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We describe a primal-dual interior point algorithm for linear programming problems which 
requires a total of O(~fnL) number of iterations, where L is the input size. Each iteration updates 
a penalty parameter and finds the Newton direction associated with the Karush-Kuhn-Tucker 
system of equations which characterizes a solution of the logarithmic barrier function problem. 
The algorithm is based on the path following idea. 
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1. Introduction 

Consider the linear programming problem 

(P) min eTx 

s.t. A x  = b, 

x~>0, 

where A is an m x n-matrix. Assume that the data A, b and c are integer, and the 
input size is L. This paper presents an algorithm for linear programming (LP) 

problems based on the logarithmic barrier function method and on the idea of 

following the path of minimizers for the logarithmic barrier family of problems, the 

so called "central path". The logarithmic barrier function approach is usually 

attributed to Frisch [3] and is formally studied in Fiacco and McCormick [2] in 

the context of nonlinear optimization. The introduction of the new interior point 

algorithm by Karmarkar, in his seminal paper [6], led researchers to reconsider the 
application of the logarithmic barrier function method to LP problems. Recently, 

this method was first considered by Gill et al, [4] to develop a projected Newton 
barrier method for solving LP problems. The presentation of a continuous trajectory 

of the iterative Karmarkar method was first described by Karmarkar [7] and 

extensively studied by Bayer and Lagarias [1]. Megiddo [9] related this path to the 

classical barrier path in the framework of complementarity relationship between 
the primal and dual linear programming problems. Kojima, Mizuno and Yoshise 
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[8], used this framework to present a pr imal-dual  algorithm that traces the central 
path. Their algorithm is shown to converge in at most O(nL) iterations with a 
computational effort of  O(n 3) arithmetic operations per iteration, resulting in a total 
of  O(n4L) arithmetic operations. 

In this paper,  we build on the ideas in [8] and [9], and obtain a faster algorithm. 

The directions generated by our algorithm are the same as the directions generated 
by the algorithm presented in [8]. However, working closer to the central path, as 
defined and developed in [9], we are able to obtain convergence in at most O(x/-nL) 
iterations. Each iteration involves the inversion of a n x n matrix which can be done 
in at most O(n 3) arithmetic operations. Based on ideas presented in [6], one can 
approximate the matrix to be inverted so that each iteration can be executed, by 
way of rank-one updates, in an average of O(n 25) arithmetic operations, as will be 

described in Part II. Thus overall our algorithm requires O(n3L) arithmetic 
operations. It should be noted that the breakthrough in this line of  research was 
obtained by Renegar [11], who was the first to achieve a speed of convergence of 
O(x/nL) iterations, where each iteration involves O(n 3) arithmetic operations. His 

algorithm is based on the method of centers following the central trajectory. Sub- 
sequently, Vaidya [12] improved Renegar 's complexity to a total of  O(n3L) arith- 

metic operations using the same approach of the method of centers and the updating 
scheme described in [6]. Independently,  an equivalent complexity was also obtained 
by Gonzaga [5], using the logarithmic barrier function approach. Both Vaidya's 
and Gonzaga 's  algorithms are primal algorithms. It should be noted that in order 
to simplify the complexity analysis presentation, we assume throughout the paper  
that m = O(n).  

In Part II, we extend our results to introduce a pr imal-dual  algorithm that solves 
convex quadratic programming problems in O(x/nL) iterations with a total of  O(n3L) 

arithmetic operations. In order to emphasize the simplicity of  the basic ideas 
underlying our approach,  we choose to defer some of the details of the proofs and 
the speedup resulting from the rank-one updates of the matrix to be inverted in 
each iteration to the second part of the paper. 

Our paper  is organized as follows. In Section 2, we present some theoretical 
background. In Section 3, we present the algorithm. In Section 4, we prove results 

related to the convergence properties of  the algorithm. In Section 5, we discuss the 
initialization of the algorithm. Finally, in Section 6, we conclude the paper  with 
some remarks. 

2. Theoretical background 

In order to facilitate the reading of this paper,  we use a notation roughly similar 
to the one in [8]. A discussion of the main results necessary to motivate the 

development of  our algorithm is presented in this section. A detailed discussion of 
these results can be found in [9]. 
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We consider  the pair  of  the s tandard form linear program and its dual 

(P) min cVx 

s.t. A x  = b, 

x~O, 

(D) max bTy 

s.t. A T y +  z = c, 

21>0, 

where A is an m x n-matrix and b, c are vectors o f  length m and n respectively. 

