 
observed while solving practical problems as well as ones generated 
in a laboratory. It has been a challenge to confirm these findings 
theoretically. Tremendous effort has been made in the direction 
of studying properties of convex polyhedra which are related to 
linear programming. However, it is known that many simplex-type 
algorithms may require exponential number of steps in the worst-case. 
The first example to this effect was given by Klee and Minty [KM], 
and Murty [Mu] provided an example in the context of the self-dual 
method. Similar examples are known for several other variations off 
the simplex method. 

Borgwardt [Bol, Bo2] and Smale [S1, $2] have recently provided 
probabilistic anlyses of simplex-type algorithms. We note that an 
analysis of  this type requires a specification of algorithms to which it 
applies, as well as probabilisic distributit)ns of inputs. Both Borgwardt's 
and Smale's models assume that the vectors generating the problem 
are sampled from spherically symmetric distributions; however, Smale 
actually obtains his results under a weaker model of symmetry with 
respect to permutations of coefficients within rows. Borgwardt analyzes 
different variations on the radial part of his distributions, while under 
Smale's model the radial part is immaterial. Both of these analyses 
deal with "parametric" simplex algorithms, and this is, apparently, a 
key property for carrying out a probabilistie analysis. 

In order to understand the contribution of the present paper, we 
first state the results of Borgwardt and Smale. Borgwardt considers 
the problem in the form 

Maximize cr x 
subject  to A z  < e 

(where z,c E R n, A E R r e x "  and e = ( 1 , . . . , 1 )  T E .Rm). The 
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columns of A as well as the vector c are distributed spherically 
symmetrically over their respective spaces. Under this model the 
zero-vector satisfies the inequalities. Note  that under this model 
every suhproblem, determined by a subset of  the columns, has to 
be feasible. Indeed, every problem, which is given together with a 
feasible solution, can easily be transformed into Borgwardt's form, 
but the probablisitic assumptions can hardly be justified afterwards. 
The algorithm is a certain parametric simplex method, with a special 
initialization procedure which is necessary only for the mathematical 
reasoning, and capitalizes on the fact that the zero-vector is feasible. 
'Therefore, the algorithm as a whole solves only problems from this 
particular class. It cannot explain the so-called Phase 1 of  linear 
programs. Under this model, Borgwardt shows that the expected 
number of steps, pC(m, n), satisfies 

pS(m, n) <_ c n 4 mw~-r , 

where c is a certain constant. We note. that this upper-bound tends to 
infinity when either ra or n tend to infinity. 

Smale considers the problem in the form 

Minimize eT Z 

subject to Ax  > b 

x _ > 0  

(where x, c E R ~, A E R m×'~ and b E Rm). Undcr his model, the 
matrix A is spherically symmetrically distributed ovcr R m x a  and the 
vector (b, c) is (indcpendcntly) spherically symmetrically distributed 
over R "~÷~. Howevcr. a wcakcr modcl is actually used for obtaining 
thc result. The algorithm is the so-called self-dual algorithm simplex 
algorithm [D] (also referred to as "Lcmke's algorithm" [L]). The self- 
dual algorithm requires a specification of a starting point in the positive 
orthant of R '~÷" .  Traditionally, as well as in Smalc's model, the 
starting point is takcn as (1 , - - . ,  1) T. Under this model, Smalc shows 
that thc cxpectcd number of stops, p(m, n), satisfies the following 
condition: For every fixed m there exists a constant c(m) such that 
for every n, 

p(m, ,~) < c(m)Cln n) ~c~+I) 

Obviously, this upper-bound tends to infinity with n. Blair [BI] 
proves that the expected number of undominated columns under an 
even more general model is less than c(ra)(ln n) "~('~+1l l~(,n+l)+,,~, 
which implies such an upper-bound for a wider class of  algorithms. 
We remark that bounds like those of Smale and Blair can be derived 
by estimating expected numbers of  extreme points of  the primal or the 
dual polytope. Obviously, the efficiency of the simplex method does 
not stem from a small number of extreme points, but rather from the 
fact that usually only few of these points occur on the path followed 
by the algorithm. Megiddo [Mel] has shown that under Smale's model 
the following limit exists, and that the sequence actually decreases to 
the limit: 

lira p(ra, n) = c(m). 
~ --'~ 0 0  

An upper-bound on e(m) depended exponentially on ra. 

In this paper we improve upon the previous results considerably. 
We confirm the observed phenomenon that the average number of  
steps is polynomial in the smaller dimension of the problem. We 
analyze the average number of pivot steps performed by the self- 
dual simplex algorithm with a different starting point. Instead of  
the point (1 , . - . ,  1) r.  we start the algorithm at (1, ¢, e2, . . .  )T with 

sufficiently small. The algorithm can operate on e symbolically, 
or can, alternately, be stated with "'lexicographic" rules. The actual 

determination of ( does not raise any difficulties whatsoever and, 
incidentally, the algorithm itself can determine what is a sufficiently 
small c. The choice of the different starting point yields a much better 
bound on the average number of  steps, p~(m, n). We show that this 
number is bounded between two quadratic functions of the minimum 

of the two dimensions: 

el(rain(m, ,~))~ _< p'(m, n) < c~(min(m, n)) ~. 

Thus, we obtain a nontrivial lower-bound which seems to be in conflict 
with the common belief that the simplex algorithm perform s on the 
average only linearly many steps. 

Furthermore, our analysis in this paper is carried out under a model 
which is much weaker than Borgwardt's and Smale's. Instead of 
complete spherical symmetry, we require only symmetry with respect 
to certain reflections, together with a certain regularity condition on 
the matrix; this condition holds with probability one if the problem is 
sampled from any continuous distribution. 

We discuss the model in Section 2. The algorithm is described in 
Section 3. In Section 4 we describe the four cases to be distinguished 
in the analysis of the probability of a basis to occur in the solution 
process. The upper bounds for these cases are then analyzed in two 
pairs in Sections 5 and 6. In Section 7 we prove the lower bound 
result. 

2. The probabilistic model. For an "average-case" analysis, with 
results different from the "worst-case", one has to make some assump- 
tions on the distribution of problems. A probabilistic analysis does 
not have to assume a unique distribution of problems. It is more 
desirable to be able to prove good bounds that are valid for any 
distribution in a wide class. Notice that under the model proposed by 
Smale, any spherically symmetric distribution has the same average- 
case complexity. However, one should seek wider classes such that 
the average-case is not necessarily the same for all the members of the 
class, but yet each satisfies some good bound. 

Natural models to look at are those with some symmetry assump- 
tions. Very roughly, the hope is that in a symmetric set of  instances, 
if one is bad then others should be good, so that the average over 
the set should not he had. More specifically, suppose we have a 
group of symmetries and consider ~e  equivalence-classes of  instances 
which are invariant under the group. Suppose the average over each 
equivaience-class is nicely hounded. Then, regardless of how a class is 
picked, provided an instance is adequately selected from the class, the 
overall average will be nicely hounded. Subject to this terminology, it 
is desirable to have the "classes" as small as possible, that is, the group 
of symmetries as small as possible. Under the spherically symmetric 
model, two instances (Al ,bl ,Cl)  and (A2, b2, c2) are in the same 
equivalence-class if (i) the matrix As can be obtained from A1 by an 
orthogonal transformation (of/:/"~ ×'~) followed by a multiplication by 
a positive constant, and (ii) the vectors (bl, Cl) and (bz, c2) are related 
in a similar fashion. Obviously, each class contains a continuum of 
instances. 

