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PRIMAL-DUAL INTERIOR POINT ALGORITHMS
FOR CONVEX (QUADRATICALLY CONSTRAINED
AND SEMIDEFINITE OPTIMIZATION PROBLEMS

I. Adler F. Alizadeh

Abstract. In this paper we examine primal-dual interior point methods for opti-
mization problems over the semidefinite cone and the p-cones (in particular the “ice
cream cone”). We study similarities and differences of such interior point methods
with the analogous algorithms for linear programming.



RRR 46-95 PAaGeE 1

1 Introduction

It has been observed that many of the techniques used to derive and analyze interior point
methods for linear programming may be extended, in a sense “word by word”, to more
general domains. For instance in [Ali91] Ye’s methods based on Todd—Ye potential reduction
function were extended to semidefinite programming (SDP). In [MN93] Karmarkar’s original
algorithm was extended to optimization problems over the “ice cream cone” (see below for
definition); optimization over such cones is equivalent to convex quadratically constrained
quadratic programming. On the other hand Nesterov and Nemirovskii have laid out a general
theory of interior point methods based on the concept of p—self-concordant barrier functions
[NN94]. In this important work the authors have shown that one can maximize a linear
function over any convex set endowed with such barriers in time proportional to O(,/p)
iterations.

In this work we are concerned with extension of primal-dual methods of the type origi-
nally proposed by Kojima et al [KMY89]. Such methods are proposed for linear programming
and define the primal-dual central path as

{(x,y,2)|Ax =b, ATy +z=c, and z;2; = pi}

Monteiro and Adler in [MA89] presented a simple analysis of such methods and showed that
the number of iterations is proportional to y/n. It turns out that “word-by-word” exten-
sion of this analysis to semidefinite programming or to quadratically constrained problems
(QCQP) is more challenging. For instance Monteiro and Adler implicitly use the fact that
multiplication of diagonal matrices is commutative. However, analogous analysis for SDP or
QCQP does not involve diagonal matrices. We will elaborate on some of these difficulties
in the following section. Our goal is to derive an O(4/n) iteration primal-dual algorithm for
SDP and QCQP which is a direct extension of Kojima et al and Monteiro Adler algorithms.

Notation:

When in the context of QCQP we use boldface lower case letters for column vectors xetc. If
we need to refer to the 7' entry of a vector we use parenthesis: (x;); means the j*% entry of
the " vector. Also, for reasons to become clear shortly, in QCQP unknown primal x; and
dual z; vectors along with the objective vectors c; are indexed from zero, with zeroth entry
playing a special role. For these vectors we have occasion to use the subvector indexed from
1; for this purpose we use X etc. Thus x = ((x)o,X)7. In addition we define

100 & (x)3 - <

Also define the reflection matrix R and vector u:

1 0 - 0 1

0O -1 .-« 0 0
R . . and u & ]

0 0 - —1 0
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both of which are indexed from zero. Thus,
v(x) = x" Rx

In semidefinite programming we use capital letter for symmetric matrices: X, Z, C, etc.
But sometimes we need to treat these matrices as vectors in n? dimensional Euclidean space.
We use the operator vec for this purpose, for instance vec X, vec (ABC) etc. The inverse
of the vec operator is the Mat : Thus for an n? vector vMat v is an n x n matrix V with
vec V = v. Also, A = B (respectively A > B) means that A — B is positive semidefinite
(respectively positive definite.) Finally we use the following well-known facts:

vec (ABC) = (CT ® A)vec B and (A® B)(C ® D) = (AC) ® (BD)

2 Complimentary slackness

In general every convex programming problem can be laid out in the following “cone opti-

mization” format:
T

min c¢'x
st. Ax=Db (1)
X ZK 0

Here K is a closed, convex and pointed (i.e K N(—K) = {0}) cone and x >k y (respectively
X >k y means that x —y € K (respectively x —y € Int K). Let K* be the polar cone of
K, that is:

K ={z: xTz>0forall x € K}

Then the following problem is dual to (1):

max bly
st. ATy+z=c (2)
Z ZK* 0

For our purposes we assume the following;:
1. 9x >k 0 where Ax = b.
2. dy,z >k» such that ATy +z = c.

3. A is full rank.

These conditions are sufficient to guarantee that the optimal values of (1) and (2) are
finite and equal to each other.