We assume that the entries o f  the vectors b, c and the matrix A are integral. The 

algori thm we consider in this paper  is motivated by the applicat ion o f  the logari thmic 

barrier funct ion technique to problem (P). The logari thmic barrier funct ion method  
consists o f  examining the family of  problems 

n 

( P , )  min cTx--IX Y~ lnxj  
j 1 

s.t. A x  = b, 

x>O, 

where /x > 0 is the barrier penalty parameter.  This technique is well-known in the 

context o f  general constrained opt imizat ion problems. One solves the problem 

penalized by the logari thmic barrier funct ion term for several values o f  the parameter  

/x, with/x decreasing to zero, and the result is a sequence o f  feasible points converging 
to a solution of  the original problem. 

Before we can apply the logari thmic barrier funct ion method,  some assumptions  

on the problems (P) and (D) are necessary. We impose the fol lowing assumptions:  

Assumption 2.1. (a) The set S-= {x c ~n ; A x  = b, x > 0} is non-empty.  

(b) The set T-= {(y, z) ~ ~ "  x ~" ;  ATy + z = C, z > 0} is non-empty.  

(c) rank(A)  = m. 

We say that points in the sets S and T are interior feasible solutions o f  problems 

(P) and (D) respectively. The need for (a) is evident since the logari thmic barrier 

funct ion method  is always applied in the interior o f  the set defined by the inequali ty 
constraints. Assumptions (b) and (c) are also necessary as will become clear f rom 

the discussion that follows. 

Throughou t  this paper,  we use the fol lowing notation.  A point  (x ,y ,  z ) c  
En x R "  x R n will be denoted by the lower case letter w, that is, w --- (x, y, z). I f  x is 

a lower case letter that  denotes a vector x = (xl,  • . . ,  xn) a-, then a capital letter will 

denote  the diagonal matrix with the componen ts  o f  the vector on the diagonal ,  i.e., 

X = diag(xl . . . .  , xn). Given a real number  a > 0, we denote its logari thm to the 
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natural base and to the base 2 by In a and log a respectively. Also, W will denote 
the set defined as follows: 

W-= {(x, y, z); x c S, (y, z) c T}. 

Observe that the objective function of problem (P~,) is a strictly convex function. 
This implies that problem (P , )  has at most one global minimum, and that this global 
minimum, if it exists, is completely characterized by the Karush-Kuhn-Tucker  
stationary condition: 

c - t xX- le  - ATy = O, 

A x = b ,  x > 0 ,  

where e denotes the n-vector of all ones and y is the vector of Lagrangian multiplier 
associated with the equality constraints of problem (P, ) .  By introducing the n-vector 
z, this system can be rewritten in an equivalent way as 

Z Xe  - Ixe = O, 

A x - b = O ,  x > 0 ,  (2.1) 

A f y + z - - c = O .  

A necessary and sufficient condition for problem (P , )  to have an optimal solution 
for all /x > 0 is given by the following result. 

Proposition 2.1. Assume Assumption 2.1 (a) holds and let ~ > 0 be given. Then problem 
(P~) has an optimal solution if and only if the set of  optimal solutions of problem (P) 
is non-empty and bounded. 

A proof  of Proposition 2.1 can be found in [9] (see also [2]). From this result, 
we immediately conclude that if (P , )  has a solution for some /x > 0  then it has a 
solution for all /x > 0. The role played by Assumption 2.1(b) is now provided by 
the following result. 

Proposition 2.2. Assume that problem (P) is feasible. Then the set of  optimal solutions 
of  problem (P) is non-empty and bounded if and only if Assumption 2.1(b) holds, that 
is, the set of  interior feasible solutions of  the dual problem (D) is non-empty. 

The proof of Proposition 2.2 is an application of duality theory for linear program- 
ming. As a consequence of the two previous propositions, we have the following 
corollary. 

Corollary 2.1. Under Assumptions 2.1(a) and (b), problem (P~) (and consequently 

system (2.1)) has a unique solution X(l~ ), for all ~ > O. 

The Karush-Kuhn-Tucker  system (2.1) provides important information which 
we now point out. Assume that /x  > 0 is fixed in system (2.1). Since x >  0, the first 
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equation in system (2.1) implies that z >  0. The third equation in (2.1) then implies 
that the point (y, z) is an interior feasible solution for the dual problem (D). From 
Assumption 2.1(c), it follows that there is a unique y satisfying (2.1). We denote 

the unique point (x, y, z) that satisfies (2.1) by w(/z) = (x (~) ,  y(/z), z(~)) .  Obviously 
w(/z) ~ W. The duality gap at point w c W is by definition given by 

g(w)  =- cTx - bTy. 

