A SIMPLEX ALGORITHM WHOSE AVERAGE NUMBER OF STEPS IS BOUNDED BETWEEN TWO QUADRATIC FUNCTIONS OF THE SMALLER DIMENSION*

ILAN ADLER \dagger and NIMROD MEGIDDO \ddagger

Abstract. It has been a challenge for mathematicians to theoretically confirm the extremely good performance of simplex-type algorithms for linear programming. In this paper we analyze the average number of steps performed by a simplex algorithm so-called the selfdual method. Instead of starting the algorithm at the traditional point $(1, \cdots, 1)^{T}$, we use points of the form $\left(1, \epsilon, \epsilon^{2}, \cdots\right)^{T}$, with ϵ sufficiently small. The result that we get is much better, in two respects, than those of the previous analyses. First, we show that the expected number of steps is bounded between two quadratic functions $c_{1}(\min (m, n))^{2}$ and $c_{2}(\min (m, n))^{2}$ of the smaller dimension of the problem. This should be compared with the previous two major results in the field. Borgwardt proves an upper bound of $O\left(n^{4} m^{1 /(n-1)}\right)$ under a restrictive model which implies that the zero-vector satisfies all the constraints, and also the algorithm under his consideration solves only problems from the particular subclass. Smale analyzes a less restrictive algorithm. He shows that for any fixed m there is a constant $c(m)$ such the expected number of steps is less than $c(m)(\ln n)^{m(m+1)}$; Mcgiddo has shown that, under Smale's model, an upper-bound $C(m)$ exists. Thus, we prove for the first time a polynomial upper bound with no restrictions (except for non-degeneracy) on the problem, and establish for the first time a nontrivial lower bound of precisely the same order of magnitude. Sccondly, our probabilistic model is much less restrictive than the previous ones. Both Borgwardt and Smale require the input vectors to be drawn from spherically
*This paper extends our previous report entitled "A simplex-type algorithm solves linear programs of order $m \times n$ in only $O\left(\left(\min (m, n)^{2}\right)\right.$ steps on the average", November 1983. The present paper adds the lower-bounding part of the result. A result similar to our upper-bounding part was independently obtained by M. J. Todd, School of Operations Research and Industrial Engineering. Cornell University, Ithaca, NY, Technical Report No. 595, November 1983.
\dagger Department of Industrial Engineering and Operations Research, University of California, Berkeley. CA 94720.
\ddagger Department of Computer Science, Stanford University, Stanford, CA 94305, XEROX Palo Alto Research Center and Tel Aviv University. The work of this author was supported in part by the National Science Foundation under Grants MCS-8300984, ECS-8121741 and ECS-8218181.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
© 1984 ACM 0-89791-133-4/84/004/0312 \$00.75
symmetric distributions. In our model we require invariance only under certain reflections and not under every possible rotation. The fact that ϵ has to be sufficiently small raises no difficulties whatsoever. The algorithm can either determine the correct value while solving the problem, or simply operate on ϵ symbolically, using "lexicographic" rules.

1. Introduction. The "simplex" algorithm for linear programming, which was developed by Dantzig [D], is not just a single algorithm but, as matter of fact, a class of algorithms. Their common feature is that they iteratively change the basis of a linear system of equations, until they reach an "optimal" basis, or a basis that exhibits that no optimal solution exists. For a linear programming problem with n (nonnegative) variables and m constraints, the number of bases is $\binom{m+n}{m}$ and hence this quantity is an obvious upper-bound on the number of steps that any simplex-type algorithm can make. However, the vast computational experience accumulated to date has shown that the number of steps is usually much smaller. This has been observed while solving practical problems as well as ones generated in a laboratory. It has been a challenge to confirm these findings theoretically. Tremendous effort has been made in the direction of studying properties of convex polyhedra which are related to linear programming. However, it is known that many simplex-type algorithms may require exponential number of steps in the worst-case. The first example to this effect was given by Klee and Minty [KM], and Murty [Mu] provided an example in the context of the self-dual method. Similar examples are known for several other variations of the simplex method.

Borgwardt [Bol, Bo2] and Smale [S1, S2] have recently provided probabilistic anlyses of simplex-type algorithms. We note that an analysis of this type requires a specification of algorithms to which it applies, as well as probabilisic distributions of inputs. Both Borgwardt's and Smale's models assume that the vectors generating the problem are sampled from spherically symmetric distributions; however, Smale actually obtains his results under a weaker model of symmetry with respect to permutations of coefficients within rows. Borgwardt analyzes different variations on the radial part of his distributions, while under Smale's model the radial part is immaterial. Both of these analyses deal with "parametric" simplex algorithms, and this is, apparently, a key property for carrying out a probabilistic analysis.

In order to understand the contribution of the present paper, we first state the results of Borgwardt and Smale. Borgwardt considers the problem in the form

| Maximize
 subject to$c^{T} x$ |
| ---: | :--- |
| s $\leq e$ |

(where $x, c \in R^{n}, A \in R^{m \times n}$ and $e=(1, \cdots, 1)^{T} \in R^{m}$). The
(where $x, c \in R^{n}, A \in R^{m \times n}$ and $e=(1, \cdots, 1)^{T} \in R^{m}$). The
columns of A as well as the vector c are distributed spherically symmetrically over their respective spaces. Under this model the zero-vector satisfies the inequalities. Note that under this model every subproblem, determined by a subset of the columns, has to be feasible. Indeed, every problem, which is given together with a feasible solution, can easily be transformed into Borgwardt's form, but the probablisitic assumptions can hardly be justified afterwards. The algorithm is a certain parametric simplex method, with a special initialization procedure which is necessary only for the mathematical reasoning, and capitalizes on the fact that the zero-vector is feasible. Therefore, the algorithm as a whole solves only problems from this particular class. It cannot explain the so-called Phase 1 of linear programs. Under this model, Borgwardt shows that the expected number of steps, $\rho^{B}(m, n)$, satisfies

$$
\rho^{B}(m, n) \leq c n^{4} m^{\frac{1}{n-1}},
$$

where c is a certain constant. We note that this upper-bound tends to infinity when either m or n tend to infinity.
Smale considers the problem in the form

$$
\begin{array}{cl}
\text { Minimize } & c^{T} x \\
\text { subject to } & A x \geq b \\
& x \geq 0
\end{array}
$$

(where $x, c \in R^{n}, A \in R^{m \times n}$ and $b \in R^{m}$). Under his model, the matrix A is spherically symmetrically distributed over $R^{m \times n}$ and the vector (b, c) is (independently) spherically symmetrically distributed over R^{m+n}. However, a weaker model is actually used for obtaining the result. The algorithm is the so-called self-dual algorithm simplex algorithm [D] (also referred to as "Lemke's algorithm" [L]). The selfdual algorithm requires a specification of a starting point in the positive orthant of R^{m+n}. Traditionally, as well as in Smale's model, the starting point is taken as $(1, \cdots, 1)^{T}$. Under this model, Smale shows that the expected number of steps, $\rho(m, n)$, satisfies the following condition: For every fixed m there exists a constant $c(m)$ such that for every n.

$$
\rho(m, n) \leq c(m)(\ln n)^{m(m+1)}
$$

Obviously, this upper-bound tends to infinity with n. Blair [B1] proves that the expected number of undominated columns under an even more general model is less than $c(m)(\ln n)^{m(m+1) \ln (m+1)+m}$, which implies such an upper-bound for a wider class of algorithms. We remark that bounds like those of Smale and Blair can be derived by estimating expected numbers of extreme points of the primal or the dual polytope. Obviously, the efficiency of the simplex method does not stem from a small number of extreme points, but rather from the fact that usually only few of these points occur on the path followed by the algorithm. Megiddo [Mel] has shown that under Smale's model the following limit exists. and that the sequence actually decreases to the limit:

$$
\lim _{n \rightarrow \infty} \rho(m, n)=c(m) .
$$

An upper-bound on $c(m)$ depended exponentially on m.
In this paper we improve upon the previous results considerably. We confirm the observed phenomenon that the average number of steps is polynomial in the smaller dimension of the problem. We analyze the average number of pivot steps performed by the selfdual simplex algorithm with a different starting point. Instead of the point $(1, \cdots, 1)^{T}$. we start the algorithm at $\left(1, \epsilon, \epsilon^{2}, \cdots\right)^{T}$ with ϵ sufficiently small. The algorithm can operate on ϵ symbolically, or can, alternately, be stated with "lexicographic" rules. The actual
determination of ϵ does not raise any difficulties whatsoever and, incidentally, the algorithm itself can determine what is a sufficiently small ϵ. The choice of the different starting point yields a much better bound on the average number of steps, $\rho^{c}(m, n)$. We show that this number is bounded between two quadratic functions of the minimum of the two dimensions:

$$
c_{1}(\min (m, n))^{2} \leq \rho^{\epsilon}(m, n) \leq c_{2}(\min (m, n))^{2}
$$