Under our model the classes are finite. Given an instance (A, b, c}. it 
is convenient in the present section to consider an (m-k  1) X (n--b 1)- 
matrix A* such that .A.~*j. = A,7 (i = 1 , - . . , m ,  j = l , . . . , n ) ,  

A~+1,.7 = cj ( j  = 1 , - . . , n ) ,  A~,,,+i = b~ (i = 1 , - . . , m )  and 

A~+1,,~+1 = 0. Obviously, if A ~ is sampled from any continuous 

distribution (over the subspace of R ('~+1)x('~+1) characterized by 
A~,+t,,~+ 1 = 0), then every submatdx of A* (except for the entry 

A~+1,,~+1) is non-singular. It is thus convenient for us to make 
this assumption explicitly, even though for our proofs not all the 
submatrices have to be non-singular. Indeed, matrices which do not 
satisfy our regularity assumption do arise in practice, and the simplex 
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algorithms handle them efficiently. However, it seems that generalizing 
our proofs, using arguments of infinitesimal perturbations, would not 
shed much more light on the problem. 

The more important feature of the probabilistic model is the state- 
ment of the group of symmetries. In fact, for the lower bound result 
we need a model stronger than the one  required for the upper bound 
resulL We first describe the weaker model. Under the weaker model 
the group is generated by the m + n transformations of  multiplying 
either one of the first n columns or one of the first m rows of the 
matrix A* by - -1 .  This group has 2 ' n+n  members, giving rise to 
the same number of instances in each equivalence-class. We assume 
that all the members of a class are equally probable, that is, given 
that the class was picked, each member has the same probability to 
be selected from the class. We note that an equivalent description of  
the model can be given as follows. Instead of fixing the direction of  
the inequalities Ax _< b and x > 0 and letting columns and rows 
be multiplied by - -1 ,  we can fix the ~matrix A* and then choose the 
direction of  each of the m + n inequalities independently at random. 
Closely related models have been considered by Adler and Berenguer 
[A, AB1, AB2, AB3], Buck [Bu], Haimovich [H] and May and Smith 
[MS]. We note that none of  these papers analyzes a complete algo- 
rithm for the general linear programming problem, even though some 
interesting expected values of  certain parameters of  random polytopes 
are derived. It turns out that for many parameters, like numbers of  
faces of any dimension, probability of  a polytope being nonempty, 
probability of a polytope being unbounded and more, the weak model 
we have described suffices for determining t_he exact average value 
of the parameter. However, this is not the case with respect to the 
average number of steps performed by the self-dual algorithm, as we 
argue later. 

It is interesting to mention that the number of symmetries cannot 
be subexponential if we are to prove a polynomial upper bound on 
the average number of steps, since in the worst-case the number is 
exponential. 

The stronger model, under which we are able to prove the 
lower bound result, requires that all the entries of  A* (except for 
A ~ + t , , , + t )  be independent, identically distributed random variates, 
whose common distribution is symmetric about the origin. We believe 
that a weaker model would suffice for the same result, but may on the 
other hand be cumbersome to state. 

3. The algorithm. We now explain the self-dual method. Consider 
the following linear programming problem: 

Maximize cr.z 

subject  to Ax < b 

x > O  , 

(where x,c E R '~, A E R "~x'~ and b E R 'O .  The dual problem is 
the following 

Minimize yr  b 

sub jee t to  yr  A > e r 

y_>O 

The complementary slackness conditions state that two vectors, x (such 
that Ax < b and x > O) and y (such that y r A  > c T and y > O) 
are optimal (for their respective problems) if and only if 

y r ( A x - - b )  = 0 • 

and 
(yr A - -  cT)x : 0 

Letting 

M =  

- - A  

A T 

and q = (--c, b) r ,  the problem amounts to finding two vectors z and 
w in R "~+" such that 

- -Mz-a  t - w = q ,  z r w = O  and z , w  > 0 .  

A useful observation can be made in terms of a piecewise linear 
mapping 

F : ~.~ra+n ._~ Rra+n 

where 
F(x) = - - M x  + --  x - .  

Here, x + plays the role of z, whereas - - x -  plays the role of  w. 
Solving the primal and the dual problems amounts to finding an 
inverse image F- t (q ) .  

The self-dual algorithm starts from any positive vector qo and at- 
tempts to find solutions for every point on the line segment determined 
by qo and q. Thus, it looks at points of the form (1 - -  t)qo + tq. For 
t = 0 there is an obvious solution, namely, 

z = O  and w = q o  

The algorithm increases the value of t continuously, and follows the 
inverse image of the point (1 - -  Qq0 + tq under the mapping F .  While 
the inverse image stays within an orthant of R m+'~, it varies linearly 
therein. Every orthant is represented by a pre-basis, namely, a set of  
vectors { b l , . . - , b  'n+'~} C R "n+n, where b ~ is equal either to the 
i-th column o f - - M  or to the i-th unit vector e ~. A pre-basis whose 
vectors are linearly independent is called a basis. We identify a basis 
with an (ra + n) × (m + n)-matrix B whose columns are the vectors 
of the basis. A necessary condition for a pre-basis B to be a basis 
is that equal numbers of unit vectors from the sets {et, . . -  , e '~} and 
{ e l + ~ , - - . , e  "~+'~} are not in B.  Under the regularity assumption 
stated in Section 2 (which holds with probability one whenever the 
matrix A is sampled from a continuous distribution) this condition is 
also sufficient. 

It is well-known that the self-dual method solves the linear program- 
ming problem under the non-degeneracy assumptions; the algorithm 
reaches the point q if and only if the linear programming problem 
has an optimal solution. Otherwise, it discovers that the problem is 
either infeasible, or feasible but unbounded (in which case it finds a 
feasible ray on which the function crx tends to infinity). The number 
of pivot steps performed by the algorithm is equal to the number of  
bases occurring in the path-following process, minus one. A basis B 
occurs in the process if and only if for some t (0 < t < 1), 

B - t ( ( 1  - t)qo + tq) _> o 

We note that the algorithm itself is deterministic, so that all the 
probabilistic statements regard the distribution from which the instance 
(A, b, c) is taken. Denoting by Pr(B) the probability that the basis B 
occurs in the process, we note that the expected number, p(m, n; qo), 
of pivot steps corresponding to the starting point qo, is 

314 



p(~ , - ;  qo) = ~ P,(B) - I 
B 

An alternative way to represent p(m, n; qo) (called the "facet form" 
in Smale's papers) is as follows. First, define an artificial basis to be 
a matrix B / i  obtained from a basis B by replacing its i-th column by 
the column --q0. Let P r (B#)  denote the probability that q is in the 
cone spanned by the columns of  B/,. Under these conditions, 

p(~, r,; qo) = ~ P,(B/,) 
B,i 

We will estimate the probabilities Pr(B/i) .  

It turns out that the exact value of p(m, n; q0) depends on the par- 
ticular distribution and may not be the same for different distributions 
which satisfy our conditions. The precise value also seems difficult to 
evaluate. However, for vectors of  the form qo = (1, E ,~2 , ' " ) ,  the 
limits of p(ra, n; qo) (as e tends to zero) are close for many distribu- 
tions, and moreover, they are much easier to estimate. We note that 
for a fixed distribution the limit of p(m, n; qo) does not necessarily 
equal the expected number relative to the limit of the starting points, 
that is p(m, n; el). 