Using the two last equations in (2.1), one can easily verify that 

g(w)  = xVz, w c W. (2.2) 

In view of the above relation, we will always refer to the duality gap as the quantity 
xTz instead of the usual one c X x - b V y .  In particular, using the first equation in 
(2.1), we obtain g (w(~) )  = n/z, for all /Z, and therefore g(w(l~))  converges to zero 
as /z goes to zero. This implies that cVx(/z) and bVy(/~) converge to the common 
optimal value of problems (P) and (D) respectively. In fact, we have the following 
stronger result (cf. [9]), 

Proposition 2.3. Under Assumptions 2.1(a), (b) and (c), as /Z->0, x(/z) and 

(y(/z), z(/z)) converge to optimal solutions o f  problems (P) and (D) respectively. 

The following notation will be useful later. Let w = (x, y, z) E W. We denote by 
f ( w )  = (f~(w) . . . . .  f~(w))TcR n the n-vector defined by 

f i ( w )  = XiZi, i ~- 1 . . . .  , n. 

With this notation, the first equation of (2.1) written coordinate-wise becomes: 

f / (W(~U,))  ~ Xi(~J~)Zi(]~ ) = J.L, i = 1 , . . . ,  n. 

We denote by F the set (or path) of  solutions w(/z), ~ > 0 for system (2.1), i.e., 

F ~ {w(/z) ~ (x(/z), y(/z), z(/z));/Z > 0}. 

The path F is usually referred to as the central path associated with the LP problem 
(P). The algorithm which will be presented in the next section is based on the idea 
of following the central path F closely with the objective of approaching the desired 

solutions of problems (P) and (D). The path F will serve as a criterion to guide 
the points generated by the algorithm. 

3. The algorithm 

As in the previous section, we denote a point (x, y, z) c ~n × ~m x ~n by the lower 

case letter w. The algorithm generates a sequence of points w k c W, k = 0, 1, 2 . . . .  , 

where the initial point w ° is provided as input to the algorithm. We require that the 
initial point w°c W be a point satisfying some criterion of closeness with respect 
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to the central  pa th  I :  Given  an LP p rob lem in s tandard  form, in Section 5 we show 
how to construct  an augmen ted  LP p rob lem so that  Assumpt ion  2.1 is satisfied. As 

a consequence  of  this construct ion,  we also show how to obtain an initial point  
w°c  W satisfying the criterion of  closeness. 

Given a current  i terate (x, y, z) c W, a vector  o f  directions Aw =-- (ax ,  Ay, Az) c 

R n x R m × ~n needs to be genera ted  for the de terminat ion  of  the next iterate. Let 

(2, 3~, 2) denote  the next  iterate. We obtain  (2, fi, ~) by setting ~ =- x - Ax, ~ =-- y - Ay 
and 8-= z - - A z  or in more  compac t  notat ion,  ~=-- w - - A w .  

According to [8], the direction Aw chosen to generate  the next  iterate ~' is defined 
as the Newton  direction associated with the K a r u s h - K u h n - T u c k e r  system of  
equat ions (2.1). I f  we denote  the left hand  side of  the system of  equat ions (2.1) by 
H ( w )  =- H ( x ,  y, z),  the Newton  direction Aw at the point  w c W is de termined by 

the following system of  l inear equations:  

D w H ( w ) ~ w  = H ( w )  

where D w H ( w )  denotes  the Jacob ian  of  H at w = (x, y, z). More  specifically, the 
Jacob ian  of  H at w is given by 

[0 i] Z 0 

D w H ( w )  = 0 
A T 

and the Newton  direct ion Aw = (Ax, Ay, Az) is given by the fol lowing system of  
l inear equat ions:  

Z A x  + X A z  = X Z e  - 12e, (3. la)  

A A x  = 0, (3.1b) 

AT Ay + Az = 0, (3.1c) 

where  /2 > 0 is some prespecif ied penal ty  parameter .  Note  that  the solution zlw = 
(Ax, Ay, Az) of  the system of  equat ions (3.1) clearly depends  on the current  iterate 
w = (x, y, z) and on the penal ty  pa ramete r /2  > 0. In order  to indicate this dependence ,  

we denote the solution of  system (3.1) by Aw(w,  I~). 