Thus, we obtain a nontrivial lower-bound which seems to be in conflict with the common belief that the simplex algorithm performs on the average only linearly many steps.
Furthermore, our analysis in this paper is carried out under a model which is much weaker than Borgwardt's and Smale's. Instead of complete spherical symmetry, we require only symmetry with respect to certain reflections, together with a certain regularity condition on the matrix; this condition holds with probability one if the problem is sampled from any continuous distribution.
We discuss the model in Section 2. The algorithm is described in Section 3. In Section 4 we describe the four cases to be distinguished in the analysis of the probability of a basis to occur in the solution process. The upper bounds for these cases are then analyzed in two pairs in Sections 5 and 6. In Section 7 we prove the lower bound result.
2. The probabilistic model. For an "average-case" analysis, with results different from the "worst-case", one has to make some assumptions on the distribution of problems. A probabilistic analysis does not have to assume a unique distribution of problems. It is more desirable to be able to prove good bounds that are valid for any distribution in a wide class. Notice that under the model proposed by Smale, any spherically symmetric distribution has the same averagecase complexity. However, one should seek wider classes such that the average-case is not necessarily the same for all the members of the class, but yet each satisfies some good bound.
Natural models to look at are those with some symmetry assumptions. Very roughly, the hope is that in a symmetric set of instances, if one is bad then others should be good, so that the average over the set should not be bad. More specifically, suppose we have a group of symmetries and consider the equivalence-classes of instances which are invariant under the group. Suppose the average over each equivalence-class is nicely bounded. Then, regardless of how a class is picked, provided an instance is adequately selected from the class, the overall average will be nicely bounded. Subject to this terminology, it is desirable to have the "classes" as small as possible, that is, the group of symmetries as small as possible. Under the spherically symmetric model, two instances (A_{1}, b_{1}, c_{1}) and (A_{2}, b_{2}, c_{2}) are in the same equivalence-class if (i) the matrix A_{2} can be obtained from A_{1} by an orthogonal transformation (of $R^{m \times n}$) followed by a multiplication by a positive constant, and (ii) the vectors $\left(b_{1}, c_{1}\right)$ and $\left(b_{2}, c_{2}\right)$ are related in a similar fashion. Obviously, each class contains a continuum of instances.
Under our model the classes are finite. Given an instance (A, b, c), it is convenient in the present section to consider an $(m+1) \times(n+1)$. matrix A^{*} such that $A_{i j}^{*}=A_{i j}(i=1, \cdots, m, j=1, \cdots, n)$, $A_{m+1, j}^{*}=c_{j}(j=1, \cdots, n), A_{i, n+1}^{*}=b_{i}(i=1, \cdots, m)$ and $A_{m+1, n+1}^{*}=0$. Obviously, if A^{*} is sampled from any continuous distribution (over the subspace of $R^{(m+1) \times(n+1)}$ characterized by $A_{m+1, n+1}^{*}=0$). then cvery submatrix of A^{*} (except for the entry $A_{m+1, n+1}^{*}$) is non-singular. It is thus convenient for us to make this assumption explicitly, even though for our proofs not all the submatrices have to be non-singular. Indeed, matrices which do not satisfy our regularity assumption do arise in practice, and the simplex
algorithms handle them efficiently. However, it seems that generalizing our proofs, using arguments of infinitesimal perturbations, would not shed much more light on the problem.

The more important feature of the probabilistic model is the statement of the group of symmetries. In fact. for the lower bound result we need a model stronger than the one required for the upper bound result. We first describe the weaker model. Under the weaker model the group is generated by the $m+n$ transformations of multiplying either one of the first n columns or one of the first m rows of the matrix A^{*} by -1 . This group has 2^{m+n} members, giving rise to the same number of instances in each equivalence-class. We assume that all the members of a class are equally probable, that is, given that the class was picked, each member has the same probability to be selected from the class. We note that an equivalent description of the model can be given as follows. Instead of fixing the direction of the inequalities $A x \leq b$ and $x \geq 0$ and letting columns and rows be multiplied by -1 , we can fix the matrix A^{*} and then choose the direction of each of the $m+n$ inequalities independently at random. Closely related models have been considered by Adler and Berenguer $[A, A B 1, A B 2, A B 3]$, Buck [Bu], Haimovich [H] and May and Smith [MS]. We note that none of these papers analyzes a complete algorithm for the general linear programming problem, even though some interesting expected values of certain parameters of random polytopes are derived. It turns out that for many parameters, like numbers of faces of any dimension, probability of a polytope being nonempty, probability of a polytope being unbounded and more, the weak model we have described suffices for determining the exact average value of the parameter. However, this is not the case with respect to the average number of steps performed by the self-dual algorithm, as we argue later.

It is interesting to mention that the number of symmetries cannot be subexponential if we are to prove a polynomial upper bound on the average number of steps, since in the worst-case the number is exponential.

The stronger model, under which we are able to prove the lower bound result, requires that all the entrics of A^{*} (except for $A_{m+1, n+1}^{*}$) be independent, identically distributed random variates, whose common distribution is symmetric about the origin. We believe that a weaker model would suffice for the same result, but may on the other hand be cumbersome to state.
3. The algorithm. We now explain the self-dual method. Consider the following linear programming problem:

$$
\begin{array}{cl}
\text { Maximize } & c^{T} \cdot x \\
\text { subject to } & A x \leq b \\
& x \geq 0,
\end{array}
$$

(where $x, c \in R^{n}, A \in R^{m \times n}$ and $b \in R^{m}$). The dual problem is the following

$$
\begin{aligned}
\text { Minimize } & y^{T} b \\
\text { subject to } & y^{T} A \geq c^{T} \\
& y \geq 0 .
\end{aligned}
$$

The complementary slackness conditions state that two vectors, x (such that $A x \leq b$ and $x \geq 0$) and y (such that $y^{T} A \geq c^{T}$ and $y \geq 0$) are optimal (for their respective problems) if and only if

$$
y^{T}(A x-b)=0
$$

and

$$
\left(y^{T} A-c^{T}\right) x=0
$$

Letting

$$
M=\left[\begin{array}{l|l}
& \\
& A^{T} \\
\hline-A & \\
\hline &
\end{array}\right]
$$

and $q=(-c, b)^{T}$, the problem amounts to finding two vectors z and w in R^{m+n} such that

$$
-M z+w=q, \quad z^{T} w=0 \quad \text { and } \quad z, w \geq 0
$$

A useful observation can be made in terms of a piecewise linear mapping

$$
F: R^{m+n} \rightarrow R^{m+n}
$$

where

$$
F(x)=-M x^{+}-x^{-} .
$$

Here, x^{+}plays the role of z, whereas $-x^{-}$plays the role of w. Solving the primal and the dual problems amounts to finding an inverse image $F^{-1}(q)$.

The self-dual algorithm starts from any positive vector q_{0} and attempts to find solutions for every point on the line segment determined by q_{0} and q. Thus, it looks at points of the form ($\left.1-t\right) q_{0}+t q$. For $t=0$ there is an obvious solution, namely,

$$
z=0 \quad \text { and } \quad w=q_{0}
$$

The algorithm increases the value of t continuously, and follows the inverse image of the point $(1-t) q_{0}+t q$ under the mapping F. While the inverse image stays within an orthant of R^{m+n}, it varies linearly therein. Every orthant is represented by a pre-basis, namely, a set of vectors $\left\{b^{1}, \cdots, b^{m+n}\right\} \subseteq R^{m+n}$, where b^{2} is equal either to the i-th column of $-M$ or to the i-th unit vector e^{i}. A pre-basis whose vectors are linearly independent is called a basis. We identify a basis with an $(m+n) \times(m+n)$-matrix B whose columns are the vectors of the basis. A necessary condition for a pre-basis B to be a basis is that equal numbers of unit vectors from the sets $\left\{e^{1}, \cdots, e^{n}\right\}$ and $\left\{e^{1+n}, \cdots, e^{m+n}\right\}$ are not in B. Under the regularity assumption stated in Section 2 (which holds with probability one whenever the matrix A is sampled from a continuous distribution) this condition is also sufficient.

It is well-known that the self-dual method solves the linear programming problem under the non-degeneracy assumptions; the algorithm reaches the point q if and only if the linear programming problem has an optimal solution. Otherwise, it discovers that the problem is either infeasible, or feasible but unbounded (in which case it finds a feasible ray on which the function $c^{T} x$ tends to infinity). The number of pivot steps performed by the algorithm is equal to the number of bases occurring in the path-following process, minus one. A basis B occurs in the process if and only if for some $t(0 \leq t \leq 1)$,

$$
B^{-1}\left((1-t) q_{0}+t q\right) \geq 0
$$

We note that the algorithm itself is deterministic, so that all the probabilistic statements regard the distribution from which the instance (A, b, c) is taken. Denoting by $\operatorname{Pr}(B)$ the probability that the basis B occurs in the process, we note that the expected number, $\rho\left(m, n ; q_{0}\right)$, of pivot steps corresponding to the starting point q_{0}, is

$$
\rho\left(m, n ; q_{0}\right)=\sum_{B} \operatorname{Pr}(B)-1
$$

An alternative way to represent $\rho\left(m, n ; q_{0}\right)$ (called the "facet form" in Smale's papers) is as follows. First define an artificial basis to be a matrix $B_{/ i}$ obtained from a basis B by replacing its i-th column by the column $-q_{0}$. Let $\operatorname{Pr}\left(B_{/ i}\right)$ denote the probability that q is in the cone spanned by the columns of $B_{/ i}$. Under these conditions,

$$
\rho\left(m, n ; q_{0}\right)=\sum_{B, i} \operatorname{Pr}\left(B_{/ i}\right)
$$

We will estimate the probabilities $\operatorname{Pr}\left(B_{/ i}\right)$.
It turns out that the exact value of $\rho\left(m, n ; q_{0}\right)$ depends on the particular distribution and may not be the same for different distributions which satisfy our conditions. The precise value also seems difficult to cvaluate. However, for vectors of the form $q_{0}=\left(1, \epsilon, \epsilon^{2}, \cdots\right)$, the limits of $\rho\left(m, n ; q_{0}\right)$ (as ϵ tends to zero) are close for many distributions, and morcover, they are much easier to estimate. We note that for a fixed distribution the limit of $\rho\left(m, n ; q_{0}\right)$ does not necessarily equal the expected number relative to the limit of the starting points, that is $\rho\left(m, n ; e^{1}\right)$.