It is very important at this point to clarify the issue of the value of  
E. For any fixed value of  E, the algorithm is well-defined (subject to 
nondegeneracy). The progress of the algorithm, that is, the sequence 
of  bases that it produces, depends of course on ~. Obviously, there 
are only a finite number of intervals of e-values such that over each 
interval, the algorithm produces the same sequence of bases. The 
latter follows from the fact that the progress depends on comparisons 
between polynomials of bounded degree in E. It follows that there is 
~o > 0 such that for all E, 0 < ~ < ~o, the progress of the algorithm 
is the same. The actual choice of ~ does not have to be made in 
advance. In fact, the value of c 0 can be determined by the algorithm 
itself. 

The question of what is the best starting point is still open for the 
average linear programming problem. However, we know that for the 
average linear complementarity problem, the point ( 1 , . . . ,  1) 7  ̀ is the 
worst, while (1, c, ¢2 , . . .  )T is best in the positive orthant [Me2]. The 
effect of  the starting point is much easier to study in the context of  
the linear complementarity problem (see [Me2]). 

4. Four types of artificial bases. There are four types of  artificial 
bases, B/,, depending on the kind of the column of  the basis which 
is replaced by --qo:  (i) A unit column representing a dual-slack. 
(ii) A unit column representing a primal-slacL (iii) A column of  
M representing a dual-variable. (iv) A column of M representing a 
primal-variable. We note that these four cases may be viewed as two 
pairs of  symmetric ones via the primal-dual symmetry. However, the 
vector qo is not symmetric in this respect. We will henceforth assume 
that qo = (1, E , ~ 2 , ' ' ' , E m + n - - l )  7`" It is interesting to mention at 
this point that a different assignment of powers, depending on whether 
m < n or vice versa, yields a slightly better bound when the larger 
dimension tends to infinity, while the other one is fixed. This point 
will be discussed later. Notice that the first n columns of a basis 
correspond either to primal-variables or to dual-slacks, whereas the 
last m columns correspond to either dual-variables or primal-slacks. 
It is also convenient to assume, without loss of  generality, that ra < 
n. However, when we represent an artificial basis by an (ra -I-" n) X 
(m -I- n)-matrix B/i, we usually change the order of columns and 
rows so as to exhibit how a solution to the linear system B/ i z  = q 
is obtained. Specifically, we find it convenient to rearrange the matrix 
so that it has an identity submatrix in the upper left-hand comer. For 
example, an artificial basis of type (i) can be represented by a matrix 
of  the form 

M 1 = 

I~+n--2k--1 

- q o  
!/7 ~ 

X 

W 

where X E R kxk, Z E R (n -k -1 )×k ,  W E R(m-/~ )xk and l / E  
R k, (0 < k < min(ra, n -  1)). It is very essential to understand 
at this point what powers of ~ can arise in the different rows of  
this matrix. To that end, observe that the rows of  Z and the rows 
of X ,  together with V T, constitute segments of the first n rows of  
the matrix M.  Hence the components of qo corresponding to these 
rows are powers E i where 0 _< j < n - -  1. On the other hand, in 
rows corresponding to W and - - X  T we find in q0 powers ¢i with 
n ~ j < r a + n - - 1 .  

We now describe briefly the other three types of artificial bases. 
The second type of matrices is of  the form 

M 2  = 

! 

--qo 
W 

_ X  T 

yT 

where X E R kxk,  Z E R (n -k )xk ,  W E R ( " ~ - k - t ) x k  and y E 
R k, (0 < /c < m - - 1  < n - - l ) .  Here the components of q0, 
corresponding to the rows of Z and X ,  are the powers eJ with 0 < 
j _< n - -  1, whereas the ones corresponding to the rows off W, - - X  ~ 
and y are those with n < j < m -I- n - -  1. 

The third type of matrices is of the form 

M 3  ~-  

Z 

-q0 W 

X 

l/T 
_ X T  
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where X E R k x ( k - t ) ,  Z E R ( '~-~)x(~-~) ,  W ~ R("~-~) x~ and 
Y ~ R k ,  (1 _< k < m < n). 

The fourth type of matrices is of  tho form 

M 4 -~- 

gg 

X 

1 
I 

I 
I 
I 
I 

_q~ ~ -  

_ X  ~" 

where X E R ( k - l l x k ,  Z E R (n -k )xk ,  W E R ( rn-k)x(k-1)  and 
y E R k , ( 1  < k < m < n.) 

For each of the four types we will estimate the probability that, when 
the vector q is represented as a linear combination of the columns of  
M,,  all the coefficients are nonnegative. It turns out that types (i) and 
(iii) are very similar in this respect, whereas types (ii) and (iv) are very 
similar to each other but different from (i) and (iii). The reason will 
become transparent later. 

5. Upper bounds for types (i) and (iii). In the present section we 
estimate the limit of the probability Pr(B/ i )  as E tends to zero, where 
B/,  is an artificial basis of type (i) (See the matrix M1 in Section 3). 
We then estimate the expected number of bases of type (i) that occur 
in the solution process. The analysis of type Off) is essentially the same 
with a change of the value of one index as we show later. For any 
k X k-matrix A, let p(A) denote the probability that a random unit k- 
vector v, sampled from a continuous distribution over the unit sphere 
in .R k, is in the cone spanned by the columns of A. Obviously, if A 
is singular then p(A) : 0. It is interesting to observe the following. 
Suppose that At ,A2 ,  . . .  is a sequence of k × k-matrices, converging 
to a matrix A °. If A ° is non-singular then l imp(A n) : p(A°). On 
the other hand, in case A ° is singular then p(A °) = 0, but l imp(A n) 
may be positive. Many of our matrices converge to singular matrices 
when ¢ tends to zero, but we can still estimate the (positive) limit of  
their probabilities p(An). We note that our estimates are valid under 
a model much weaker than that described in the present paragraph, 
and the spherical symmetry is not required. 

Our assumptions about the distribution imply that the components 
of the vector q are non-zeros, and all the 2 ' n+n  possible sign patterns 
have the same probability. In other words, q belongs to any orthant 
of R "~+'~ with the same probability of 2 -( '~+'~).  Consider the 
linear system M i x  = q. It is easy to see that the coefficients o f  
the last 2k + 1 columns of M~ (in a representation of q as a linear 
combination of the columns of M i )  are determined by a smaller 
system of equations. Let 

I/T 

X 
= 

.DXT 

(M~ E R(2k+l)×(2k+l)), where q~ is the restriction of  q0 to the 
components corresponding to the rows of  X ,  - - X  T and y. Now 
consider the system 

M~(X, a,  fl)'r : q,, 

where q~ is the restriction of q to the rows described above, X is a real 
number and a and # are k-vectors. Obviously, the vector (X, ~,  # ) r  
consists of the coefficients of the last 2k -I- 1 columns of M1 in a 
representation of q as a linear combination of the columns of  M1. 
We will estimate the pi'obability that (X, a, ,0) r > 0. First, we prove 
a fundamental lemma. 

Lemma 1. Let Y E j t :~ (k . -} - l )x{k-}- l )  and let u E R k. Denote 
by Y* a (k + 2) X (k + 1)-matrix such that Y~, = YO (i = 

1,. . . ,k + 1, j = 1 , . . . ,  k + U, Y~+2,j = u~ 0 = 1,..., k) 
and Y~+2,k+l : O. Assume that Y* satisfies the assumptions 

o f  our model, that is, every submatrix of  Y* (except for the entry 
Y k + 2,k + l ) is non-singular, and the distribution from which Y* 
is picked is invariant under multiplication of columns and rows 
by --1. Let X E 1:1 kxk  be the submatrix obtained from Y by 
deleting the last row and the last column. Also, let i, 1 < i < 
k + 1. be fixed. Under these conditions; the probability that the 
unit vector e i is in the cone spanned by the columns of  Y, while 
u r is in the cone spanned by the rows of  X .  is equal to 2 -(zt~+t).  