By simple calculat ion,  we obtain  the fol lowing expressions for  Ax, Ay, az: 

AX = [ Z  -1 - Z - 1 X A  T ( A Z - 1 X A  T ) - I A Z - 1 ] ( X Z e  -- 12e), 

A y = - [ ( A Z - 1 X A  w) 1AZ ' ] ( X Z e - ~ e ) ,  

Zlz = [ A T ( A Z  1 X A T ) - I A Z - 1 ] ( X Z e  - ~e) .  

Therefore ,  to calculate the direct ion Aw =- (Ax, Ay, Az) ,  the inverse of  the matr ix  
( A Z - 1 X A  T) needs to be calculated.  Observe  that  all the other  opera t ions  involved 
in the computa t ion  o f A w =-- a w ( w, fi ) are of  the order  of  O ( n 2) ar i thmetic  operat ions.  
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We are now ready to describe the algori thm. Let 0 and 6 be constants  satisfying 

0 ~ < 0 <  1, 0 < 6 < x / - ~ ,  (3.2a) 

02+32 
~< 0(1 - 6/ , , /n),  (3.2b) 

2(1 - 0) 

where n is the number  of  columns of  the constraint  matr ix  A. One possible  set o f  
values for  the constants  satisfying (3.2) is 0 = 6 = 0.35. At the beginning  of  the 
a lgori thm, we assume that  an initial point  w ° --- (x °, y0, z o) c W is avai lable  such that  

the fol lowing criterion of  closeness with respect  to the central  pa th  F is satisfied: 

[If(w °) - Ixoe II ~ Oixo (3.3) 

where II • II denotes  the Eucl idean norm and Ixo = ( x ° )Tz° /n .  

We now state the algori thm. 

Algorithm 3.1. 
Step O: Assume 0 and  6 are fixed constants  satisfying (3.2). Let w°e  W satisfy 

(3.3). Let e > 0 be a tolerance for  the duali ty gap. 
Set k : = 0 .  

Step 1: I f  (Xk)TZ k <~ e, stop. 

Step 2: Set IXk+~ := Ixk(1 -- 3/x/n) .  
Calculate  Aw k =-- A w ( w  k, Ixk+l). 

Step 3: Set w k+l := w k - A w  k. 

Set k ' =  k + l  and  go to Step 1. 

In  the next  section, we prove  that  all points  genera ted  by  the a lgor i thm above lie 
in the set W and that  they remain  close to the central  pa th  F in a sense to be 
descr ibed later. We also show that  Algor i thm 3.1 terminates  in at most  
O(x/n max( log  e -~, log n, log/Xo)) iterations. This fact will enable  us to show that  
Algor i thm 3.1 per forms  no more  than  O(n  3"5 max( log  e -1, log n, log Ixo)) ar i thmetic  
opera t ions  until its terminat ion.  

4. Convergence results 

We begin this section by  stating the ma in  result  and  its consequences .  The  main  
result  is s tated as follows. 

Theorem 4.1. Let  0 and  ~ be constants  sat is fying relations (3.2). A s s u m e  that w = 

( x, y, z)  c W satisfies 

I l f ( w ) -  Ixell ~< 0ix (4.1) 

where tx = x V z / n and I1" II denotes the Eucl idean norm. Le t  12 > 0 be defined as 

12 = IX(1 - 61x/-~). (4.2) 



34 R.D.C. Monteiro, L Adler/Path following algorithms I 

Consider the point ~=--(~,~,2) C ~ n x ~ m × R n  given by ~=--w-Aw, where 
Aw(w, fi). Then, we have 

(a) [ [f(~)- /2el[  <~ 0/2, 
(b) ~ c W, 
(c) g ( ~ )  ~ ~T~ = n/2. 

aw--= 

The proof  of  Theorem 4.1 will be given at the end of this section. We now give 
an intuitive interpretation of the measure of  closeness (4.l). We can view f (w)  not 
only as denoting the vector XZe but also as a map from Nn x R"  x R n into N" 

mapping w = (x, y, z) into the "complementary"  vector XZe. Under this map, the 
central path F is mapped into the "diagonal"  line f ( F ) =  {~e;/.t > 0}. Also, if we 

let w*= (x*, y*, z*) denote the optimal solution which w(~)  converges to, as 
approaches zero, then w* is mapped by f into the origin of  R" (cf. Proposition 2.3). 
The measure of  closeness has its natural interpretation when viewed in the "com- 
plementari ty" space Rn. The image under f of  the set of  points w for which the 
measure of closeness is satisfied for some /.t > 0, is a "spherical" cone having as 
central axis the "diagonal"  line f ( F )  and having as extreme point the origin of R ". 
Also, the angle formed by the central axis with all the extreme rays of the cone is 
constant and depends on 0. 