Theorem 2.1 Strong duality: Let z; be the minimum value of (1) and zy the mazimum
value in (2). Then assuming conditions 1-3 above implies z1 = zs.
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Observe that the so—called weak duality theorem, z; > 25 is quite easy:
21—z =clx —bly =cfx— (Ax)Ty = xT(c — ATy) =xTz >0

The last inequality is the direct consequence of the definition of polar. As a result we have
shown that the quantity x7z always indicates the duality gap for a primal and dual feasible
pair (x,z).

Let x, z be two vectors. For each pair of polar cones (K, K*) the three statements:

1. xe K
il. z € K,
ii. xTz =10

impose n degrees of restriction on the pair x, z in general; these n restrictions—sometimes re-
ferred to as complementarity conditions— along with linear equations Ax = b, and ATy +z =
¢ should completely determine the primal and dual solutions (x,y,z) under appropriate
nondegeneracy assumptions. However, there is no general formula for complementarity con-
ditions for all cones!. However, for specific cones one can determine these conditions, often
by elementary methods. In many cases one can find a function F : R* x £" — R™ express-
ing the complementary conditions; Also, F may be differentiable. Notice that in order to
extend Kojima et al and Monteiro—Adler interior points methods we must have access to the
complementarity conditions explicitly. We now examine some concrete cones.

2.1 The positive orthant

Let K % {x : x; > 0}. This is the positive orthant and optimization over K is linear

programming. In this case the complementarity conditions are precisely the complementary
slackness theorem which states that primal feasible x, and dual feasible z, are optimal iff
T2y — 0.

2.2 Ice Cream Cones

Let Q be the “ice cream” cone, that is

©- {X € R |(x)o >

LActually if we have any smooth barrier function for the cone K we can derive the n explicit equations
defining the complementarity relations; see for example the section on the logarithmic barrier functions in
the sequel. On the other hand Nesterov and Nemirovskii show that any closed, pointed and convex cone is
endowed with an n-self-concordant barrier function. They construct a universal barrier b(x) by considering
logarithm of volume of the set-polar of K centered at x. Thus in a sense we have a general method of deriving
the complementarity relations in the most general case. Nevertheless such a procedure is not computationally
tractable in general.
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Wesay x>pyif x —y € Qand x>y iff x —y € Int Q. (x<gy and x<gy are defined
similarly.)
Consider the following pair of primal and dual problems:

min clx; +---+ cfx, max bTy
st. Axy+---+A.x,=Db s.t. AlTy +zi=c¢ fori=1.--n (4)
X;>0 0 fori=1.--n zi>o 0 fori=1.--n

Note that each x;,2; € R™ may have different size for each ¢. Assuming there is some
vector y such that ¢; — A;y>0 0 for each ¢ = 1---n (Slater condition) strong duality holds
and the values of the two objective optimization problems are equal. (We assume that both
are bounded and have finite solution.)

Since our intent is to derive a strict primal-dual interior point algorithm a la Monteiro—
Adler, first we need a complementary slackness theorem.

Observe that at the optimum, we have:

inTzi =0 (5)

But for each x;> ¢ 0 and z; > 0 we have (by self-polarity of the ice cream cone) XiTZi > 0.
Thus, (5) implies that
x{z;=0fori=1---n (6)

i
Now an explicit complimentary slackness theorem can be derived easily from the following
lemma:

Lemma 2.1 Let x>0 0 and 2> 0. Then xTz = 0 iff

2 or equivalently (x)i(z)o + (2)i(x)o =0 fori=1,---,n

(21 (2 (2
¥(x) = (%)2 = (X)2 + -+ + ()2 = 0 or equivalently y(z) = (2) — (2)? + -+ + (5)2 = 0

Proof: This lemma is essentially a rewording of the Cauchy-Schwartz-Boniakovsky inequal-
ity (see the more general lemma 2.3.) Here is a simple proof: We have

(%3 > ()2 (7)

and
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Multiplying both sides of the latter inequality by ((x)o/(z)o)* we have:

i = 3 () ®)

Also xTz = 0 is equivalent to

k3

2t =23 (a2 )

Z)o

Adding (7), (8) and (9) we get:

n 2
x
=Y ((X)i + (Z)i( )0)
i=1 (z)o
which immediately implies part i. To prove part ii observe that the ratio can be written as:

Ko _ (e (%) _ (®o(z)o + -+ + (X)n(2)n

(2o (21 (@a X2+ + (X)al2)n (2)
Therefore

k3

3 (x)5(z); = 0 iff 7(x) = 7(z) = 0.

j=0
which proves the lemma. The converse is obvious. [ ]

Corollary 2.1 Let vectors xi, z; (fori=1,---,n) andy be feasible for the primal-dual pair
(4). Then (assuming Slater condition) they are optimal iff fori=1,---.n

Ko G (<
@~ (@~ (@ (10)
(i)} = ()2 + o+ (i), (11)

Proof: This is immediate from previous lemma. It is useful however to derive it by applying
KKT conditions on the primal problem in (4). For simplicity we assume there is only one
inequality constraint ‘>¢o’ (i.e n = 1); the proof below immediately extends to the case
where there are k inequalities. Define the Lagrangian functions:

Llxy,a) < Tx+ (b~ Ax)Ty + oy(x) (12)
Now taking gradient of £ with respect to x, yand «a, we get:
Vil = e’ — yTA — 2a ((X)Ov _(X)17 Tt (X)n)) =0
VyL=b—-Ax=0
L =7(x)=0

T

Renaming z Lt o7 yT A we get the result. (Thus, the equations arising from V£ = 0 give

rise to same equations as given in Lemma 1.1.) ]
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A related problem

Conn and Overton in [CO94] have worked on the following variant (note: vectors are
indexed from 1):

max cfxl —|—---—|—c£xn
st. Axi =0 fori=1,---,n (13)
|xi| <1 fori=1,---.n

min ||z + -+ + |[za]|
st. Y, ATy +zi=c; fori=1,---n

They derive the complementary slackness theorem

12| (x3); = (23); (14)
Notice that his problem can be easily transformed to the standard problem (4). Simply
introduce new variables z1, - - -, zpn, and replace objective of the min problem by z; +-- -4 2

and add the constraint that vectors (z;,2{ )7 >g 0. Then Conn and Overton’s dual problem
as well as their complementary slackness theorem are derivable from ours.

2.3 Semidefinite Programming

. . . nXn .
Now Let us consider the space of n x n symmetric matrices (R 2 ) and consider the cone of
positive semidefinite matrices. In this case we use P instead of K as our cone:

fpd:ef{XEg%"zﬂ; aTXaZOforallaE%n}

This cone is also self—polar and the following pair of primal and dual optimization problems
are referred to as the standard semidefinite programmaing problem

Primal Dual
min CeX max bTy (15)
s.t. A; ¢ X =b; fore=1,---.m s.t. C—->" A =~ 0.
X>0
Here C o X is the inner product of two matrices:
CeXxX ¥ Z Ci; Xi; = trace (CX)
The relation U = V means that U — V € P; “»7 1s the Lowner partial order.
The complementarity condition follows from the following lemma:
Lemma 2.2 Let X =0 and Z = 0. then X o Z =0 iff XZ = 0.
Therefore, in semidefinite programming, our system of equations has the form:
A, e X = b, fore=1,---m
YyAi+Z2=C (16)

XZ =0
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2.4 p-cones

Instead of the ice cream cone we could use the p-cones. Let p > 2 be any real number and
define 1 < ¢ < 2 as follows:

1 1
—r =1
b q
Define the “p-cone” to be
P xl ()0 = (1" + -+ + (x)a[?) 7} (17)

Wesayx >, yiff x—ycPandx >, yiff x—ycInt P. (x <,y and x <, y are defined
similarly.)

It turns out that the polar of p-cones are g-cones, where, 1/p + 1/q = 1. Thus p-cones
are self polar iff p = ¢ = 2. Now the analog of primal dual pair (4) is the following pair:

min cTx max by
st. Ax=b st. ATy+tz=c (18)
x>,0 z>,0

(Notice that unlike the QCQP problem, the case n = 1, is not trivial.) It turns out that the
complementary slackness analog for p-cones is given by the following lemma:

Lemma 2.3 Letx >, 0 and z >, 0. Then, xTz = 0 iff

1.
N
|(z)1] (z)al7 (2)3
and equivalently
(Z)ol ()il — (2)s|(x)5 " =0 fori=1,---.n
and
2.

(%)o = (|G + -+ + (|(0)al)"" equivalently (2)o = (|(2)]* + - -+ + (|(2)n]")?
Proof: This lemma is essentially Holder’s inequality in disguise. We have,