• Proof." For any S C_ {1 , . - . ,  k +  1} and any matrix D, denote by 
SD a matrix obtained from D by multiplying each row of  D, whose 
index is in S,  by - -1 .  Similarly, let DS denote a matrix obtained from 
D by multiplying each column of D, whose index is in S,  by - -1 .  
Thus, the objects S Y ,  Y S. S X ,  X S, Se ~ and u r  S are well-defined. 
Let T C { 1 , - . . , k }  be any subset such that i ~"T. Now, consider 
events as follows. Let E s  denote the event in which e ~ is in the cone 
spanned by the columns of YS,  and let FT denote the event in which 
u T is in the cone spanned by the rows of T X .  Obviously, Es  occurs 
if and only if Te ~ is in the cone spanned by T Y S ,  and F r  occurs 
if and only if uTS is in the cone spanned by the rows of  T X S .  It 
is easy to see that $1 y~ $2 implies P r (Es ,  NEs2)  = 0 and T, 
T2 implies Pr(FT, AFT2) = 0. By our symmetry assumptions, it 
follows that the quadruple ( T Y S ,  T X S ,  Te i, uTS) has the same joint 
distribution as the quadruple (Y, X ,  e i, uT). (Recall that i ~ 'T).  Let 
GsT ---- E s  [7 FT and consider the union of  the events GsT (S C_ 
{ 1 , . . - , k  + 1}, T C { 1 , - . . , k } ,  i ~ T ) .  We have already argued 
that these events have the same probability. Moreover, the intersection 
of any two of them is empty by the non-singularity assumption or, 
alternately, measures zero under any continuous distribution. If i = 
k -I- 1 then the union is the entire sample-space. In this case, we 
have 2 2k+l events and the probability of  each is hence 2 - (2k+ l ) .  
Otherwise (i < k), we have only 2 2k events. On the other hand, the 
union of these events is not the entire space. In fact, the union is the 
event in which the coefficient of the i-th row of  X ,  in a representation 
of u r as a linear combination of  the rows of  X ,  is nonnegative. The 
probability of this event is obviously 3- Thus, the probability in this 
case is, again, 2 -(2k+x).  • 

As a result we get the following: 

Lemma 2. The probability that the last 2k -F 1 coefficients; X, ~ and 
/L are nonnegative tends to 2 -(2~+1), as E tends to zero. 

• Proof." As a matter of fact, the values of  X and a are determined 
by a smaller system, corresponding to the square submatrix of  order 
(k + 1) × (k -I- 1) in the upper leR-hand corner of  M~, consisting 
of X ,  y and a portion of --q0. It follows by arguments similar to 
those of Lemma 1, that the probability that X and a are nonnegafive 
is 2 - ( k + l ) .  Furthermore, the asymptotic behavior of X (as ~ tends to 
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zero) depends only on the smallest power of  c, in the portion of qo 
corresponding to rows of X and y. The latter follows from Cramer's 
formula for the solution of linear equations, under the assumption that 
the minor, corresponding to this power of e, does not vanish. Let j 
denote this smallest power (0 < j < n - -  1) and assume X ,  y and q 
have been fixed. Then, X is asymptotically proportional to e - i .  This 
enables us to estimate the probability that also/3 is nonnegative. 

Let q# and q~ denote, respectively, the portions of q and qo 
corresponding to the rows of - - X  r .  It is easy to see that 

# = (--xT)'-- '(q ~ + X,~) 

Recall that all .the e"s participating in q0 o are with i > n. It 
follows that for any fixed data, kq0O tends to zero with e. Thus, 
the probability that fl is nonnegative tends to the probability that 
( - -XW)-- tq  # is nonnegative. The latter is obviously equal to 2 -t~. 
However, we have to evaluate the intersection of the events "k and 
c~ are nonnegative" and "fl is nonnegative." A priori, these are 

not known to be independent, since both depend on the matrix X .  
However, it is a direct consequence of Lemma 1 that these events are 

asymptotically independent, and the probability of their intersection 
tends to 2 - (2k+U.  • 

Lemma 3. Let M1 be an artificial basis of type (i) and let j be 
the largest index such e l , . . . , e  J, belong to M1. Under these 
conditions, Pr(MI)  < 2 - ( r a + n - D .  

• Proof." For the proof we need. to consider the rest of  the 
coefficients, that is, those of the m Jr n - -  2k - -  1 unit vectors. These 
unit vectors can be classified as primal-slacks and dual-slacks. A dual- 
slack has a unity in a row in which % has an ei with 0 < i .<" n - -  1, 
whereas a primal-slack has a unity in a row in which qo has an d 
with n < i < m - - I - n - -  1. Note that, by the definition of  the 
index j ,  the smallest power of ¢, in the po~on  of qo corresponding 
to X and y, is precisely d (since e ~ corresponds to d - ~ ) .  Consider 
a primal-slack e ~ (n "4- 1 < i < m -b n). Let Wi denote the row of 
W corresponding to the unity of the primal slack, and let qi denote 
the component of q in that row. Obviously, the coefficient of  e i is 
qi - -  Wi~ --1- ~ei--l .  Since i - -  1 > j ,  it follows that k d  - t  tends 
to zero with e. Thus, the probability that the coefficient of e i is 
nonnegative tends to the probability that qi ~ W i o t  is nonnegative. 
Consider the 2 "~-~ different ways of multiplying rows of W, each 
augmented with the corresponding coordinate from q, by - -1 .  It 
follows that the probability that the coefficients of the primal-slacks 
are all nonnegative is equal to 2 - ( ' ' - k ) .  

Now, consider the dual-slacks, that is, unit vectors e ~ with 1 < i < 
n. The arguments here are similar to those of the previous case, except 
that i - -  1 may now be smaller that j .  In such a case, the probability 
that the coefficient of e ~ is nonnegative (given that k is positive) tends 
to one, since Xd - 1  tends to infinity. If, on the other hand, i - -  1 > j 
then the probability that the coefficient of e i is nonnegative tends to 
½. We can now summarize our findings about the probability that 
all the coefficients are nonnegative. Each e ~ with i > j contributes a 
factor of ~, while every other d contributes a factor of 1. The limit 
of the probability thus depends only on the value of j ,  and is equal 
to 2 - (m ' t -n - ' / ) .  • 

Corollary 4. The expected number of bases of type (i) occurring in 
the solution process is less than -~ "b 1. 