Note that (xVz/n)e is the closest point to f (w) ,  we  IV, lying in the "diagonal"  

line f (F ) .  Hence, [If(w)-/. tell  measures the Euclidean distance between f (w)  and 
the line f (F ) .  So, (4.1) can be interpreted as keeping the distance between the 
images of  w and F, under f, relatively small. 

As a consequence of Theorem 4.1, we have the following result: 

Corollary 4.1. The sequence of points (w k) generated by Algorithm 3.1 satisfies 
(a) [[f(w k) -ktke[[ <~ 0/Zk, for all k = 1, 2 , . . . ,  
(b) w k c W, for all k = 1, 2 , . . . ,  
(C) g ( w  k) = ( x k ) T z  k = nl-tk, for all k = 1, 2 . . . .  , 

where I-tk =--/.%(1 -- 6/, fn)k for k = 1, 2 , . . . .  

Proof. This result follows trivially by arguing inductively and using Theorem 4.1. [] 

Viewed with respect to the "complementar i ty  space",  Corollary 4.1 says that, all 
iterates generated by Algorithm 3.1 will lie within the cone and will get closer to 
the extreme point of  the cone, i.e. the origin of  R ~, by a factor of  (1 - 6/x/n) at each 
iteration. Therefore we can view Algorithm 3.1 as a path-following procedure, i.e., 
the sequence of iterates (wk) attempts to trace the central path F so that it eventually 

converges to an optimal solution w* = (x*, y*, z*) for the pair of  LP problems (P) 
and (D). 

We now derive an upper  bound on the total number  of iterations performed by 
Algorithm 3.1. 
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Proposition 4.1. The total number of iterations performed by Algorithm 3.1 is no 
greater than f~-~ [ln(ne-llxo)x/-n/ 6 ] where e > 0 denotes the tolerance for the duality 
gap and tZo =- (x°)r z°/ n is the initial penalty parameter. 

Proof. From (c) of Corollary 4.1, the algorithm terminates whenever n/xk <~ e. Thus, 
it is enough to show that/~ satisfies this inequality. By the definition of/~, we have 

In e >~ -~nn +ln(n~o) 

>~/~ In (1 - ~ n )  + ln(n/zo) 

= In n/x;. 

The second inequality is due to the fact that ln(1 -x)<~ - x  for all x <  1 and the last 
equality follows from the definition of /Xk. Therefore /~ satisfies n/x; ~< e and this 
completes the proof of the proposition. [] 

Define the size L(A, b, c) of a linear programming problem in the standard form 
(P) as 

rl •largest absolute value of the determinant 
L ( A , b , c ) = | o g |  ~ + I  ] 

,, ot  any square submatrix of A / 

+ [log(1 +max Icjl)] + [log(1 +max  [bil) ] + [log(m + n)].  
j i 

It is a well-known fact that if, at some iteration k, we have a point wkc W such 
that the duality gap satisfies (xk)Tz k <~ 2 -°(L~, then from w k, we may obtain optimal 
solutions for problems (P) and (D) in O(m2n) arithmetic operations (cf. [10]). 
Using this observation, we obtain 

Corollary 4.2. I f  the initial penalty parameter iXo satisfies/x o = 2 °(L) then Algorithm 
3.1 solves the pair of LP problems (P) and (D) in at most O(~/-ffL) iterations. 

Proof. Follows directly from the previous proposition. [] 

In Section 5, we will see that the initial point w ° can be chosen in such a way 
that/x0 ~- (x°)Tz°/n satisfies/x0 = 2 °(L). As a consequence of the previous result, we 
have: 

Corollary 4.3. Algorithm 3.1 solves the pair of LP problems (P) and (D) in no more 
than O(n3SL) arithmetic operations. 

Proof. At every iteration, the computational effort is dominated by the calculation 
of the inverse of the matrix A ( z k ) - 1 x k A  T which requires O(n 3) arithmetic 
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operations. By Corollary 4.2, Algorithm 3.l terminates in at most O(x/-ffL) iterations. 
These two observations immediately conclude the proof  of the corollary. [] 

In Part II of  this paper, we will see that Algorithm 3.1 can be modified to yield 
an algorithm which does not only solve linear programming problems but also 
convex quadratic programming problems in at most O(n3L) arithmetic operations. 
This reduction in the complexity will be achieved by introducing a suitable approxi- 
mation of the inverse of  the matrix involved in the computation of the directions 
generated by Algorithm 3.1. 