—(®(2)1 — - = (X)nlz)n = (x)o(z)o
> ([P 4 1)) (]2 + -+ 4 |(2)a])
(by Hélder’s inequality)
= [(x)a(2)1] + - 4 |(X)n(2)n]
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But since —(x);(z); < |(x);(z);] we must have equality throughout, and in particular we
must have (x);(z); < 0. Also, Holder’s inequality is satisfied with equality iff

Gnl Il o
|(z)1] (z)n]e ()5
The second part of the lemma is proved as in lemma 1.1. [ ]

Corollary 2.2 Let vectors x, z and y be feasible for the primal and dual problems in
(18).Then they are optimal (assuming Slater condition) iff

BB kP Gl
@8~ l(@nl @) 19)
(x)5 = |(x)1|P 4+ - - - + |(x)a]? Or equivalently (20)
(z)op = [(Z)1]* + -+ + [(2)a]* (21)

For optimization problem over pcones the system to be solved now is given by:

Ax=Db

ATy +z=c

25 (x)i(2); = (22)
(%) (2)0 — ()5 ' (2);] =0 forj=1---m

Deriving Newton’s direction for this system is quite similar to the case of the ice cream cone.
However, proving polynomiality seems to be more challenging. The case of p-cones therefore,
will not be discussed in the sequel.

3 Primal-dual interior point algorithms

We now study the primal-dual interior point algorithms which are extensions of [KMY89]
and [MA89]. We focus on the ice cream cone and the positive semidefinite cone, omitting
treatment of p-cones as they present further difficulties. We also look at the well-known LP
case as a blueprint based on which the other problems are developed.

3.1 logarithmic barrier for primal and dual problems
3.1.1 Ice cream cone:

Let us replace the primal problem with

(P.) min > 1C Xi — i iy Iny(x;) (23)
st. Yr,Axi=b
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Now in order to solve the primal-dual pair (4) we derive the KKT conditions on (23) and

apply Newton’s iteration to the resulting system of equations:

(Xi)o

2 —(Xj
ci—AlTy— a ( ) =0 forz=1,---,n
7(xi)
_(Xi)ni
Z AiXi =b
=1
Setting
i d:ef Ci — A;Fy
We have
(xdo (ki (ke ) 1(xi)
(Zi)o (2i)1 (i) 2p (Xi)o(Zi)o + -+ + (Xi)ni (Zi ),

which implies
(%i)o(Zi)o + -+ 4 (Xi)ny (2)m; = 210
Similarly if we relax the dual problem we get

(D) max bTy —v X0 [In[(z)] — (z)] — - — (z)}]
s.t. AlTy + 7z = ¢

And the KKT conditions on the dual gives:

b — Z AiXi =0
=1
ci—Ay—2z=0
(Xi)o

2v —(Zi)1 (Xi)1

(), (i),
Which implies
(xi)o (%) (Xi)n 20 (Xi)o(Zi)o + - + (Xi)ni (Zi)ns

(zi)o (2 (Zi)n (i) v(zi)
and therefore

(xi)o(Zi)o + -+ + (Xi)n; (Zi)n; = 2V

(32)

(33)

We see that by identifying x;, y and z; in the primal with the corresponding variables in the
dual we will have g = v; in other words applying KKT on logarithmic barrier relaxation of

the primal is equivalent to KKT conditions on the logarithmic barrier relaxation of the dual.
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3.1.2 positive semidefinite cone:

Using the function In det X and proceeding as before by replacing the primal problem with
the relaxed barrier version we get:

min C'eX —plndet X

st. A;e X =b; fore=1,---.n (34)
The Lagrangian function is given by
L(X.,y) YoeX - plndet X — > y;(b; — A; 0 X)
and applying the KKT conditions we get the following system of equations:
VX,C:C—EyiAi—,uX_lz() (35)
VuL=b—A,eX =0fori=1,---.n
Now introducing a new symmetric matrix Z we get the following system:
A; e X =b; fore=1,---.n
Yyidi+Z=C (36)
XZ =upl

where the last equation is equivalent to Z = puX~!. Notice that this is equivalent to the
relaxed from of the complementary slackness condition X7 = 0.