• Proof." The number of artificial bases of  type (i), containing 
the unit vectors el,  . . .  , eJ and not containing e j + l ,  is calculated 
as follows. For every k (k = 0 , . - . ,  rain(m, n - -  j - -  1)), we can 
choose the k dual-variables in (~) ways. We can choose the k .q.- 1 
dual-slacks to be dropped from the basis (and replaced by k primal- 

variables together with the column --q0) in ( ' ~ - ~ - ' )  different ways, 
since e ~+1 must be dropped. Then, the particular choice of which of 
these will actually be replaced by --q0 can be made in k + 1 different 
ways. To summarize, the number of such bases is 

rnin(m,n--j'--l) ra n - - j - - 1  
k_~o ( k q - i ' ( k ) (  k ) " 

It follows that the expected number of these bases occurring in the 
solution process is 

rain( t ) (  . . . .  . . . .  k - - l ( n _ j _ l  } 

nain(m,n-- 1) ( } 
= ' ~ o  / (k - I - 1 ) ( 7 ) 2 - - ' n - - '  ~ i : .  ( ; ) 2 - ~ i  

Now, observe that for [z[ < 1, 

and 

o o  ! 
1 x 1/.=0 

: r I i - - k  
d x k ~ l _ _ x j - - ( l _ _ x ) k + l  k. k x , 

so that for z : ½ we obtain, for all k, 

kk) 

It follows that for any n, the expected number of artificial bases of  
type (i) occurring in the process is less than 

" () 1) m 2 _ ~ _  1 = m 
2 (k+ k T +x 

k : 0  

Corollary 5. The expected number of bases of type (iii) occurring in 
the solution process is less than ~.  

• Proof." The number of artificial bases of type (iii), containing the 
unit vectors el, . . .  , e ~ and not containing e j + l ,  is 

rnin(m,n--j) dmV.- j -  
\ k j k  k - 1  ) k=l 

It follows that the expected number of these bases occurring in the 
solution process is 

51(:) )}  = k 2 - ' ~ - 1  i 2 _  i 
~ 1 (  - ~ i=k-- I  k - - 1  ' 

from which it follows that the expected number of  bases of  type (iii) 
is less than ~ .  • 
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6. Upper bounds for types (ii) and (iv). The anlysis of types (ii) 
and (iv) is slightly more complicated than that of types (i) and (iii). 
This is due to the fact that, in the case of (ii) and (iv), the coefficient 
k of the column --q0 is essentially determined by a row in which the 
power of E is greater than n - -  1, while smaller powers are present 
in the submatrix in the lower fight-hand comer of the matrix (See 
Section 4). However, this situation can still be handled. We consider 
type (ii) in detail. Type (iv) is then treated analogously. 

Lernma 6. Let Y E R (k+ l )x (k+ l l  be a random matrix from a 
distribution like in Lemma 1, that is, the distribution is invariant 
under multiplication o f  rows and columns by --1,  and every 
submatrix of  Y is non-singular. Let X E 1=I k x k be the submatrix 
obtained from Y by deleting the last row and the last column. Let 
v E ./?k+l be a unit vector with the unity in Ihefirsl position and 
let u E R k be a unit vector with the unity in the first position. 
Under these conditions, the probability that v is in the cone spanned 
by the columns of  Y ,  and - - u  T is the cone spanned by the rows 
o f  X ,  is not greater than 2 -2k .  

• Proof." We use the notation of Lemma 1. so that the objects S Y ,  
Y S ,  S X ,  X S ,  S v  and u T S  are well-defined. For S C { 2 , . . . ,  k "Jr" 
1} and T C { 2 , . . . , k } ,  consider events as follows. Let E s denote 
the event in which v is in the cone spanned by the columns of 
Y S ,  and let F r  denote the event in which - - u  T is in the c o n e  

spanned by the rows of  T X .  Obviously, E s  occurs if and only if 
T v  is in the cone spanned by T Y S ,  and FT occurs if and only if 
- - u r s  is in the cone spanned by the rows of  T X S .  It is easy to 
see that S,  ~ $2 implies P r (Es ,  r'lEs~) ---- 0 and T1 ~ T2 implies 
Pr(FT, ( ' lFr2) = 0. By our symmetry assumptions, it follows that the 
quadruple ( T Y S ,  T X S ,  T v , - - u r S )  has the same joint distibution 
as the quadruple ( Y , X , v , - - u r ) .  (Recall that 1 ~ / s u T ) .  Let 
GST ---- E s  ~ F r  and consider the union of the events GST (S  C 
{ 2 , . - . ,  k-t-  1}, T _C { 2 , . . . ,  k}). We have already argued that these 
events have the same probability and, moreover, the intersection of  
any two of them measures zero. The union of these events is the 
intersection of the following two events. First is the event in which 
the coefficient, c,~, of the first row of  X ,  in a representation o f - - u  r 
as a linear combination of  the rows of  X ,  is nonnegative. Second is 
the event in which the coefficient, cv, of the first column of Y, in 
a representation of  v as a linear combination of the columns of  Y, 
is nonnegative. The probability of this intersection is of course n o t  

greater than the probability of each of  the events which is equal to 
½. Since this is a union of 2 2k-1 equally probable events, G s r ,  it 
follows that each G s T  has a probability not greater than 2 -2k .  • 

It is interesting to point out that our weak model does not allow 
us to prove a stronger result. Consider the case of k = 1 with 
the matrix Y sampled uniformly from the equivalence-class of  the 
following matrix: 

that is, Y can be obtained from this matrix by arbitrary multiplications 
of rows and columns by - -1 .  It.follows that the coefficients c~ and c~ 
have the same sign for any Y in the class, and the probability that both 
are positive is ½. Under stronger models (see Section 7) thfi events 
are negatively correlated, so that the probability of the intersection is 
less than ¼. For example, if Y is a 2 × 2-matrix whose four entries 
are sampled independently from the same symmetric (about the zero) 
distribution, then it follows that the probability of  both c~ and cv 
being positive is precisely ~. We elaborate on these issues in Section 
7. 

Lenuna 7. Let M2 be an artificial basis o f  type (ii). Let i be an 
index such that unit vectors et, . .  •, e i are in the basis, while e ~+1 
is not. Similarly. let j be the index such that the unit vectors 
e n + t , . . . , e  "+J are in the basis while e n + j + l  is not. Under 
these conditions; the probability that Ms  occurs in the solution 
process, tends to a limit not greater than 2 - ( m + " - i - j - l ) .  

• Proof." Let a E .R k, k and # E .R k denote the coefficients of  
the last 2k + 1 columns of Ms in a representation of a random 
vector as a linear combination of  the columns of  Ms. Like in the 
case of Mi ,  they are determined by a smaller system, corresponding 
to the square submatrix, M~, of  order (2k --1- 1) )< (2k -1- 1) in the 
lower right-hand comer of Ms. Actually, k and fl are determined 
by an even smaller submatrix in the lower right-hand corner of  M~, 
consisting o f - - X  r ,  y and a portion of  --qo. By arguments similar 
to those of Lemma 1, the probability that X and # are nonnegafive 
is 2 - (k+~) .  Furthermore, the asymptotic behavior of k (as ~ tends 
to zero) depends only on the smallest power of  ~, in the portion 
of qo corresponding to rows o f - - X  r and y. The latter follows 
from Cramer's formula for the solution of linear equations, under the 
assumption that the minor, corresponding to this power of  E. does 
not vanish. Our choice of indices implies that this power is precisely 
E " + : .  It follows that k is asymptotically proportional to E - ( " + j ) .  
This enables us to estimate the probability that a is also nonnegative. 

Let q~' and q~ denote, respectively, the portions of q and q0 
corresponding to the rows of X .  It is easy to see that 

a = X - - t ( q  ~ + Xq~) . 

Recall that all the ~"s participating in q~ are with i < n - -  1. It 
follows that for any fixed data, each component of kq~' tends to 
infinity when ~ tends to zero. However, the direction of  q'~ -'1- kq~ 
simply tends to the direction of e i + l ,  since the smallest power of  c 
in that portion of q0 is the one that corresponds to this vector. Thus, 
given that X and # are nonnegative, the probability that ct is also 
nonnegative tends to the probability that e i+1 is in the cone spanned 
by the columns of X .  We are under the conditions of Lemma 6, with 
some changes of indices. Actually, the case where the smallest power 
of ~, in the portion corresponding to - - X  r and y, occurs in the row 
of y is not covered. However, this case can be handled analogously, 
resulting in an even better bound, 2 - ( 2k+ t ) .  The conclusion in our 

case is that the probability of k, fl and a being nonnegative tends to 
a limit not greater than 2 -2~.  