It is very important at this point to clarify the issuc of the value of ϵ. For any fixed value of ϵ, the algorithm is well-defined (subject to nondegeneracy). The progress of the algorithm, that is, the sequence of bases that it produces, depends of course on ϵ. Obviously, there are only a finite number of intervals of ϵ-values such that over each interval, the algorithm produces the same sequence of bases. The latter follows from the fact that the progress depends on comparisons between polynomials of bounded degree in ϵ. It follows that there is $\epsilon_{0}>0$ such that for all $\epsilon, 0<\epsilon<\epsilon_{0}$, the progress of the algorithm is the same. The actual choice of ϵ does not have to be made in advance. In fact, the value of ϵ_{0} can be determined by the algorithm itself.
The question of what is the best starting point is still open for the average linear programming problem. However, we know that for the average linear complementarity problem, the point $(1, \cdots, 1)^{T}$ is the worst, while $\left(1, \epsilon, \epsilon^{2}, \cdots\right)^{T}$ is best in the positive orthant [Me2]. The effect of the starting point is much easier to study in the context of the linear complementarity problem (see [Me2]).
4. Four types of artificial bases. There are four types of artificial bases, $B_{/ i}$, depending on the kind of the column of the basis which is replaced by $-q_{0}$: (i) A unit column representing a dual-slack. (ii) A unit column representing a primal-slack. (iii) A column of M representing a dual-variable. (iv) A column of M representing a primal-variable. We note that these four cases may be viewed as two pairs of symmetric ones via the primal-dual symmetry. However, the vector q_{0} is not symmetric in this respect. We will henceforth assume that $q_{0}=\left(1, \epsilon, \epsilon^{2}, \cdots, \epsilon^{m+n-1}\right)^{T}$. It is interesting to mention at this point that a different assignment of powers, depending on whether $m \leq n$ or vice versa, yields a slightly better bound when the larger dimension tends to infinity, while the other one is fixed. This point will be discussed later. Notice that the first n columns of a basis correspond either to primal-variables or to dual-slacks, whereas the last m columns correspond to either dual-variables or primal-slacks. It is also convenient to assume, without loss of generality, that $m \leq$ n. However, when we represent an artificial basis by an $(m+n) \times$ $(m+n)$-matrix $B_{/ i}$, we usually change the order of columns and rows so as to exhibit how a solution to the linear system $B_{/ i} x=q$ is obtained. Specifically, we find it convenient to rearrange the matrix so that it has an identity submatrix in the upper left-hand corner. For example, an artificial basis of type (i) can be represented by a matrix of the form

where $X \in R^{k \times k}, Z \in R^{(n-k-1) \times k}, W \in R^{(m-k) \times k}$ and $y \in$ $R^{k},(0 \leq k \leq \min (m, n-1))$. It is very essential to understand at this point what powers of ϵ can arise in the different rows of this matrix. To that end, observe that the rows of Z and the rows of X, together with y^{T}, constitute segments of the first n rows of the matrix M. Hence the components of q_{0} corresponding to these rows are powers ϵ^{j} where $0 \leq j \leq n-1$. On the other hand, in rows corresponding to W and $-X^{T}$ we find in q_{0} powers ϵ^{j} with $n \leq j \leq m+n-1$.

We now describe briefly the other three types of artificial bases. The second type of matrices is of the form

where $X \in R^{k \times k}, Z \in R^{(n-k) \times k}, W \in R^{(m-k-1) \times k}$ and $y \in$ $R^{k},(0 \leq k \leq m-1 \leq n-1)$. Here the components of q_{0}, corresponding to the rows of Z and X, are the powers ϵ^{j} with $0 \leq$ $j \leq n-1$, whereas the ones corresponding to the rows of $W,-X^{T}$ and y are those with $n \leq j \leq m+n-1$.

The third type of matrices is of the form

where $X \in R^{k \times(k-1)}, Z \in R^{(n-k) \times(k-1)}, W \in R^{(m-k) \times k}$ and $y \in R^{k},(1 \leq k \leq m \leq n)$.
The fourth type of matrices is of the form

where $X \in R^{(k-1) \times k}, Z \in R^{(n-k) \times k}, W \in R^{(m-k) \times(k-1)}$ and $y \in R^{k},(1 \leq k \leq m \leq n$.

For each of the four types we will estimate the probability that, when the vector q is represented as a linear combination of the columns of M_{i}, all the coefficients are nonnegative. It turns out that types (i) and (iii) are very similar in this respect, whereas types (ii) and (iv) are very similar to each other but different from (i) and (iii). The reason will become transparent later.
5. Upper bounds for types (i) and (iii). In the present section we estimate the limit of the probability $\operatorname{Pr}\left(B_{/ i}\right)$ as ϵ tends to zero, where $B_{/ i}$ is an artificial basis of type (i) (See the matrix M_{1} in Section 3). We then estimate the expected number of bases of type (i) that occur in the solution process. The analysis of type (iii) is essentially the same with a change of the value of one index as we show later. For any $k \times k$-matrix A, let $p(A)$ denote the probability that a random unit k vector v, sampled from a continuous distribution over the unit sphere in R^{k}, is in the cone spanned by the columns of A. Obviously, if A is singular then $p(A)=0$. It is interesting to observe the following. Suppose that A^{1}, A^{2}, \cdots is a sequence of $k \times k$-matrices, converging to a matrix A^{0}. If A^{0} is non-singular then $\lim p\left(A^{n}\right)=p\left(A^{0}\right)$. On the other hand, in case A^{0} is singular then $p\left(A^{0}\right)=0$, but $\lim p\left(A^{n}\right)$ may be positive. Many of our matrices converge to singular matrices when ϵ tends to zero, but we can still estimate the (positive) limit of their probabilities $p\left(A^{n}\right)$. We note that our estimates are valid under a model much weaker than that described in the present paragraph, and the spherical symmetry is not required.
Our assumptions about the distribution imply that the components of the vector q are non-zeros, and all the 2^{m+n} possible sign patterns have the same probability. In other words, q belongs to any orthant of R^{m+n} with the same probability of $2^{-(m+n)}$. Consider the linear system $M_{1} x=q$. It is casy to see that the cocfficients of the last $2 k+1$ columns of M_{1} (in a representation of q as a linear combination of the columns of M_{1}) are determined by a smaller system of equations. Let

($M_{1}^{*} \in R^{(2 k+1) \times(2 k+1)}$), where q_{0}^{\prime} is the restriction of q_{0} to the components corresponding to the rows of $X,-X^{T}$ and y. Now consider the system

$$
M_{1}^{*}(\lambda, \alpha, \beta)^{T}=q^{\prime}
$$

where q^{\prime} is the restriction of q to the rows described above, λ is a real number and α and β are k-vectors. Obviously, the vector $(\lambda, \alpha, \beta)^{T}$ consists of the coefficients of the last $2 k+1$ columns of M_{1} in a representation of q as a linear combination of the columns of M_{1}. We will estimate the probability that $(\lambda, \alpha, \beta)^{T} \geq 0$. First, we prove a fundamental lemma.

Lemma 1. Let $Y \in R^{(k+1) \times(k+1)}$ and let $u \in R^{k}$. Denote by $Y^{*} a(k+2) \times(k+1)$-matrix such that $Y_{i j}^{*}=Y_{i j}(i=$ $1, \cdots, k+1, j=1, \cdots, k+1), Y_{k+2, j}^{*}=u_{j}(j=1, \cdots, k)$ and $Y_{k+2, k+1}^{*}=0$. Assume that Y^{*} satisfies the assumptions of our model, that is, every submatrix of Y^{*} (except for the entry $Y_{k+2, k+1}^{*}$) is non-singular, and the distribution from which Y^{*} is picked is invariant under multiplication of columns and rows by -1 . Let $X \in R^{k \times k}$ be the submatrix oblained from Y by deleting the last row and the last column. Also, let $i, 1 \leq i \leq$ $k+1$, be fixed. Under these conditions, the probability that the unit vector e^{i} is in the cone spanned by the columns of Y, while u^{T} is in the cone spanned by the rows of X, is equal to $2^{-(2 k+1)}$.