Now let us apply the same approach on the dual:

max bTy —viIndet Z
s.t. EylAl + 7 = C

The dual Lagrangian now is (with the Lagrange multiplier a symmetric matrix):
L(X,y,Z)=bTy —vindet Z — X o (C — S yidi — 2)
Applying KKT we get
VL =C—Yydi—Z =0
VuL=b—AeX =0fori=1,---,m
VZ,C:VZ_l—XZO

which is essentially the same system one gets from the primal problem.
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3.2 The Newton Iteration

All three cones (the positive orthant, the ice cream cone and the positive semidefinite cone)
have the property that the complementarity condition is of the form F(x,z) = 0, where each
F; is a bilinear form in x and z. Therefore the derivative of F with respect to zis a matrix
dependent only on x, and with respect to xa matrix entirely dependent on z; let us call these
matrices Z and X respectively.

Therefore, the process of deriving the Newton iteration in all three cones are quite similar.
First notice that the relaxed complementary slackness theorem in all three cases has a matrix
formulation:

XZe=Xz=ZXe=2Zx = e (37)

where matrices X and Z and vector eare different in each of the three optimization problems.
We will derive the specific expressions for each of these cones in the following subsections.
However, notice that for all three, the newton direction Ax, Ay, Az)is given by the following

system:
A0 0 Ax 0
0 AT T Ay | = 0 (38)
zZ 0 X Az XZe — pe

where A is the coefficient matrix of the primal problem. The vector eis sometimes referred
to as the “center” of the cone. The relaxed complementarity condition can be written in the
matrix form:

XZe=2ZXe = pe
Solving (38) symbolically we can obtain the newton direction as follows:
Ax=[Z71 - ZIXAT(AZTXA)TAZ Y (X Ze — pe)

Ay = —[(AZTTXA)TTAZ7Y(X Ze — pe) (39)
Az = AT[(AZTPXA)TTAZ7 (X Ze — pe)

3.2.1 In LP:

Here the relaxed complementarity conditions z;z; = g for ¢ = 1,---.n can be written in the
matrix form (37), where

X = Diag (x), Z = Diag (z), ande =1
(1is the vector of all ones.)
3.2.2 In QCQP:
The relaxed complementary slackness conditions are given by

Yito(xi)j(zi); = fori=1---n )
(xi);(zi)o + (xi)o(z1); =0 fori=1---m, j=1---m;
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Notice that xj,2z; € R 1. To see what X', Z and e are explicitly we temporarily assume
that n = 1 and n; = k and therefore we will drop the subscripts. We have:

(xX)o(z)o + -+ + (X)r(2)r = (41)

and
(x);(z)o + (x)o(z); =0 for j =1,--- k& (42)

Now replacing (x); and (z); by (x); — (Ax); and (z); — Az);, respectively, and dropping the
nonlinear terms, (41) results in

(x)oA(z)o + A(X)o(z)o + - - - + (X)e(Az)r + (AX)i(2)e = (X)o(Z)o + -+ + (X)u(2)n — 1 (43)
Similarly (42) results in:
(x);A2)o + (A%);(2)o + (2);(Ax)o + (Az);(x)o = (x);(2)o + (X)o(2); (44)

From (43),(44) we see that

def (z)1 (z)o

Z = Arw (z) : (45)
(2)r (z)o
Similarly
(x)o (%) (%)
X = Arw (x) & (’f)l (o } (46)
(%X)r (x)o
Finally
1
et | 0
e=u= : (47)
0

Thus the operator “Arw” maps a (zero indexed) vector xon to a “arrow shaped” matrix where
the first row and column are identical to x, the diagonal elements are x, and everywhere
else we have zero. The “Arw ” operator is the analog of “Diag ”

In the context of QCQP let us also define:

operator in LP.

AX ¥ Arw (Ax) and AZ ¥ Arw (Az)
In the general case where n # 1 we simply have:

X =Arw (x1) ® -+ - ® Arw (xpn) and similarly Z = Arw (z1) @ - -- & Arw (2zn)



RRR 46-95 PAGE 13

where @ is the direct sum of matrices. In addition

Uy

Uk

(Here each u; = (1,0,---,0)7 is an n;-vector.)