We now need to consider the rest of the coemcients, that is, those 
of the m + n - -  2k - -  1 unit vectors, like in the proof of Lemma 3. 
Consider a primal-slack e ~ (n -F 1 < u < m -F n). Let W~ denote 
the row of W corresponding to the unity of the primal-slack and let 
q~ denote the component of q in that row. Obviously, the coetficient 
of  e ~ is q~ - -  W~# + XE ~ - t .  If u - -  1 > n + j ,  then k~ v - t  tends 
to zero with ~. If u - -  1 < n + j ,  then this probability tends to ½. 

Consider a dual-slack, e ~ with 1 < u < n. The arguments here 
are similar to those of the previous case. It can be verified that 
the order of magnitude of  the coefficient of e" is ~ - t - i .  Thus, if 
u - -  1 < i then the probability that this coefficient of e i is nonnegative 
(given that >, is positive) tends to one, while if u -  1 > i then this 
probability tends to ½. We can now summarize our findings about 
the probability that all the coefficients are nonnegative. Each ~" with 
either i < u _< n - -  1 or u > j contributes a factor of  ½, while 
every other ~'  contributes a factor of  1. The limit of the probability 
is thus bounded from above by 2 - ( ~ + " - i - J - l ) .  • 

Corollary 8. The expected number of  bases o f  type (ii) occurring in 
the solution process is not greater than rn 2 + m. 
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Proof." Our calculations here are similar to those of Corollary 4. 
The number of bases, with indices i and 3. as defined in Lemma 7, is 
(using the convention (-~1) = 1 for i > --1),  

m i n ( ' m . - - / - -  1 , n - - j )  

k=0 k ) \  k-- 1 

It follows that the expected number of these bases occurring in the 
solution process is not greater than 

--,-,( : ) 
2~--~o((kq-1)- i=oE m - - - - 1  2_( ,~_i )  

n--k n-- j - -1  2_(n_j) 
y__~o( k - - 1  ) ) 

1 k~_O ( , ~ k ~ )  2 - "  J 2-- i  ---- ~ ( k - l - l )  k E k 1 " 
- -  - -  ~ = k - - I  

It follows that for any n, the expected number of artificial bases of 
type (ii) occurring in the process is not greater than 

Im,--1 

2 E (k-t-  1) ---- rn2 q- m 4 
k = 0  

Corollary 9. The expected number o f  bases of  type (iv) occurring in 
the solution process is not greater than m 2 .q- m. 

Proof." The arguments are identical to those of the previous case. 
The number of bases is 

only if it is smaller than the first one. Given these observations, it 
is now clear that any assignment of powers of ¢ yields an algorithm 
with a quadratic upper bound, since each of the types never gives 
rise to a superquadratic term. On the other hand, there is room for 
improvement in the linear term of the upper bound, in case one of 
the dimensions is substantially larger than the other one, which can 
be seen as follows. 

Assume ra _< n and let us assign the powers cY with 0 < j <_ 
m - -  1 to the dual-variables, and those with m < 3" <_ m -at- n - -  1 to 
the primal variables. It follows from our symmetry arguments that, in 
this case, type (i) contributes the number of steps contributed by type 
(ii) subject to the original assignment, that is, no more than m 2 - b m  

steps. Similarly, type (iii) behaves like type (iv) di(l in the original 
assignment. Of course, type (ii) also behaves like type (i) and type (iv) 
behaves like type (iii). However, we are able to prove a better upper 
bound for the latter two in case n tends to infinity. Consider type 
(ii). Let i denote the critical index, that is the first i primal-slacks are 
present in the basis, while the (i + 1)-st one is not. Now the second 
critical index is not critical at all. The number of bases of type (ii) 
with critical index i is 

1)/era - -  i - -  1 

k=O k 

The probability of each to occur is 2 - ( m + n - ~ ) .  Thus, the expected 
number of bases type (ii) in this case is no more than 

m - - k - - 1  

mi°(--'°-'l dm- - , - o  

E k k - - 1  ) ~  k - - 1  " , n -1  ,n -1  . 
k = t  = k~__ ° ((k-{.- 1)(n)2--n~ E (J,~2--'/~ 

k z y=~ \ x ]  ] 
It follows that the upper-bound in the present case is 

"n r "n--k m - - i - -  

n--k n - -  " - -  

, ~ 0  ( k ~ l  1 )  2 - ( n - D )  

< 2 ~ k  = m 2 + r a  • 

k = l  

In view of the calculations made in this section and the preceding 
one, it turns out that there is room for some improvement. First, 
notice the following symmetries between types. Suppose we assign 
the powers e J with 0 < j < ra - -  1 to  the dual-variables, and those 
with m < j <_ ra --1- n - -  1 to the primal variables, and suppose we 
interchange the roles of m and n. Under this transformation types 
(i) and (ii) are symmetric and so are types (iii) and (iv). Subject to 
the original assignment of powers of e, types (i) and (iii) contribute 
linear terms whereas types (ii) and (iv) contribute quadratic terms. 
A quadratic term arises when there are two critical indices i and j ,  
whereas a linear term arises when there is only one. More specifically, 
the first critical index is the smallest power of E which is present in 
the section according to which the coefficient of q0 is determined. 
This power is associated with a dual-variable or a primal-variable 
(depending on the type) which is present in the basis. If it is associated 
with a primal-variable, then the second critical power is the smallest 
that corresponds to a dual-variable, which is present in the basis, and 
vice versa. However, the second critical power plays its role as critical 

which is less than 

' ra,-- 1 

k = 0  

The latter tends to zero when n tends to infinity while m is fixed. A 
similar bound can be obtained for the expected number of bases of 
type (iv). However, types (i) and (iii) contribute a quadratic expected 
number of bases, so this improvement is not a major one. 

7. The quadratic lower-bound. In this section we establish that 
the expected number of steps is indeed quadratic in the minimum 
of the two dimensions of the problem. To this end, it is of course 
sufficient to show that the expected number of bases of type (ii) is 
fl((min(m, n))2). 

For the lower bound result we need a stronger probabilisitic model. 
A convenient model is as follows. We simply assume the entries of 
A, b and c to be independent, identically distributed random variates, 
with a common distribution which is symmetric about the origin. 
This assumption strengthens the symmetry under reflection conditions 
assumed earlier in this paper. We also assume non-singnlarites as 
before. 

The following lemma complements Lemma 6, under the stronger 
model. 

Lemma 10. Let Y E R (k+l)x(t¢+l)  be a matrix whose entries are 
independent identically distributed random variates whose common 
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distribution is symmetric about the origin. Also, assume all the 
minors of  Y to be non-zero.. Let X G R k x k  be the submatrix 
obtained from Y by deleting the last row and the last column. Let 
v 6 R k+l  be a unit vector with the unity in thefirst position and 
let u 6 R k be a unit vector with the unity in the first positiotz 
Under these conditions, the probability that v is in the cone spanned 
by the columns o f  Y ,  and - - u  r is the cone spanned by the rows 
of  X ,  is between 2 - 2 k - 2  and2 - 2 k - 1 .  