- Proof: For any $S \subseteq\{1, \cdots, k+1\}$ and any matrix D, denote by $S D$ a matrix obtained from D by multiplying each row of D, whose index is in S, by -1 . Similarly, let $D S$ denote a matrix obtained from D by multiplying each column of D, whose index is in S, by -1 . Thus, the objects $S Y, Y S . S X, X S, S e^{i}$ and $u^{T} S$ are well-defined. Let $T \subseteq\{1, \cdots, k\}$ be any subset such that $i \notin T$. Now, consider events as follows. Let E_{S} denote the event in which e^{i} is in the cone spanned by the columns of $Y S$, and let F_{T} denote the event in which u^{T} is in the cone spanned by the rows of $T X$. Obviously, E_{S} occurs if and only if $T e^{i}$ is in the cone spanned by $T Y S$, and F_{T} occurs if and only if $u^{T} S$ is in the cone spanned by the rows of $T X S$. It is easy to see that $S_{1} \neq S_{2}$ implies $\operatorname{Pr}\left(E_{S_{1}} \cap E_{S_{2}}\right)=0$ and $T_{1} \neq$ T_{2} implies $\operatorname{Pr}\left(F_{T_{1}} \cap F_{T_{2}}\right)=0$. By our symmetry assumptions, it follows that the quadruple ($T Y S, T X S, T e^{i}, u^{T} S$) has the same joint distribution as the quadruple (Y, X, e^{i}, u^{T}). (Recall that $i \not \subset T$). Let $G_{S T}=E_{S} \cap F_{T}$ and consider the union of the events $G_{S T}$ ($S \subseteq$ $\{1, \cdots, k+1\}, T \subseteq\{1, \cdots, k\}, i \notin T)$. We have already argued that these events have the same probability. Moreover, the intersection of any two of them is empty by the non-singularity assumption or, alternately, measures zero under any continuous distribution. If $i=$ $k+1$ then the union is the entire sample-space. In this case, we have $2^{2 k+1}$ events and the probability of each is hence $2^{-(2 k+1)}$. Otherwise $(i \leq k)$, we have only $2^{2 k}$ events. On the other hand, the union of these events is not the entire space. In fact, the union is the event in which the coefficient of the i-th row of X, in a representation of u^{T} as a linear combination of the rows of X, is nonncgative. The probability of this event is obviously $\frac{1}{2}$. Thus, the probability in this case is, again, $2^{-(2 k+1)}$.

As a result we get the following:

Lemma 2. The probability that the last $2 k+1$ coefficients, λ, α and β, are nonnegative tends to $2^{-(2 k+1)}$, as \in tends to zero.

- Proof: As a matter of fact, the values of λ and α are determined by a smaller system, corresponding to the square submatrix of order $(k+1) \times(k+1)$ in the upper left-hand corner of M_{1}^{*}, consisting of X, y and a portion of $-q_{0}$. It follows by arguments similar to those of Lemma l, that the probability that λ and α are nonnegative is $2^{-(k+1)}$. Furthermore, the asymptotic behavior of λ (as ϵ tends to
zero) depends only on the smallest power of ϵ, in the portion of q_{0} corresponding to rows of X and y. The latter follows from Cramer's formula for the solution of linear equations, under the assumption that the minor, corresponding to this power of ϵ, does not vanish. Let j denote this smallest power ($0 \leq j \leq n-1$) and assume X, y and q have been fixed. Then, λ is asymptotically proportional to ϵ^{-j}. This enables us to estimate the probability that also β is nonnegative.
Let q^{β} and q_{0}^{β} denote, respectively, the portions of q and q_{0} corresponding to the rows of $-X^{T}$. It is easy to see that

$$
\beta=\left(-X^{T}\right)^{-1}\left(q^{\beta}+\lambda q_{0}^{\beta}\right)
$$

Recall that all the ϵ^{i} s participating in q_{0}^{β} are with $i \geq n$. It follows that for any fixed data, λq_{0}^{β} tends to zero with ϵ. Thus, the probability that β is nonnegative tends to the probability that $\left(-X^{T}\right)^{-1} q^{\beta}$ is nonnegative. The latter is obviously equal to 2^{-k}. However, we have to evaluate the intersection of the events " λ and α are nonnegative" and " β is nonnegative." A priori, these are not known to be independent, since both depend on the matrix X. However, it is a direct consequence of Lemma 1 that these events are asymptotically independent, and the probability of their intersection tends to $2^{-(2 k+1)}$.

Lemma 3. Let M_{1} be an arificial basis of type (i) and let j be the largest index such e^{1}, \cdots, e^{j} belong to M_{1}. Under these conditions, $\operatorname{Pr}\left(M_{1}\right) \leq 2^{-(m+n-j)}$.

- Proof: For the proof we need to consider the rest of the coefficients. that is, those of the $m+n-2 k-1$ unit vectors. These unit vectors can be classified as primal-slacks and dual-slacks. A dualslack has a unity in a row in which q_{0} has an ϵ^{i} with $0 \leq i \leq n-1$, whereas a primal-slack has a unity in a row in which q_{0} has an ϵ^{i} with $n \leq i \leq m+n-1$. Note that, by the definition of the index j, the smallest power of ϵ, in the portion of q_{0} corresponding to X and y, is precisely ϵ^{j} (since e^{i} corresponds to ϵ^{i-1}). Consider a primal-slack $e^{i}(n+1 \leq i \leq m+n)$. Let W_{i} denote the row of W corresponding to the unity of the primal slack. and let q_{i} denote the component of g in that row. Obviously, the coefficient of e^{i} is $q_{i}-W_{i} \alpha+\lambda \epsilon^{i-1}$. Since $i-1>j$, it follows that $\lambda \epsilon^{i-1}$ tends to zero with ϵ. Thus, the probability that the coefficient of e^{i} is nonnegative tends to the probability that $q_{i}-W_{i} \alpha$ is nonnegative. Consider the 2^{m-k} different ways of multiplying rows of W, each augmented with the corresponding coordinate from q, by -1 . It follows that the probability that the coefficients of the primal-slacks are all nonnegative is equal to $2^{-(m-k)}$.

Now, consider the dual-slacks, that is, unit vectors e^{i} with $1 \leq i \leq$ n. The arguments here are similar to those of the previous case, except that $i-1$ may now be smaller that j. In such a case, the probability that the coefficient of e^{i} is nonnegative (given that λ is positive) tends to one, since $\lambda \epsilon^{i-1}$ tends to infinity. If, on the other hand, $i-1>j$ then the probability that the coefficient of e^{i} is nonnegative tends to $\frac{1}{2}$. We can now summarize our findings about the probability that all the cocfficients are nonnegative. Each ϵ^{i} with $i>j$ contributes a factor of $\frac{1}{2}$, while every other ϵ^{i} contributes a factor of 1 . The limit of the probability thus depends only on the value of j, and is equal to $2^{-(m+n-j)}$.
Corollary 4. The expected number of bases of type (i) occurring in the solution process is less than $\frac{m}{2}+1$.

- Proof: The number of artificial bases of type (i), containing the unit vectors e^{1}, \cdots, e^{j} and not containing e^{j+1}, is calculated as follows. For every $k(k=0, \cdots, \min (m, n-j-1)$), we can choose the k dual-variables in $\binom{m}{k}$ ways. We can choose the $k+1$ dual-slacks to be dropped from the basis (and replaced by k primal-
variables together with the column $\left.-q_{0}\right)$ in $\binom{n-j-1}{k}$ different ways, since e^{j+1} must be dropped. Then, the particular choice of which of these will actually be replaced by $-q_{0}$ can be made in $k+1$ different ways. To summarize, the number of such bases is

$$
\sum_{k=0}^{\min (m, n-j-1)}(k+1)\binom{m}{k}\binom{n-j-1}{k}
$$

It follows that the expected number of these bases occurring in the solution process is

$$
\begin{gathered}
\sum_{k=0}^{\min (m, n-1)}\left\{(k+1)\binom{m}{k} 2^{-m} \sum_{j=0}^{n-k-1}\binom{n-j-1}{k} 2^{-(n-j)}\right\} \\
=\sum_{k=0}^{\min (m, n-1)}\left\{(k+1)\binom{m}{k} 2^{-m-1} \sum_{i=k}^{n-1}\binom{i}{k} 2^{-i}\right\}
\end{gathered}
$$

Now, observe that for $|x|<1$,

$$
\frac{1}{1-x}=\sum_{i=0}^{\infty} x^{i}
$$

and

$$
\frac{d^{k}}{d x^{k}}\left(\frac{1}{1-x}\right)=\frac{k!}{(1-x)^{k+1}}=\sum_{i=k}^{\infty} k!\binom{i}{k} x^{i-k}
$$

so that for $x=\frac{1}{2}$ we obtain, for all k,

$$
\sum_{i=k}^{\infty}\binom{i}{k}^{-i}=2
$$

It follows that for any n, the expected number of artificial bases of type (i) occurring in the process is less than

$$
2 \sum_{k=0}^{m}(k+1)\binom{m}{k} 2^{-m-1}=\frac{m}{2}+1
$$

4
Corollary 5. The expected number of bases of type (iii) occurring in the solution process is less than $\frac{m}{2}$.

- Proof: The number of artificial bases of type (iii), containing the unit vectors e^{1}, \cdots, e^{j} and not containing e^{j+1}, is

$$
\sum_{k=1}^{\min (m, n-j)} k\binom{m}{k}\binom{n-j-1}{k-1} .
$$

It follows that the expected number of these bases occurring in the solution process is

$$
\begin{aligned}
&\left.\sum_{k=1}^{m}\left\{k\binom{m}{k}\right)^{-m} \sum_{j=0}^{n-k}\binom{n-j-1}{k-1} 2^{-(n-j)}\right\} \\
&=\sum_{k=1}^{m}\left\{k\binom{m}{k} 2^{-m-1} \sum_{i=k-1}^{n-1}\binom{i}{k-1}^{-i}\right\}
\end{aligned}
$$

from which it follows that the expected number of bases of type (iii) is less than $\frac{m}{2}$. 4
6. Upper bounds for types (ii) and (iv). The anlysis of types (ii) and (iv) is slightly more complicated than that of types (i) and (iii). This is due to the fact that, in the case of (ii) and (iv), the coefficient λ of the column $-q_{0}$ is essentially determined by a row in which the power of ϵ is greater than $n-1$, while smaller powers are present in the submatrix in the lower right-hand corner of the matrix (See Section 4). However, this situation can still be handled. We consider type (ii) in detail. Type (iv) is then treated analogously.