We now concentrate our effort towards proving Theorem 4.1. Let w = (x, y, z) c W 
and /2>0.  Let a w = ( d x ,  Ay, dz)  be the direction Aw(w,  12). Let r~= w - A w .  The 
next result provides expressions for the product of complementary variables f(v~), 
i =  1 , . . . ,  n and the duality gap g(k)-= ~v2. 

Proposition 4.2. Let  w, /2, Aw and ~ be as above. Then, we have 

f (  ~ ) -- 12 + ,ax, azi,  

( ~ x ) T ( a z )  = O, 

g(  ~ ) = n/2. 

(4.3) 

(4.4) 

(4.5) 

Proof. By definition, we have for all i = 1 , . . . ,  n, 

= (x, - a x , ) ( z ,  - ,az , )  

= xlzi - (xiAzi + zidxi) + AxiAzi 

=/2 + AxiAzi 

where the last equality follows from (3.1a). This shows (4.3). Multiplying (3.1b) 
and (3.1c) on the left by (Ay)  -r and (Ax) v respectively, and combining, we obtain 
(4.4). Recall from (2.2) that g ( ~ ) = ~ i ~ l f ( k ) .  Summing expression (4.3) over all 
indices i = 1 , . . . ,  n and noting (4.4), we obtain (4.5). This completes the proof of 
the proposition. [] 

We now state and prove some preliminary results that will be useful in the proof  
of  Theorem 4.1. 

Lemma 4.1. Let  r, s and t be real n-vectors satisfying r + s = t and rTs >~ O. Then, we have 

Iltll 2 
II RSe  II <~ - -  

2 

where R and S denote the diagonal matrices corresponding to the vectors r and s 

respectively. 
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Proof.  Using the assumptions,  we obtain 

[IrH2+ [[sl]2 ~ < 11r1124 - [Is[[2+2rVs = I l r +  sll= = IIt[[ z 

which implies that Iit112/2>--llrll L[sll ~> ItRSell, where the last inequali ty follows by 
using the definition o f  the Eucl idean norm. This completes the p roo f  of  the 

lemma. []  

Let w = (x, y, z) ~ W and /2  > 0. Let Aw = (ax,  Ay, Az) be the direction Aw(w,/2) .  
Let AX and AZ denote the diagonal  matrices corresponding to the vectors Ax and 

Az. Consider  the vector z l f~ R" defined as Af=- ( A X ) ( A Z ) e .  The next result provides 

an upper  b o u n d  on the Eucl idean norm of  the vector Af  

Lemma 4.2. Let A f  be defined as above. Then, we have 

I I f ( w ) -  ~2ell 2 
I f ~ f l J  < - 

fmi. 

wherefm,~ =- min{xjzi ; i = 1 . . . .  , n}. 

Proof.  Let D =-- ( Z - 1 X )  t/2. Multiplying both  sides of  equat ion (3.1a) by ( X Z )  -1/2, 
we obtain 

D-I  ax  + DAz = ( X Z  ) - ' /2 ( f (  w ) - /2e) .  

Note  also that  f rom (4.4), we have (D-~Ax)T(DAz)  = 0. In  view of  these two relations, 

we can apply Lemma 4.1 with r = D-~Ax, s = DAz and t = (XZ)-l/z(f(w)-/2e) t o  

obtain 

I laf  II-= II(zlX)(AZ)ell 
= I I (D- 'AX)(DAZ)eI[  

½11( X Z ) - l / = ( f (  w) - /2e )  II ~ 

1 ~ ( f , ( w ) - / 2 )  2 

2 i= ~ x i z i  

[ [ f (w) -  /2ell 2 

2fmi, 

and this completes the p roo f  of  the lemma. [] 

We are finally ready to prove Theorem 4.1. 

Proof  of  Theorem 4.1. We will first prove (a). In  view of  relation (4.3), we need to 

show that II Af [I <~ 0/2. To show this inequality, note that by Lemma 4.2, it is enough 
to show that  

llf( w ) -/2e[[2 <~ 0/2. 