Observe that x>¢ 0 iff Arw (x) = 0. This shows that QCQP is also a special semidefinite
programming problem as was observed by Nesterov and Nemirovskii [NN94]. However, in
terms of computational complexity, it is not useful to treat QCQP as an SDP, because in
that case interior point methods imply complexity proportional to v/ n;k rather than /n,
see the development under semidefinite programming in the next section. Notice also that
Arw (x;) and Arw (z;) are low rank perturbations of diagonal matrices (in fact multiples of
identity), and inverting each one is quite straightforward.

The system of equations to be solved in QCQP is therefore given by

A1X1—|----—|—Anxk:b

A?Y‘inzci fori=1---n
Yioxi)i(zi); = p fori=1--m

(x:);(2zi)o + (Xi)o(z); =0 fori=1---m, j=1---n,

(48)

Remembering that x;, z; € R+ and A4; € R+ and setting N def >, n; +n the system
(48) has 2N + m equations in the same number of unknowns. Applying newton iteration to
(48) we get:

A -+ A, 0] 0 - 0 Ax;
0 --- 0 |AT] T : 0
: R : - Axy 0
0o --- 0 AZ: I Ay — | XiZjuy — puy (49)
A 0 | Xy Az, :
: : : XpZyuy — puy
Zn | 0 X, Az,

This is analog of (38) where A = [A4;,---, A,]. And each X; = Arw (x3), each Z; = Arw (z;)

3.2.3 In SDP:

For the SDP problem the relaxed complementary slackness is given by the matrix relation:
XZ =upl

However, this relation is not symmetric, that is given symmetric matrices X and Z, the
matrix X7 is not always symmetric. The result is that after applying the newton iteration,
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the direction AX may not be a symmetric matrix. To overcome this problem we instead use
the following as the relaxed complementarity condition:

XZ + 72X =2ul

Again replacing X by X — AX and Z by Z — AZ and removing nonlinear terms the com-
plementary relations give us:

XAZ+AZX +ZAX + AXZ =2u] — XZ —ZX (50)
Writing this in the vector notation we get:
(Z@I+1@ Z)vec (AX)+(XQ®I+1®X)vec(AZ)=2uvecl —vec(XZ+2ZX) (51)
Thus, in SDP
X=XQI+I®X, Z=2Q1+1®Z, and e=vecl

Recall that ® is the Kronecker product of matrices and the operation A® I + I ® B is the
Kronecker sum of matrices A and B, see [HJ90].
For the SDP problem our system of equation is given by:

Avec X =0
ATy +vecZ =vecC (52)
XZ+7ZX  =2ul

Thus the newton system of equations can be written as:

Avec AX =0
ATAy +vec AZ =0 (53)
XAZ + AZX + ZAX + AXZ =2p]l — X7 - ZX

Or in the vector/Kronecker notation:

A 0 0 vec AX 0
0 AT I Ay = 0
ZI+I®Z 0 X®I+I0X vec AZ vec (XZ + ZX —2ul)

(54)

3.2.4 General results for all three cones:

We now prove some statements that are true regardless of which of the three cones we are
working on. First notice that the complementarity condition is equivalent to

Xz=Zx=10

in all three cases. To obtain the general system of equations arising from applying the
Newton method one replaces x, y and z with, respectively x — Ax, y — Ay and z — Az, and
ends up with solving a system of equations which has the following generic form:
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Lemma 3.1 The solution of (38) satisfies
AxTAz =0
Proof: Multiply both sides of the second set of equations
ATAy + Az =0
by Ax and notice that by the first set AAx = 0.
Lemma 3.2 For all three cones
1. Ze=1z and Xe = x.
2. On the central path XZ = ZX .
3. Xz = Zx = pe
Second, let us define the primal-dual central path as:
{w, = (xT,y7,20)T : (x7,y7,2")7 satisfies (38) for some p > 0 }

Suppose x and z are on the primal-dual-central path for some p, and Ax and Az are
newton iterates. Let us assume that we take a step length of « in this direction and that

X =x— aAx
y=y-—alAy
7z =17 — alz

are the new points.

Lemma 3.3 For all three cones the mazimum « such that both x — aAx and z — aAz are
feasible is given by

1

— = max{\ (X TTAX), M (Z7TAZ)}

a

Where A1(A) is the the largest eigenvalue of A.

Notice that since for all three cones X = 0 and AX is symmetric the eigenvalues of (not
necessarily symmetric) matrix X 'AX are all real; the same holds for Z7'AZ.