Lemma 6. Let $Y \in R^{(k+1) \times(k+1)}$ be a random matrix from a distribution like in Lemma 1, that is, the distribution is invariant under multiplication of rows and columns by -1 , and every submatrix of Y is non-singular. Let $X \in R^{k \times k}$ be the submatrix obtained from Y by deleting the last row and the last column. Let $v \in R^{k+1}$ be a unit vector with the unity in the first position and let $u \in R^{k}$ be a unit vector with the unity in the first position Under these conditions, the probability that v is in the cone spanned by the columns of Y, and $-u^{T}$ is the cone spanned by the rows of X, is not greater than $2^{-2 k}$.

- Proof: We use the notation of Lemma 1, so that the objects $S Y$, $Y S, S X, X S, S v$ and $u^{T} S$ are well-defined. For $S \subseteq\{2, \cdots, k+$ $1\}$ and $T \subseteq\{2, \cdots, k\}$, consider events as follows. Let E_{S} denote the event in which v is in the cone spanned by the columns of $Y S$, and let F_{T} denote the event in which $-u^{T}$ is in the cone spanned by the rows of $T X$. Obviously, E_{S} occurs if and only if $T v$ is in the cone spanned by $T Y S$, and F_{T} occurs if and only if $-u^{T} S$ is in the cone spanned by the rows of $T X S$. It is easy to see that $S_{1} \neq S_{2}$ implies $\operatorname{Pr}\left(E_{S_{1}} \cap E_{S_{2}}\right)=0$ and $T_{1} \neq T_{2}$ implies $\operatorname{Pr}\left(F_{T_{1}} \cap F_{T_{2}}\right)=0$. By our symmetry assumptions, it follows that the quadruple ($T Y S, T X S, T v,-u^{T} S$) has the same joint distibution as the quadruple $\left(Y, X, v,-u^{T}\right)$. (Recall that $1 \nexists S \cup T$). Let $G_{S T}=E_{S} \cap F_{T}$ and consider the union of the events $G_{S T}(S \subseteq$ $\{2, \cdots, k+1\}, T \subseteq\{2, \cdots, k\}$). We have already argued that these events have the same probability and, moreover, the intersection of any two of them measures zero. The union of these events is the intersection of the following two events. First is the event in which the coefficient, c_{u}, of the first row of X, in a representation of $-u^{T}$ as a linear combination of the rows of X, is nonnegative. Second is the event in which the coefficient, c_{v}, of the first column of Y, in a representation of v as a linear combination of the columns of Y, is nonnegative. The probability of this intersection is of course not greater than the probability of each of the events which is equal to $\frac{1}{2}$. Since this is a union of $2^{2 k-1}$ equally probable events, $G_{S T}$, it follows that each $G_{S T}$ has a probability not greater than $2^{-2 k}$. 4

It is interesting to point out that our weak model does not allow us to prove a stronger result. Consider the case of $k=1$ with the matrix Y sampled uniformly from the equivalence-class of the following matrix:

$$
\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right],
$$

that is, Y can be obtained from this matrix by arbitrary multiplications of rows and columns by -1 . It follows that the coefficients c_{u} and c_{v} have the same sign for any Y in the class, and the probability that both are positive is $\frac{1}{2}$. Under stronger models (sce Section 7) thè events are negatively correlated, so that the probability of the intersection is less than $\frac{1}{4}$. For example, if Y is a 2×2-matrix whose four entries are sampled independently from the same symmetric (about the zero) distribution, then it follows that the probability of both c_{u} and c_{v} being positive is precisely $\frac{1}{8}$. We elaborate on these issues in Section 7.

Lemma 7. Let M_{2} be an artificial basis of type (ii). Let i be an index such that unit vectors $\boldsymbol{e}^{1}, \cdots, e^{i}$ are in the basis, while e^{i+1} is not. Similarly, let j be the index such that the unit vectors e^{n+1}, \cdots, e^{n+j} are in the basis while e^{n+j+1} is not. Under these conditions, the probability that M_{2} occurs in the solution process, tends to a limit not greater than $2^{-(m+n-i-j-1)}$.

- Proof: Let $\alpha \in R^{k}, \lambda$ and $\beta \in R^{k}$ denote the coefficients of the last $2 k+1$ columns of M_{2} in a representation of a random vector as a linear combination of the columns of M_{2}. Like in the case of M_{1}, they are determined by a smaller system, corresponding to the square submatrix, M_{2}^{*}, of order $(2 k+1) \times(2 k+1)$ in the lower right-hand corner of M_{2}. Actually, λ and β are determined by an even smaller submatrix in the lower right-hand corner of M_{2}^{*}, consisting of $-X^{T}, y$ and a portion of $-q_{0}$. By arguments similar to those of Lemma 1 , the probability that λ and β are nonnegative is $2^{-(k+1)}$. Furthermore, the asymptotic behavior of λ (as ϵ tends to zero) depends only on the smallest power of ϵ, in the portion of q_{0} corresponding to rows of $-X^{T}$ and y. The latter follows from Cramer's formula for the solution of linear equations, under the assumption that the minor, corresponding to this power of ϵ, does not vanish. Our choice of indices implies that this power is precisely ϵ^{n+j}. It follows that λ is asymptotically proportional to $\epsilon^{-(n+j)}$. This enables us to estimate the probability that α is also nonnegative.

Let q^{α} and q_{0}^{α} denote, respectively, the portions of q and q_{0} corresponding to the rows of X. It is easy to see that

$$
\alpha=X^{-1}\left(q^{\alpha}+\lambda q_{0}^{\alpha}\right)
$$

Recall that all the ϵ^{i} s participating in q_{0}^{α} are with $i \leq n-1$. It follows that for any fixed data, each component of λq_{0}^{α} tends to infinity when ϵ tends to zero. However, the direction of $q^{\alpha}+\lambda q_{0}^{\alpha}$ simply tends to the direction of e^{i+1}, since the smallest power of ϵ in that portion of q_{0} is the one that corresponds to this vector. Thus, given that λ and β are nonnegative, the probability that α is also nonnegative tends to the probability that e^{i+1} is in the cone spanned by the columns of X. We are under the conditions of Lemma 6 , with some changes of indices. Actually, the case where the smallest power of ϵ, in the portion corresponding to $-X^{T}$ and y, occurs in the row of y is not covered. However, this case can be handled analogously, resulting in an even better bound, $2^{-(2 k+1)}$. The conclusion in our case is that the probability of λ, β and α being nonnegative tends to a limit not greater than $2^{-2 k}$.
We now need to consider the rest of the coefficients, that is, those of the $m+n-2 k-1$ unit vectors, like in the proof of Lemma 3. Consider a primal-slack $e^{\nu}(n+1 \leq \nu \leq m+n)$. Let W_{ν} denote the row of W corresponding to the unity of the primal-slack and let q_{ν} denote the component of q in that row. Obviously, the coefficient of e^{ν} is $q_{\nu}-W_{\nu} \beta+\lambda \epsilon^{\nu-1}$. If $\nu-1>n+j$, then $\lambda \epsilon^{\nu-1}$ tends to zero with ϵ. If $\nu-1<n+j$, then this probability tends to $\frac{1}{2}$.

Consider a dual-slack, e^{ν} with $1 \leq \nu \leq n$. The arguments here are similar to those of the previous case. It can be verified that the order of magnitude of the coefficient of e^{ν} is $\epsilon^{\nu-1-i}$. Thus, if $\nu-1<i$ then the probability that this coefficient of e^{i} is nonnegative (given that λ is positive) tends to one, while if $\nu-1>i$ then this probability tends to $\frac{1}{2}$. We can now summarize our findings about the probability that all the coefficients are nonnegative. Each ϵ^{ν} with either $i<\nu \leq n-1$ or $\nu>j$ contributes a factor of $\frac{1}{2}$, while every other ϵ^{ν} contributes a factor of 1 . The limit of the probability is thus bounded from above by $2^{-(m+n-i-j-1)}$. \&

Corollary 8. The expected number of bases of type (ii) occurring in the solution process is not greater than $m^{2}+m$.

- Proof: Our calculations here are similar to those of Corollary 4. The number of bases, with indices i and j as defined in Lemma 7, is (using the convention $\binom{i}{-1}=1$ for $i \geq-1$),

$$
\sum_{k=0}^{\min (m-i-1, n-j)}(k+1)\binom{m-i-1}{k}\binom{n-j-1}{k-1}
$$

It follows that the expected number of these bases occurring in the solution process is not greater than

$$
\begin{aligned}
& 2 \sum_{k=0}^{m-1}\left((k+1) \sum_{i=0}^{m-k-1}\binom{m-i-1}{k} 2^{-(m-i)}\right. \\
& \left.\quad \sum_{j=0}^{n-k}\binom{n-j-1}{k-1} 2^{-(n-j)}\right) \\
& \quad=\frac{1}{2} \sum_{k=0}^{m-1}\left((k+1) \sum_{i=k}^{m-1}\binom{i}{k}^{-i} \sum_{j=k-1}^{n-1}\binom{j}{k-1} 2^{-j}\right)
\end{aligned}
$$

It follows that for any n, the expected number of artificial bases of type (ii) occurring in the process is not greater than

$$
2 \sum_{k=0}^{m-1}(k+1)=m^{2}+m
$$

Corollary 9. The expected number of bases of type (iv) occurring in the solution process is not greater than $m^{2}+m$.