For the proof of Lemma 10 we need several preparatory lemmas. 
The first is a fact of linear algebra. 

Lemma 11. Let Y 6 R (k+l)X(k+*) be any matrix and denote 
submatrices o f  Y as followx 

(i) Let X 6 R kxk  be the upper left-hand corner submatrix o f  Y .  

(ii) Let Z 6 I t  k x k be the lower left-hand corner submatrix o f  Y .  

(iii) Let W 6 I lk  x k be the upper right-hand corner submatrix o f  Y i  

(iv) Let V 6 R k x k  be the lower right-hand corner submatrix o f  Y .  

(v) Let U 6 R (k -1 )x(k-1)  be the center submatrix o f  Y (obtained 
by deleting both the first and the last row and both the first and the last 
column). 

Under these conditions; 

det(Y) det(U) = det (X)  det(V) - -  de t (g)  det(W) 

• Proof." We prove the lemma by induction on k. In the inductive 
step the value of  k decreases by two units. It is easy to verify that the 
lemma is true for k = 1, 2. 

To simplify the proof, note that each of  the products det(Y) det(U), 
det (X)  det(V) and de t (Z)de t (W) is a bilinear form in terms of the 
first row and the last row of Y. It is therefore sufficient to prove 
the lemma for matrices Y, both of whose first row and last rows 
are unit-vectors. Suppose Yli = 1 and Y,t  = 0 for every l ~ i 
(l : 1 ,---  k -[- 1). and also Yk+l,s = 1 and Y~+l,t : 0 for every 
I ~ j (l = 1 , . . .  k + 1). The cases of  when either i or j are equal to 
either 1 or k + 1 are obvious. So is the case of i = ]. Thus, we are 
left with the case of 2 < i, j _< k + 1 and i y~ j .  Without loss of  
generality we may assume i = 2 and j = k (assuming k > 3.) Let 
A(i,  j )  denote the minor of  Y obtained by deleting the first row and 
the last row, together with columns i and j .  Under these conditions 
we have 

de t (X)  = --A(2,  k q- 1) , 

det(V) = --A(1,  k) , 

det(W) = A(1,2) , 

de t (g)  = A ( k , k +  i)  , 

det(U) = A(1, k + 1) 

and det(Y) = A(2, k) 

All we need to prove now is the following equality: 

A(2, k)A(1, k --I- 1) = A(1, k)A(2, k -'F 1) - -  A(1, 2)A(k, k -t- 1) . 

We can now apply similar arguments and reduce this equality to 
an equality of the form of claimed in the lemma, but with k - -  2 
replacing k. Note that each of the products A(2, k)A(1, k + 1), 
A(1, k)A(2, k + 1) and A(1, 2)A(k, k + 1) is a bilinear form in 
terms of  the first column and last column of Y (more precisely, the 
submatrix obtained from Y by deleting its first and last rows. Thus, we 
may assume these columns to be unit vectors. Furthermore, we may 

assume without loss of generality, that the unity in the first column is 
the second position, while the unity in the last column is in the k-th 
position. 

Our matrices are now reduced as follows. We delete from the matrix 
Y the rows with indices 1, 2, k, k + 1 and the columns with same 
indices. The matrix so obtained has the same determinant as Y and 
actually plays the role of U when the induction hypothesis is applied. 
The old matrix U plays, the role of  Y in the induction hypothesis. 
Analogously, from the matrix X we delete the first two rows and 
columns, from the matrix W we delete the first two rows and the last 
two columns, from g we delete the last two rows and the first two 
columns, and from V we delete the last two rows and columns. This 
establishes our lemma. • 

The following lemma is again of linear algebra. 

Lemma 12. Let X 6 R k×k be any matrix and denote a = X i , ,  
a : ( X 1 2 , . . . , X l k )  T and b = (X21,...,Xkl) T. Also. let 
U 6 R ( k - 1 ) x ( k - t )  denote the lower right-hand corner o f  X and 
suppose U is non-singular. Under these conditions; 

det (X)  = d e t ( U ) ( a - -  a T U - * b )  

Proof." The proof follows from the well-known formula for the 
inverse in terms of  the adjugate matrix. • 

The following is a simple probabilistic lemma. 

Lemma 13. Suppose u and v are independent identically distributed 
random n-vectors; and let C C R "  be a random set (independent 
o f  u and v) from any probability-space whose elementary events 
are measurable subsets o f  R n. Under these conditions; 

Pr({u, v} _C C) _> Pr(u 6 C) Pr(v 6 C) 

• Proofi Obviously, 

Pr(u  6 C) = Pr(v 6 C) 

Denote by Pr  * the probability of  an event where C isfixed. It follows 
that 

P r* ({u ,v}  C C) = Pr*Cu 6 C)Pr*Cb 6 C) = (Pr*(u  6 ~ ) )  2 

Let/u denote the probability-measure corresponding to the sampling 
of C. It follows that 

PrC{u,v} g C) = / P r * C { u , v }  C C ) d #  

= / P r * ( u  6 C ) P r * ( v  6 C ) d #  

= / (Pr *(u 6 C)) 2 d# 

>(fPr*(ueC)d,f 
= (Pr(u 6 C)) 2 = Pr(u 6 C) Pr(v 6 e ) .  • 

We now apply Lemmas 12 and 13 in a situation which involves 
random matrices. 

Lemma 14. Let Y 6 R (k+z)X(k+l) be a matrix whose entries are 
independent, identically distributed random variates; such that their 
common distribution is symmetric about the origin. Let X ,  V,  g 
and W be the four corner submatrices o f  Y of  order k × k as 
defined in Lemma 11. Under these conditions; 
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1 Pr(det(X) det(V)det(Z) det(W) >_ 0) > 

Proof: Let a, a, b and U be as in the previous lemmas, and 
also denote # = Yt,k+l, '7 = Y~+l,t, 6 : Yk+t,k+t, c = 
(Yk+L2,"" ,Yk+t,k) r and d = (Y2,k+t,"" ,Yt,k+t) T. It follows 
from Lemma 12 that the product of the four determinants is equal to 
(det(U)) 4 times 

(Or -- aT u--tb)(# -- aTu-cld)(~ -- eT U - t  b)( ~ -- cT U - l  d) , 

so it is sufficient to consider the sign of the latter. We now apply 
Lemma 12. Let u : (Yll , . . . ,Yt ,k+t)  T, that is, u = (a, aT,#) T, 
and v = (Ytc+t,t,- ' '  ,Yk+t,k+t) T, that is, v = (7, cT, 6) T. Given 
the values of Y# fori = 2 , - . . , k  andj  = 1 , - - . , k + l ,  letC denote 
the set of all vectors (a, a T, #)T such that 

Cot -- aTU-Ib)(1~ -- aTU-Id) > 0 

We note that also 

('~-- eTU-lb)(di --  e r V - t d )  > 0 

if and only if (7, c T, 6) T E C. Let C c denote the complement of C 
and notc that under our model all the determinants arc non-zero with 
probability 1. Thus, 

Pr(det(X)det(V)det(Z)det(W) > O) 

= Pr({  det(X)det(W) > 0 } A  { det(V) det(Z) > 0 }) 

-'F Pr ({ det(X) det(W) < 0 } N { det(V) det(Z) < 0 }) 

= Pr({u,v} C ( 7 ) +  Pr({u,v} C (7c) 

)_ (Pr(u e (7))' + (Pr(u e C~))2 _) ~ 

We now return to questions which are more closely related to the 
ones we were dealing with in the previous sections. The following 
lemma constitutes the essence of Lemma 10. 