2fmin 
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Since /* = x T z / n ,  it follows that  ( f (w) - - /*e )Te=O.  Using this equality, relations 

(4.1) and (4.2) and the fact that  [Jell = ~/-ff, we obtain  

] I f ( w )  - fie II 2 = [If(w) -/*ell2 + H/.e - 12ell 2 

~< (0/*)2 + (]/* --/~] lie]l) 2 

: ( 0 / * ) 2 +  (6/*)  ~ 

= ( 0 2 + 6 2 ) / ,  2 . 

Note  also that  by (4.1), we have f~i ,  i> ( 1 -  0)/*. Thus 

] I f ( w ) - ~ e f [  o +6 
2frown 2(1 - 0) /*  

~< 0(1 - 6 / , / - n ) / *  = 0 ~  

where the last inequal i ty  follows f rom (3.2b) and the equali ty follows f rom (4.2). 
This proves  (a). 

We will now prove (b). F rom (3.1b), (3.1c) and the fact that  w e  W, it follows 
that  ~ --- (~, 33, 2) satisfies A ~ = b and Av33 + ~ = c. We have just to show that  ~ and 

are strictly posit ive vectors to conclude that  ~ 6 W. The  p roof  is by  contradict ion.  
Assume that  xi < 0 or £i < 0 for  some index i. F rom (a), we have ~ / >  (1 - 0)~  > 0. 

Then,  it follows that  xi < 0 and 2i < 0, which in turn implies that  dxidz~ > x~zi. On 

the other  hand,  we have dx~dzi < - ]]Af[l<~ 01~<~ Otz. Hence,  we have O/*>xiz~> 
( 1 -  0)/* which contradicts  the fact that  0 <½. This proves  (b). 

Sta tement  (c) follows immedia te ly  f rom (4.5). This completes  the p r o o f  of  the 
theorem.  [] 

Note  that  by achieving the measure  of  closeness in (a) o f  Theorem 4.1, we 
automat ica l ly  mainta in  feasibility. This raises the quest ion of  how large 6 (which 
measures  the decrease rate in the duali ty gap)  can be in order  to guarantee  that  

~ W (and disregarding the measure  of  closeness in (a) o f  Theorem 4.1). 
Specifically, suppose  we are given a poin t  w c W satisfying (4.1) and our  aim is 
only to guarantee  that  v~ = w - A w e  W where Aw = A ( w ,  t2) with /2  given by (4.2). 
It is a consequence  of  the p r o o f  of  Theorem 4.1 that  if  we choose 8 satisfying 

02-~- 62 02+62 

2(1 - 0)(1 - a/x/ if)  ~< 1, 2(1 - 0) 2 < 1, 

then ~ e  W. In part icular ,  if  w eF ,  and therefore  we can set 0 = 0 ,  then 8 ~  < 
[2(1-8 /x / - f f ) ]  ~/2 is sufficient to guarantee  that  v~E W. Thus,  in this case, as n ~ c o ,  

the largest possible  6, which p rovab ly  guarantees  that  ~ c W, approaches  x/2. 

5. Initialization of the algorithm 

Given an LP in standard form and its dual, we have assumed in Section 2 that 
conditions (a) and (b) of  Assumption 2.1 are valid. In general, this is not the case. 



R.D.C. Monteiro, I. Adler/Path following algorithms I 39 

In order to circumvent this difficulty, we introduce another LP problem in standard 
form, which we call the augmented problem, whose solution will yield a solution 
to the original problem. Moreover, the size of  the original problem and that of the 

augmented problem are of the same order. This fact will enable us to show that the 
complexity results of Section 4 also hold for LP problems which do not satisfy 
Assumption 2.1 or for which a proper initial point is not known a priori. For this 
augmented problem, we will see that an initial point w ° lying on the central path 
F, and consequently satisfying the criterion of closeness (3.3), is readily available. 
The discussion in this section is intended to be brief. The reader is referred to 
Section 6 of  Part II  for a more detailed description which deals with initialization 
for convex quadratic programming problems. 

Let the original problem be stated as follows. 

(P) rain 5T~ 

s.t .  A)~ = /~ ,  

~ > 0 ,  

where ,4 is an r~ x ~ matrix which has full row rank and/~, 5 are vectors of  length 

r~ and r~ respectively. We assume that the entries of the vectors/~, 5 and the matrix 
are integral. 
In order to state the augmented problem, we need to define some quantities. Let 

n = ~ + 2 and m = r~ + 1. Let /~ = L(A, b, 5) denote the size of  (t)). Let a = 2 4~: and 
a = 2 2£. Let Kb and Kc be constants defined as follows: 

K b = a A ( n + l ) - - a c T e ,  Kc=oea. (5.1) 

The augmented problem can be stated as follows. 