- Proof: The arguments are identical to those of the previous case. The number of bases is

$$
\sum_{k=1}^{\min (m-i, n-j)} k\binom{m-i-1}{k-1}\binom{n-j-1}{k-1}
$$

It follows that the upper-bound in the present case is

$$
\begin{gathered}
2 \sum_{k=1}^{m}\left(k \sum_{i=0}^{m-k}\binom{m-i-1}{k-1} 2^{-(m-i)}\right. \\
\left.\sum_{j=0}^{n-k}\binom{n-j-1}{k-1} 2^{-(n-j)}\right) \\
<2 \sum_{k=1}^{m} k=m^{2}+m
\end{gathered}
$$

In view of the calculations made in this section and the preceding one, it turns out that there is room for some improvement. First, notice the following symmetries between types. Suppose we assign the powers ϵ^{j} with $0 \leq j \leq m-1$ to the dual-variables, and those with $m \leq j \leq m+n-1$ to the primal variables, and suppose we interchange the roles of m and n. Under this transformation types (i) and (ii) are symmetric and so are types (iii) and (iv). Subject to the original assignment of powers of ϵ, types (i) and (iii) contribute linear terms whereas types (ii) and (iv) contribute quadratic terms. A quadratic term arises when there are two critical indices i and j, whereas a linear term arises when there is only one. More specifically, the first critical index is the smallest power of ϵ which is present in the section according to which the coefficient of q_{0} is determined. This power is associated with a dual-variable or a primal-variable (depending on the type) which is present in the basis. If it is associated with a primal-variable, then the second critical power is the smallest that corresponds to a dual-variable, which is present in the basis, and vice versa. However, the second critical power plays its role as critical
only if it is smaller than the first one. Given these observations, it is now clear that any assignment of powers of ϵ yields an algorithm with a quadratic upper bound, since each of the types never gives rise to a superquadratic term. On the other hand, there is room for improvement in the linear term of the upper bound, in case one of the dimensions is substantially larger than the other one, which can be seen as follows.
Assume $m \leq n$ and let us assign the powers ϵ^{j} with $0 \leq j \leq$ $m-1$ to the dual-variables, and those with $m \leq j \leq m+n-1$ to the primal variables. It follows from our symmetry arguments that, in this case, type (i) contributes the number of steps contributed by type (ii) subject to the original assignment, that is, no more than $m^{2}+m$
steps. Similarly, type (iii) behaves like type (iv) did in the original assignment. Of course, type (ii) also behaves like type (i) and type (iv) behaves like type (iii). However, we are able to prove a better upper bound for the latter two in case n tends to infinity. Consider type (ii). Let i denote the critical index, that is the first i primal-slacks are present in the basis, while the $(i+1)$-st one is not. Now the second critical index is not critical at all. The number of bases of type (ii) with critical index i is

$$
\sum_{k=0}^{m-i-1}(k+1)\binom{m-i-1}{k}\binom{n}{k}
$$

The probability of each to occur is $2^{-(m+n-i)}$. Thus, the expected number of bases type (ii) in this case is no more than

$$
\begin{aligned}
\sum_{k=0}^{m-1} & \left((k+1)\binom{n}{k} 2^{-n}\right. \\
& \left.\sum_{i=0}^{m-k-1}\binom{m-i-1}{k} 2^{-(m-i)}\right) \\
& =\sum_{k=0}^{m-1}\left((k+1)\binom{n}{k} 2^{-n} \frac{1}{2} \sum_{j=k}^{m-1}\binom{j}{k} 2^{-j}\right)
\end{aligned}
$$

which is less than

$$
\sum_{k=0}^{m-1}(k+1)\binom{n}{k} 2^{-n}
$$

The latter tends to zero when n tends to infinity while m is fixed. A similar bound can be obtained for the expected number of bases of type (iv). However, types (i) and (iii) contribute a quadratic expected number of bases, so this improvement is not a major one.
7. The quadratic lower-bound. In this section we establish that the expected number of steps is indeed quadratic in the minimum of the two dimensions of the problem. To this end, it is of course sufficient to show that the expected number of bases of type (ii) is $\Omega\left((\min (m, n))^{2}\right)$.
For the lower bound result we need a stronger probabilisitic model. A convenient model is as follows. We simply assume the entries of A, b and c to be independent, identically distributed random variates, with a common distribution which is symmetric about the origin. This assumption strengthens the symmetry under reflection conditions assumed earlier in this paper. We also assume non-singularites as before.
The following lemma complements Lemma 6, under the stronger model.
Lemma 10. Let $Y \in R^{(k+1) \times(k+1)}$ be a matrix whose entries are
independent identically distributed random variates whose common independent identically distributed random variates whose common
distribution is symmetric about the origin. Also, assume all the minors of Y to be non-zero.. Let $X \in R^{k \times k}$ be the submatrix obtained from Y by deleting the last row and the last column. Let $v \in R^{k+1}$ be a unit vector with the unity in the first position and let $u \in R^{k}$ be a unit vector with the unity in the first position Under these conditions, the probability that v is in the cone spanned by the columns of Y, and $-u^{T}$ is the cone spanned by the rows of X, is between $2^{-2 k-2}$ and $2^{-2 k-1}$.

For the proof of Lemma 10 we need several preparatory lemmas. The first is a fact of linear algebra.

Lemma 11. Let $Y \in R^{(k+1) \times(k+1)}$ be any matrix and denote submatrices of Y as follows
(i) Let $X \in R^{k \times k}$ be the upper left-hand corner submatrix of Y.
(ii) Let $Z \in R^{k \times k}$ be the lower left-hand corner submatrix of Y.
(iii) Let $W \in R^{k \times k}$ be the upper right-hand corner submatrix of Y.
(iv) Let $V \in R^{k \times k}$ be the lower right-hand corner submatrix of Y.
(v) Let $U \in R^{(k-1) \times(k-1)}$ be the center submatrix of Y (obtained by deleting both the first and the last row and both the first and the last column).
Under these conditions,

$$
\operatorname{det}(Y) \operatorname{det}(U)=\operatorname{det}(X) \operatorname{det}(V)-\operatorname{det}(Z) \operatorname{det}(W)
$$

- Proof: We prove the lemma by induction on k. In the inductive step the value of k decreases by two units. It is easy to verify that the lemma is true for $k=1,2$.
To simplify the proof, note that each of the products $\operatorname{det}(Y) \operatorname{det}(U)$, $\operatorname{det}(X) \operatorname{det}(V)$ and $\operatorname{det}(Z) \operatorname{det}(W)$ is a bilinear form in terms of the first row and the last row of Y. It is therefore sufficient to prove the lemma for matrices Y, both of whose first row and last rows are unit-vectors. Suppose $Y_{1 i}=1$ and $Y_{1 l}=0$ for every $l \neq i$ ($l=1, \cdots k+1$), and also $Y_{k+1, j}=1$ and $Y_{k+1, l}=0$ for every $l \neq j(l=1, \cdots k+1)$. The cases of when either i or j are equal to either 1 or $k+1$ are obvious. So is the case of $i=j$. Thus, we are left with the case of $2 \leq i, j \leq k+1$ and $i \neq j$. Without loss of generality we may assume $i=2$ and $j=k$ (assuming $k \geq 3$.) Let $A(i, j)$ denote the minor of Y obtained by deleting the first row and the last row, together with columns i and j. Under these conditions we have
and

$$
\begin{gathered}
\operatorname{det}(X)=-A(2, k+1) \\
\operatorname{det}(V)=-A(1, k) \\
\operatorname{det}(W)=A(1,2) \\
\operatorname{det}(Z)=A(k, k+1) \\
\operatorname{det}(U)=A(1, k+1)
\end{gathered}
$$

All we need to prove now is the following equality:

$$
A(2, k) A(1, k+1)=A(1, k) A(2, k+1)-A(1,2) A(k, k+1)
$$

We can now apply similar arguments and reduce this equality to an equality of the form of claimed in the lemma, but with $k-2$ replacing k. Note that each of the products $A(2, k) A(1, k+1)$. $A(1, k) A(2, k+1)$ and $A(1,2) A(k, k+1)$ is a bilinear form in terms of the first column and last column of Y (more precisely, the submatrix obtained from Y by deleting its first and last rows. Thus, we may assume these columns to be unit vectors. Furthermore, we may
assume without loss of generality, that the unity in the first column is the second position, while the unity in the last column is in the k-th position.

Our matrices are now reduced as follows. We delete from the matrix Y the rows with indices $1,2, k, k+1$ and the columns with same indices. The matrix so obtained has the same determinant as Y and actually plays the role of U when the induction hypothesis is applied. The old matrix U plays. the role of Y in the induction hypothesis. Analogously, from the matrix X we delete the first two rows and columns, from the matrix W we delete the first two rows and the last two columns, from Z we delete the last two rows and the first two columns, and from V we delete the last two rows and columns. This establishes our lemma.