Lenuna 15. Let Y, X,  u and v be as in Lemma IO. Let e~ denote 
the coefficient of the first row of X in a representation of - -u T 
as a linear combination of the rows of X,  and let cv denote the 
coe.~cient of the first column of Y in a representation of v as a 
linear combination of the columns of Y. Under these conditions, 
the probability that both c,~ and % are positive is between ~ and 
t. 

• Proofl Let U, V, W and g be as in the previous lemmas. 
Obviously, 

det(U) 
% : det(X) 

and 
det{V) 

co = det(Y) 

We are interested in the event E in which 

det(V) det(V) 
det(Y----) > 0 > det(X) 

First, note that when the first mw of Y is multiplied by --1 then 

the signs of % and c~ are reversed. Since the distribution of Y is 
invariant under this operation, it follows that 

Pr(E) = ~ Pr(  det(X) det(V) det(Y) det(U) < O ) 

However, by Lemma 11, 

det(Y) det(U) = det(X) det(V) -- det(Z) det(W) 

Consider the random variates ~ ---- det(X)det(V) and t/ = 
det(Z)det(W). Obviously, ~ and ~/ are identically distributed. 

Moreover, their common distribution is symmetric about the origin, 
since they change sign when the first column of Y is multiplied by 
--1. It follows that 

P r ( E ) = ~ ( P r { r / < ~ < 0 } + P r { r / > ~ > 0 } )  

= Pr(r/ < ,~ < 0)  

= Pr({  < o} N < 0}) 

Pr( r1< ~ l Ol < O } ~ { ~  < O} ) 
1 1 1 1 

= < O}fq{e < 0}) < × = 

This establishes the upper-bounding part of our lemma. 

On the other hand, 

so, in view of Lemma 14, we also have 

P r ( E ) = P r { ~ < ~ < 0 }  

1 (r/< ~ [ {t/ < 0}) :~Pr{~/~ >0}Vr  0 } N { ~ <  

= Pr{~/~ > 0}_> ~ 

We are now able to prove Lemma 10. 

Proof of Lemma 10: The proof follows directly from Lemmas 6 
and 15. By Lemma 15, the union of the events Gsr has probability 
between ¼ and ~. Since these are 2 2~ equally probable events (and 
the intersection of every two of them measures zero), it follows that 
each has probability between 2 ~2k-2 and 2 -2k -a .  This completes 
the proof of Lernrna 10. • 

We now have a result stronger than that of Lemma 7. 

Corollary 16. Under the conditions of Lemma 7, subject to a 
model in which the inputs are independent identically distributed 
random variates (symmetric about the origin), the probability 
that M2 occurs in the solution process tends to a limit between 
2 - (m+n- i -~+l )  and 2 - ( ' n + n - i - D .  

• Proof." The proof is essentially the same as that of Lemma 7, 
taking advantage of the result of Lemma 10. • 

Before stating the lower-bound result, we need a combinatorial 
lemma. 
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Lemma 17. For every k, k = 1, 2 , . , . ,  

k ( : )  2 - ' = 1  
i = k  

• Proof." The proof goes by induction on k. The lemma is obviously 
true for k = 1. The inductive step is as follows 

+ ' ) = - ' +  + -  

l a ~ l ( ~ )  - . I - . -~fk+l  ( " ) 
: _  2 _  ~- i = ~ +  .7 2_y  

2 j = k  1 k -~ - I  

: 2 J = ~  1 ( 2 k  ,-]- 1 )2_(2k+1)  
1 k ( ~ ) 2 - - '  "l" 2 \  k 

1 j 1)2_,. - l(=k + 
2 , k + i ,  

Notice that 
( 2 k ~ 1 ) =  l(2k--l-2~2~,k...l_1) 

The rest of the proof follows easily. • 

Finally, we can prove a quadratic lower bound on the expected 
number of bases of type (ii) occurring in the solution process. 

Theorem 18. The expected number o f  bases o f  type (ii) occurring in 
the solution process grows quadratically with ra. 

• Proof." We rely on figures obtained in Corollary 8 and the lemmas 
of the present section. The number of bases, with indices i and j as 
defined in Lemma 7, is 

m i n ( m . - - i - -  1 , n - - i )  
- - i - -  - - j - - t  

( k +  m k k:0 1)(n k--1 ) 

By Lemma 16, the probability of a basis of this type to occur in the 
process is at least 2 - ( r n ' l ' n - ' - - 7 q - l )  . It follows that the expected 
number of these bases occuring in the process is at least 

m - - 1  r r ~ - - k - - 1  

z (m_:_,)2 ,.,, 
- k = l  ~ i = 0  

r n - - 1  m - - I  . n - - 1  . ) ) 

: ~ ( ( k q - 1 )  E ('~2--i E ( 3 2 - j  
k k ]  ~ - k - 1  kk - -  1 - -  i = k  - -  

The latter is greater than 

1 I ~ t J  ( 2,~ . Zk--2 z j x  ) 
1) ~ 2--i = 

+ k ?+  
1 1 
8 E (k -'1- 1) > "~-ra264 16 4 

We have not attempted to maximize the coefficient of m 2 in our 
lower-bound for the expected total number of steps of the algorithm. 
The latter is obviously larger than ~ since we also have the bases of 
type (iv) contributing a similar term. Also, we were quite generous in 

the proof, especially in taking the sum only up to k : [ , ~ - l j .  

8. Conclusion. We have estimated the expected number of artificial 
bases occuring in the solution process. It is interesting to mention that 
the self-dual algorithm can actually be implemented with only a half 
of the number of pivot-steps as we describe them in this paper. This 
is due to the fact that every second orthant o f R  "~+n, which is met by 
the inverse image of the line segment [q0, q], corresponds to a singular 
pre-basis (see Section 3). While the inverse image is crossing such an 
orthant, the point in the image space does not move at all. Subject to 
this observation, the expected number of steps, as we have estimated 
it in this paper, is bounded from above by 

m2 -t- 1.5m -I- 0.5 , 

(assuming m < n). A better bound is obtained if the smaller 
exponents of ~ are assigned to the problem with the fewer variables 
(see Section 5). qlae result is that asymptotically, when n tends to 
infinity while ra is fixed, the average number of steps is bounded from 
above by 

~'n2 -~- m 

but the previous bound prevails for any m and n. Under the stronger 
model of Section 7 the probabilities corresponding to types (ii) and 
(iv) are multiplied by ½. This implies a uniform bound of 

0.5m 2 -I- 1.5m -1- 0.5 , 

decreasing to 
0.5m 2 --[- 0.5ra , 

as n tends to infinity. On the other hand the expected number of steps 
is bounded from below by ~ rm 2 - -  ilgm. This lower can obviously 
be improved upon (since it is based on type (ii) only), but we have 
not attempted to do so in the present paper. 

We finally note that the conditional expectation of the number of 
steps, given that the problem has an optimal solution, can now be 
bounded from above by a low-order polynomial in the case usually 
considered most difficult, that is ra = n. The probability that the 

problem has an optimal solution is 

. . . .  

(see [A]). In case m = n this is of order m--½. Thus, the conditional 
expectation of the number of steps in this case is O(m2"S). Also, 
an obvious consequence of our result is that the probability that the 
algorithm will require an exponential number of steps is exponentially 
decreasing to zero. However, we expect a stronger result to be obtained 
by a more careful look into the distribution of the number of steps. 
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