Lemma 3.4 Let xand zbe on the central path, and Ax and Az be the solution of (38) with

p=0. Then
%7z = (1 — a)x’z
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Proof:

N>
|

= (x — aAx)T(z — aAz)
= xTz — a(eT ZAxe + eT X Aze) + aAxT Az
= (1 —a)xTz
|
In this section we will show that if « is chosen as large as possible then one step of the
newton direction will reduce the duality gap by a factor of 1 —1/4/n. Since we have already
shown the amount of reduction is exactly 1 — «, we only need to show that a > 1/4/n.
In the remainder of this section We manipulate the relation

ZAx+ XAz = XZe — pe
in each of the three cones and show the following lemma:
Lemma 3.5 Let xand zbe on the primal-dual central path. Let also that Ax and Az be the

solution of the system (38) with p = 0. Finally let a be the mazimal number such that both
X =X — aAx and z = z — aAz are feasible. Then

o>

Bl

3.3 Behavior on the central path

We will now set out to prove lemma 3.5.
In case of LP Lemma 3.5 is easy. One has

a = max{a : Diag (x) — aDiag (Ax) > 0 and Diag (z) — aDiag (Az) > 0}

which is equivalent to

%:mﬁx((A?)z?(Azl )<Z(Aw Az)zlz <Awl Azl> _2ZA.@.A%]

84 Z; Z; Zl B &Ly Z; L 24

But the last sum equals zero because all denominators z;z; = ¢ and the numerators add up
to zero. Also, from z;Ax; + x;Az; = ©;2z; we have

A:Bi Azi
+

Ly 25

=1

Thus, the right hand side above adds up to » and so we get

a >

Bl
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3.4 Proof of Lemma 3.5 in QCQP

First we note some useful relations. We will develop most of our machinery with the as-

sumption n = 1 and n; = k, in order to avoid tedious notation. Recall that

-

"
p—
o
~———
N
I
AN
——
N &
o
~———

and X = Arw (x) and Z = Arw (z)

Then %7 7
¥ ( (;;)o ?X)OI ) and Z = ((;T)O (ZZ)OI )

and

X1— 1 ( (%)o _FT ) and 771 = —— ( (2)o —2"

1
X () +xx7) 1)\ —Z G (1(2)] +72")

On the central path, for a given constant p > 0 the following relationships hold:
1. We have

and

def (x)o _ _(X)1 _ _ _(X)k _ Kk v(x)
" (2)o (z)1 (z)e  v(z) n
2. We have
x=r,Rz
and . ) r
2= (% )
3. Thus,

Therefore X and Z on the central path commute with each other. We also have

1 T
(XZ)_l — ¥(x) 0 7
Lo L(I—I-&)

(x5 v(x)
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Now Suppose Ax and Ay and Az are derived from the solution of the Newton system with

starting points x and z on the central path and with parameter p. Recall that

L max{(X1AX), M (271AZ))
(87

Observing that XZ = Z X on the central path, the relation XAZu+ ZAXu = X Zu implies

Lemma 3.6 For x and z on the central path we have

1.

Proof:

1. Simply multiply both sides by X~1Z~1.

2. We have

AZZu+ AXX tu

Z7IAZu+ X 'AXu=u

AZZlu+ AXX tu=u

Az % Ax IX
v(z) 7(x)

1 7
AZx + —*£
7.77(2) 7(x)

1
~(AZXu + AXZu)
I

AXz

u

To show the next result we first introduce some notation: Let

ul(XT'AX) = 2-(64.87)

¥(x)

(XTAX)u = -L-(8,,865)7

¥(x)

where

B & (x)o(AX)o — XTAX

Bx = (%)oAx — (Ax)ox
8 & —(Ax)oX + WeAX

Here Wy for any vector x is defined as

(fy(x)f + XXT)
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Note, therefore that
xT W, = (x)ox”

Similarly, define 8,, 3, and é,, by replacing z for x.
Observe that by inner producting the relation in parts 1 and 2 in Lemma 56 above we
get

W (XT'AX) u+u (Z7AZ) a4+ uT (X TTAXZT A Zja+uT (Z7TPAZX T AX )Ju = 1 (58)
(the right hand side of 58 would be n for n # 1.) However one can prove:

Proposition 3.1 With the assumptions of Lemma 56

1.
w(ZTPAZXTPAX ) u+ uf (X TTAXZTPAZ)u =0 (59)
2 T(r7-1 2 T(y-1 2
u' (7 AZ)uZE7 u' (X AX)uZE (60)
M(ZTAZ)? 2 M(XTAX) ~ 2
Proof:
1. We have,
0.0, = [(X)o(Ax)o — XL AX|[((2)o(Az)o — Z° AZ)
= (X)O(Z)O(AX)O(AZ)O + ETAE ETAE + (Z)O(AX)OETAE + (X)O(AZ)OETAE
and

BT6, = ((x)oAX — (Ax)X)" (—(Az)oZ + WzAZ)
= —(x)o(A2)0ZT AX — (2)0(AX)oXT AZ — (AX)o(AzZ)o(X)0(2z)o + p[(AX)o(AZ)o + AXT AT
—xTAZ 7T Ax

Therefore

0.0, +BLé6, = p ((AX)O(AZ)O + AKTAE), and by symmetry
bxbx + By 6x = 11 ((Az)o(Ax)o + AZTAX).

Now,

u” (X'AXZ7IAZ) utu” (Z7PAZXTIAX ) u = 2656, + BL6x + BL6x] =0

7(x)7(2)
which proves 1. (Again, it should be noted that the last equality holds also for the
case n # 1 since y(x;)y(zi) = p? for all 7 and, while Ax] Az; is not necessarily zero,

the sum °; Ax{ Az; = 0.)
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2. Note that A\; (X 'AX) is a root of

Y(x)A* — 26\ + y(Ax) = 0

M(XTIAX) = (6x £ /82 — 1(x)1(Ax))
2 (x)
Also 1
T/ v—1 _ ) .
u (X TTAX ) u= 72(x)(9x +8L8,)
But

Y

Brbx = 02 — y(x)y(Ax)

So we have

u (X 'AX)u = 02 + 02 + —~(x)y(Ax
( fu= | (x)y(Ax)]
Now observing that for all real numbers « and v

w4 0? > (u—l—v)2

| —

we get
1
ul(XTAX)%u > 5Af(X—lAX)
and by symmetry
1
u (Z7'AZ)a > 5Ai(z—lAZ)

and this completes proof of 2.

Remark. By inner producting (56) and (57) we get:
w(AZZT'AZZTP 4+ AXXTIAX X Hu =1 (61)

Two other terms that is the result of the inner product equals zero by part I of Proposition
3.1. (Again the right hand side is generally equal to u’u = n for the case n # 1.)
It is now easy to prove Lemma (3.6). By part 2 of Proposition 3.1 we have

1
— =max (M(AZZ7") \(AXX ")) <2

o2

And for the general case n # 1 1/a? < 2n or

o>

5] -
N



RRR 46-95 PAGE 21

3.5 Proof of Lemma 3.4 in SDP

We concentrate on the relation:
XAZ +AZX +ZAX + AXZ =XZ+7ZX =2ul

Which is the case when g = 0. First notice that

1
— = max{\ (X TAX), M (Z7AZ)}
a

This is consistent with the lemma 3.3. To see this observe that AZ = AZ QI +1Q® AZ,
and

M(ZTAZ) =M (201410 2)'AZQ1+10 AZ|
Lemma 3.7 For X and Z on the central path with XZ = pl we have:
XAZ+AXZ =ZAX + AZX = ul

Proof: Let P ¥ XAZ + AXZ. We need to show that P = PT = pl. We know that
P+ PT = 2pul and PT — X 'PX. Thus

P+ X'PX =2ul
which is equivalent to the Lyapunov equation:

XP+PX =2uX

Since X 1is positive definite and thus nonsingular, the Lyapunov equation has a unique
solution, which must be P = pul. |
Now to prove lemma 3.4 in case of semidefinite programming we first multiply both sides

of XAZ + AXZ = pI by (XZ)™! which is (1/p)I and get:
ZT'AZ+AXX T =1
After squaring and then taking trace we get:
trace (Z7'AX)? +trace (AXX )’ +trace (Z7TAZAX XY +trace (AXX 'Z7'AZ) =n

But the last two terms of the left hand side each equals AX o AZ which equals zero. Thus
we have
trace (Z_lAX)2 + trace (AXX_l)2 =n
and thus )
— = max (/\f(Z_lAZ),)\f(X_lAX)) <n

a2
Which implies
o>

Bl
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