The following lemma is again of linear algebra.
Lemma 12. Let $X \in R^{k \times k}$ be any matrix and denote $\alpha=X_{11}$, $a=\left(X_{12}, \cdots, X_{1 k}\right)^{T}$ and $b=\left(X_{21}, \cdots, X_{k 1}\right)^{T}$. Also, let $U \in R^{(k-1) \times(k-1)}$ denote the lower right-hand corner of X and suppose U is non-singular. Under these conditions,

$$
\operatorname{det}(X)=\operatorname{det}(U)\left(\alpha-a^{T} U^{-1} b\right)
$$

- Proof: The proof follows from the well-known formula for the inverse in terms of the adjugate matrix.

The following is a simple probabilistic lemma.
Lemma 13. Suppose u and v are independent identically distributed random n-vectors, and let $C \subseteq R^{n}$ be a random set (independent of u and v) from any probability-space whose elementary events are measurable subsets of R^{n}. Under these conditions,

$$
\operatorname{Pr}(\{u, v\} \subseteq C) \geq \operatorname{Pr}(u \in C) \operatorname{Pr}(v \in C)
$$

- Proof: Obviously,

$$
\operatorname{Pr}(u \in C)=\operatorname{Pr}(v \in C)
$$

Denote by $\mathrm{Pr} *$ the probability of an event where C is f ixed. It follows that

$$
\operatorname{Pr} *(\{u, v\} \subseteq C)=\operatorname{Pr}^{*}(u \in C) \operatorname{Pr}^{*}(b \in C)=\left(\operatorname{Pr}^{*}(u \in C)\right)^{2}
$$

Let μ denote the probability-measure corresponding to the sampling of C. It follows that

$$
\begin{aligned}
\operatorname{Pr}(\{u, v\} \subseteq C) & =\int \operatorname{Pr}^{*}(\{u, v\} \subseteq C) d \mu \\
& =\int \operatorname{Pr}^{*}(u \in C) \operatorname{Pr}^{*}(v \in C) d \mu \\
& =\int\left(\operatorname{Pr}^{*}(u \in C)\right)^{2} d \mu \\
& \geq\left(\int \operatorname{Pr}^{*}(u \in C) d \mu\right)^{2} \\
& =(\operatorname{Pr}(u \in C))^{2}=\operatorname{Pr}(u \in C) \operatorname{Pr}(v \in C)
\end{aligned}
$$

We now apply Lemmas 12 and 13 in a situation which involves random matrices.

Lemma 14. Let $Y \in R^{(k+1) \times(k+1)}$ be a matrix whose entries are independent, identically distributed random variates, such that their common distribution is symmetric about the origin. Let X, V, Z and W be the four corner submatrices of Y of order $k \times k$ as defined in Lemma II. Under these conditions,

$$
\operatorname{Pr}(\operatorname{det}(X) \operatorname{det}(V) \operatorname{det}(Z) \operatorname{det}(W) \geq 0) \geq \frac{1}{2}
$$

- Proof: Let α, a, b and U be as in the previous lemmas, and also denote $\beta=Y_{1, k+1}, \gamma=Y_{k+1,1}, \delta=Y_{k+1, k+1}, c=$ $\left(Y_{k+1,2}, \cdots, Y_{k+1, k}\right)^{T}$ and $d=\left(Y_{2, k+1}, \cdots, Y_{k, k+1}\right)^{T}$. It follows from Lemma 12 that the product of the four determinants is equal to $(\operatorname{det}(U))^{4}$ times
$\left(\alpha-a^{T} U^{-1} b\right)\left(\beta-a^{T} U^{-1} d\right)\left(\gamma-c^{T} U^{-1} b\right)\left(\delta-c^{T} U^{-1} d\right)$,
so it is sufficient to consider the sign of the latter. We now apply Lemma 12. Let $u=\left(Y_{11}, \cdots, Y_{1, k+1}\right)^{T}$, that is, $u=\left(\alpha, a^{T}, \beta\right)^{T}$, and $v=\left(Y_{k+1,1}, \cdots, Y_{k+1, k+1}\right)^{T}$, that is, $v=\left(\gamma, c^{T}, \delta\right)^{T}$. Given the values of $Y_{i j}$ for $i=2, \cdots, k$ and $j=1, \cdots, k+1$, let C denote the set of all vectors $\left(\alpha, a^{T}, \beta\right)^{T}$ such that

$$
\left(\alpha-a^{T} U^{-1} b\right)\left(\beta-a^{T} U^{-1} d\right)>0
$$

We note that also

$$
\left(\gamma-c^{T} U^{-1} b\right)\left(\delta-c^{T} U^{-1} d\right)>0
$$

if and only if $\left(\gamma, c^{T}, \delta\right)^{T} \in C$. Let C^{c} denote the complement of C and note that under our model all the determinants are non-zero with probability 1. Thus,

$$
\begin{aligned}
& \operatorname{Pr}(\operatorname{det}(X) \operatorname{det}(V) \operatorname{det}(Z) \operatorname{det}(W) \geq 0) \\
& \quad=\operatorname{Pr}(\{\operatorname{det}(X) \operatorname{det}(W)>0\} \bigcap\{\operatorname{det}(V) \operatorname{det}(Z)>0\}) \\
& \quad+\operatorname{Pr}(\{\operatorname{det}(X) \operatorname{det}(W)<0\} \bigcap\{\operatorname{det}(V) \operatorname{det}(Z)<0\}) \\
& = \\
& P r(\{u, v\} \subseteq C)+\operatorname{Pr}\left(\{u, v\} \subseteq C^{c}\right) \\
& \quad \geq(\operatorname{Pr}(u \in C))^{2}+\left(\operatorname{Pr}\left(u \in C^{c}\right)\right)^{2} \geq \frac{1}{2}
\end{aligned}
$$

We now return to questions which are more closely related to the ones we were dealing with in the previous sections. The following lemma constitutes the essence of Lemma 10 .

Lemma 15. Let Y, X, u and v be as in Lemma 10. Let c_{u} denote the coefficient of the first row of X in a representation of $-u^{T}$ as a linear combination of the rows of X, and let c_{v} denote the coefficient of the first column of Y in a representation of v as a linear combination of the columns of Y. Under these conditions, the probability that both c_{u} and c_{v} are positive is between $\frac{1}{8}$ and 4.

- Proof: Let U, V, W and Z be as in the previous lemmas. Obviously,

$$
c_{u}=-\frac{\operatorname{det}(U)}{\operatorname{det}(X)}
$$

and

$$
c_{v}=\frac{\operatorname{det}(V)}{\operatorname{det}(Y)}
$$

We are interested in the event E in which

$$
\frac{\operatorname{det}(V)}{\operatorname{det}(Y)}>0>\frac{\operatorname{det}(U)}{\operatorname{det}(X)}
$$

First, note that when the first row of Y is multiplied by -1 then
the signs of c_{u} and c_{v} are reversed. Since the distribution of Y is invariant under this operation, it follows that

$$
\operatorname{Pr}(E)=\frac{1}{2} \operatorname{Pr}(\operatorname{det}(X) \operatorname{det}(V) \operatorname{det}(Y) \operatorname{det}(U)<0) .
$$

However, by Lemma 11,

$$
\operatorname{det}(Y) \operatorname{det}(U)=\operatorname{det}(X) \operatorname{det}(V)-\operatorname{det}(Z) \operatorname{det}(W)
$$

Consider the random variates $\xi=\operatorname{det}(X) \operatorname{det}(V)$ and $\eta=$ $\operatorname{det}(Z) \operatorname{det}(W)$. Obviously, ξ and η are identically distributed.

Moreover, their common distribution is symmetric about the origin, since they change sign when the first column of Y is multiplied by -1 . It follows that

$$
\begin{aligned}
\operatorname{Pr}(E)= & \frac{1}{2}(\operatorname{Pr}\{\eta<\xi<0\}+\operatorname{Pr}\{\eta>\xi>0\}) \\
= & \operatorname{Pr}(\eta<\xi<0) \\
= & \operatorname{Pr}(\{\eta<0\} \bigcap\{\xi<0\}) \\
& \operatorname{Pr}(\eta<\xi \mid\{\eta<0\} \bigcap\{\xi<0\}) \\
= & \frac{1}{2} \operatorname{Pr}(\{\eta<0\} \bigcap\{\xi<0\}) \leq \frac{1}{2} \times \frac{1}{2}=\frac{1}{4} .
\end{aligned}
$$

This establishes the upper-bounding part of our lemma.
On the other hand,

$$
\operatorname{Pr}(\{\eta<0\} \bigcap\{\xi<0\})=\frac{1}{2} \operatorname{Pr}\{\eta \xi>0\}
$$

so, in view of Lemma 14, we also have

$$
\begin{aligned}
\operatorname{Pr}(E) & =\operatorname{Pr}\{\eta<\xi<0\} \\
& =\frac{1}{2} \operatorname{Pr}\{\eta \xi>0\} \operatorname{Pr}(\eta<\xi \mid\{\eta<0\} \bigcap\{\xi<0\}) \\
& =\frac{1}{4} \operatorname{Pr}\{\eta \xi>0\} \geq \frac{1}{8} .
\end{aligned}
$$

4

We are now able to prove Lemma 10.