(P) min 6TY + K~)7, 

s.t. AYc + ( f~- af~e),2, = (~, 

(oee - ~)T)~_~ O/~n_l = Kb, 

~ > 0 ,  ~,,_~>~0, ~,>~0, 

where Y= 07~, . , "  T • . X,-2) is an ( n - 2 ) - v e c t o r  and Y,_~ and Y, are scalars. The dual 
of problem (P) is then given as follows. 

(D) max 

s.t .  

/~T~ + K ~  

~ +  ( ~ e  - ~ ) ~ , .  + ~ = 5, 

~f~ + 2._, =0, 

(5-- Afi, e)T.~+ ~. = K~, 

z~>~O, S._~>O, -~,,>0, 
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where 37 is an (m - D-vector, £ is an (n -2 ) -vec to r  and tim, £n-1 and Zn are scalars. 
These problems can be recast in the notation of problems (P) and (D) of Section 
2 as follows. Let x = (£V, Xn--1, £n) TC~n, Y = (377, 37,,)Tc am and z = (£T, ~n--1, ~n) T~ 

R". Define b c a m, c c ~n and A c R m×" as follows: 

b = Kb , c=  KcO , A = (ae- -~)T  ff " 

With this notation, we can then rewrite problems (P) and (D) as in Section 2. We 
refer to these two formats interchangeably. 

Consider the point w ° = (x °, yO, z o) defined as follows: 

X O~ (A, . . .  , A, 1)Tc ~ n  (5.3a) 

yO= ( 0 , . . . ,  0, - 1 )v~  R m, (5.3b) 

z °=- (a . . . .  , a, aA)Tc ~ ". (5.3C) 

Using (5.1), one can easily verify that A x  °= b and A T y ° + z  °= c. Hence, w°E W. 
Moreover, f ( w  °) = aAe, which implies that w ° lies on the central path F. If we let 
/zo-= aA then we obtain the criterion of closeness (3.3). 

Note that, by construction, problems (P) and (D) have feasible solutions and 
therefore optimal solutions. In Section 6 of  Part II, we show the following: 
Let x = (xl,  • • . ,  x,)  x and (y, z) = ( ( y l , . . . ,  ym) v, ( z ~ , . . . ,  z,) v) be optimal solutions 
for problems (P) and (D) respectively. Then 

(i) If x ,z ,_ l  = 0 then, we have the following possible cases. 
(a) If x, =0  and z,_~=0 then £ ~ (X 1 . . . . .  Xn_2) T and (fi, £)--- 

((Yl . . . . .  ym-,) T, ( Z l , . . . ,  Z,-2) v) are optimal solutions for (F') and (1)) 
respectively. 

(b) If x, ~ 0 then (~') is infeasible. 
(c) If  z~_~ ¢ 0 then (F') is unbounded. 

(ii) If x , z ,  1 ~ 0 then (F') is either unbounded or infeasible. In this case, we solve 
the LP problem obtained by replacing the objective function of problem (P) by the 
linear function Kc£,. If  the resulting optimal solution ~, for this problem satisfies 
~, = 0 then (P) is unbounded. Otherwise, (~') is infeasible. 

(iii) The sizes of problems (P) and (F') are of the same order. 
It is clear from the above that one can solve problem (P) via (P) in O(x/~/~) 

iterations and with a total of  O(t~3 5/~) arithmetic operations. 

6. Remarks 

The purpose of this paper is to present a theoretical result. Thus in order to simplify 
the presentation, we constructed/2 = ~(1 -6 /~ fn ) .  Obviously, one can use/~ which 
is less than or equal to the above value, but which still guarantees (a) of Theorem 
4.1. In this way, one can accelerate the convergence of the algorithm. 
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Addi t iona l  improvements  in actual implementa t ion ,  such as more judic ious  selec- 

t ion of 0 and  6, in t roduc t ion  of a step size for the direct ion combined  with a search 

procedure for the parameter  /x and  a more practical  choice of the init ial  poin t  

result ing in a smaller initial  duali ty gap are possible and  remain  to be tested. 

As men t ioned  in the in t roduct ion,  we assumed th roughout  the paper  that m = 

O(n) .  However,  if we drop this assumpt ion  then one can easily verify that the 

complexity achieved in this paper  (Part I) expressed in terms of m and n is 

O ( n l S m 2 L ) .  Somewhat  better  bounds  in terms of m and  n can be achieved by using 

an approx imat ion  scheme as presented in Part II. 
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