- Proof of Lemma 10: The proof follows directly from Lemmas 6 and 15 . By Lemma 15 , the union of the events $G_{S T}$ has probability between $\frac{1}{4}$ and $\frac{1}{8}$. Since these are $2^{2 k}$ equally probable events (and the intersection of every two of them measures zero), it follows that each has probability between $2^{-2 k-2}$ and $2^{-2 k-3}$. This completes the proof of Lemma 10 .

We now have a result stronger than that of Lemma 7.
Corollary 16. Under the conditions of Lemma 7. subject to a model in which the inputs are independent identically distributed random variates (symmetric about the origin), the probability that M_{2} occurs in the solution process tends to a limit between $2^{-(m+n-i-j+1)}$ and $2^{-(m+n-i-j)}$.

- Proof: The proof is essentially the same as that of Lemma 7, taking advantage of the result of Lemma 10 . 4

Before stating the lower-bound result, we need a combinatorial lemma.

Lemma 17. For every $k, k=1,2, \cdots$,

$$
\sum_{i=k}^{2 k}\binom{i}{k} 2^{-i}=1
$$

- Proof: The proof goes by induction on k. The lemma is obviously true for $k=1$. The inductive step is as follows

$$
\begin{aligned}
& \sum_{i=k+1}^{2 k+2}\binom{i}{k+1} 2^{-i}=\sum_{i=k+1}^{2 k+2}\binom{i-1}{k} 2^{-i}+\sum_{i=k+2}^{2 k+2}\binom{i-1}{k+1} 2^{-i} \\
&= \frac{1}{2} \sum_{j=k}^{2 k+1}\binom{j}{k} 2^{-j}+\frac{1}{2} \sum_{j=k+1}^{2 k+1}\binom{j}{k+1} 2^{-j} \\
&= \frac{1}{2} \sum_{j=k}^{2 k}\binom{j}{k} 2^{-j}+\frac{1}{2}\binom{2 k+1}{k} 2^{-(2 k+1)} \\
&\left.+\frac{1}{2} \sum_{j=k+1}^{2 k+2}\binom{j}{k+1}\right)^{-j}-\frac{1}{2}\binom{2 k+2}{k+1} 2^{-(2 k+2)} .
\end{aligned}
$$

Notice that

$$
\binom{2 k+1}{k}=\frac{1}{2}\binom{2 k+2}{k+1} .
$$

The rest of the proof follows easily. 4
Finally, we can prove a quadratic lower bound on the expected number of bases of type (ii) occurring in the solution process.

Theorem 18. The expected number of bases of type (ii) occurring in

 the solution process grow's quadratically with m.- Proof: We rely on figures obtained in Corollary 8 and the lemmas of the present section. The number of bases, with indices i and j as defined in Lemma 7, is

$$
\sum_{k=0}^{\min (m-i-1, n-j)}(k+1)\binom{m-i-1}{k}\binom{n-j-1}{k-1}
$$

By Lemma 16, the probability of a basis of this type to occur in the process is at least $2^{-(m+n-i-j+1)}$. It follows that the expected number of these bases occuring in the process is at least

$$
\begin{aligned}
& \frac{1}{2} \sum_{k=1}^{m-1}\left((k+1) \sum_{i=0}^{m-k-1}\binom{m-i-1}{k} 2^{-(m-i)}\right. \\
& \left.\quad \sum_{j=0}^{n-k}\binom{n-j-1}{k-1} 2^{-(n-j)}\right) \\
& \quad=\frac{1}{8} \sum_{k=1}^{m-1}\left((k+1) \sum_{i=k}^{m-1}\binom{i}{k} 2^{-i} \sum_{j=k-1}^{n-1}\binom{j}{k-1}^{2-j}\right) .
\end{aligned}
$$

The latter is greater than

$$
\begin{aligned}
& \frac{1}{8} \sum_{k=1}^{\left\lfloor\frac{m-1}{2}\right\rfloor}\left\{(k+1) \sum_{i=k}^{2 k}\binom{i}{k}^{2-i} \sum_{j=k-1}^{2 k-2}\binom{j}{k}^{-j}\right\} \\
& =\frac{1}{8} \sum_{k=1}^{\left\lfloor\left\lfloor\frac{m-1}{2}\right\rfloor\right.}(k+1)>\frac{1}{64} m^{2}-\frac{1}{16} m
\end{aligned}
$$

We have not attempted to maximize the cocfficient of m^{2} in our lower-bound for the expected total number of steps of the algorithm. The latter is obviously larger than $\frac{1}{64}$ since we also have the bases of type (iv) contributing a similar term. Also, we were quite generous in
the proof, especially in taking the sum only up to $k=\left\lfloor\frac{m^{-1}}{2}\right\rfloor$.
8. Conclusion. We have estimated the expected number of artificial bases occuring in the solution process. It is interesting to mention that the self-dual algorithm can actually be implemented with only a half of the number of pivot-steps as we describe them in this paper. This is due to the fact that every second orthant of R^{m+n}, which is met by the inverse image of the line segment $\left[q_{0}, q\right]$, corresponds to a singular pre-basis (see Section 3). While the inverse image is crossing such an orthant, the point in the image space does not move at all. Subject to this observation, the expected number of steps, as we have estimated it in this paper, is bounded from above by

$$
m^{2}+1.5 m+0.5
$$

(assuming $m \leq n$). A better bound is obtained if the smaller exponents of ϵ are assigned to the problem with the fewer variables (see Section 5). The result is that asymptotically, when n tends to infinity while m is fixed, the average number of steps is bounded from above by

$$
m^{2}+m
$$

but the previous bound prevails for any m and n. Under the stronger model of Section 7 the probabilities corresponding to types (ii) and (iv) are multiplied by $\frac{1}{2}$. This implies a uniform bound of

$$
0.5 m^{2}+1.5 m+0.5
$$

decreasing to

$$
0.5 m^{2}+0.5 m
$$

as n tends to infinity. On the other hand the expected number of steps is bounded from below by $\frac{1}{64} m^{2}-\frac{1}{16} m$. This lower can obviously be improved upon (since it is based on type (ii) only), but we have not attempted to do so in the present paper.

We finally note that the conditional expectation of the number of steps, given that the problem has an optimal solution, can now be bounded from above by a low-order polynomial in the case usually considered most difficult, that is $m=n$. The probability that the problem has an optimal solution is

$$
\binom{m+n}{m} 2^{-m-n}
$$

(see [A]). In case $m=n$ this is of order $m^{-\frac{1}{2}}$. Thus, the conditional expectation of the number of steps in this case is $O\left(m^{2.5}\right)$. Also, an obvious consequence of our result is that the probability that the algorithm will require an exponential number of steps is exponentially decreasing to zero. However, we expect a stronger result to be obtained by a more careful look into the distribution of the number of steps.

References

[A] I. Adler, "The expected number of pivots needed to solve parametric linear programs and the efficiency of the Self-Dual Simplex method", Department of Industrial Enginecring and Operations Research, University of California, Berkeley, June 1983.
[AB1] I. Adler and S. E. Berenguer, "Random linear programs", Technical Report ORC 81-4, Operations Research Center, University of California, Berkeley, 1981.
[AB2] I. Adler and S. E. Berenguer, "Duality theory and the random gencration of linear programs", manuscript, Department of Industrial Engineering and Operations Research, University of California, Berkeley, 1981.
[AB3] I. Adler and S. E. Berenguer, "Generating random linear programs", Revised manuscript, Department of Industrial Engineering and Operations Research, University of California, Berkeley (1983); submitted to Mathematical Programming.
[BI] C. Blair, "Random linear programs with many variables and few constraints", Faculty Working Paper No. 946, College of Commerce and Business Administration, University of Illinois at Urbana-Champaign, April 1983.
[Bu] R. C. Buck, "Partition of Space", American Mathematical Monthly 50 (1943), 541-544.
[Bol] K.-H. Borgwardt, "Some distribution-independent results about the asymptotic order of the average number of pivot steps of the simplex method", Math. of Oper. Res. 7 (1982), 441-462.
[Bo2] K.-H. Borgwardt, "The average number of steps required by the simplex method is polynomial", Zeitschrifl fur Operations Research 26 (1982) 157-177.
[D] G. B. Dantzig, Linear programming and extensions, Princeton University Press, Princeton, New Jersey, 1963.
[H] M. Haimovich, "The simplex algorithm is very good! - On the expected number of pivot steps and related properties of random linear programs", Columbia University, New York, April 1983.
[KM] V. Klee and G.J. Minty, "How good is the simplex algorithm?", in Inequalities III, Academic Press, New York, 1972, pp.159-175.
[MS] J. May and R. Smith, "Random polytopes: Their definition, generation, and aggregate properties", Mathematical Programming 24 (1982) 39-54.
[L] C. E. Lemke, "Bimatrix equilibrium points and mathematical programming", Management Science 11 (1965) 681-689.
[Mel] N. Megiddo, "Improved asymptotic analysis of the average number of stcps performed by the self-dual simplex algorithm", preliminary report, September 1983.
[Me2] N. Megiddo, "On the expected number of linear complementarity cones intersected by random and semi-random rays", preliminary report, September 1983.
[Mu] K. G. Murty "Computational complexity of parametric linear programming", Mathematical Programming 19 (1980) 213-219.
[S1] S. Smale, "On the average number of steps of the simplex method of linear programming", Mathematical Programming 27 (1983), to appear.
[S2] S. Smale, "The problem of the average speed of the simplex method", Proceedings of the 11th International Symposium on Mathematical Programming, Universitat Bonn, August 1982, pp. 530-539.

