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We describe a primal-dual interior point algorithm for linear programming problems which
requires a total of O(v'n L) number of iterations, where L is the input size. Each iteration updates
a penalty parameter and finds the Newton direction associated with the Karush-Kuhn-Tucker
system of equations which characterizes a solution of the logarithmic barrier function problem.
The algorithm is based on the path following idea.
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1. Introduction

Consider the linear programming problem

(P) min ¢'x
st. Ax=b,
x=0,

where A is an m X n-matrix. Assume that the data A, b and c are integer, and the
input size is L. This paper presents an algorithm for linear programming (LP)
problems based on the logarithmic barrier function method and on the idea of
following the path of minimizers for the logarithmic barrier family of problems, the
so called “central path”. The logarithmic barrier function approach is usually
attributed to Frisch [3] and is formally studied in Fiacco and McCormick [2] in
the context of nonlinear optimization. The introduction of the new interior point
algorithm by Karmarkar, in his seminal paper [6], led researchers to reconsider the
application of the logarithmic barrier function method to LP problems. Recently,
this method was first considered by Gill et al. [4] to develop a projected Newton
barrier method for solving LP problems. The presentation of a continuous trajectory
of the iterative Karmarkar method was first described by Karmarkar [7] and
extensively studied by Bayer and Lagarias [1]. Megiddo [9] related this path to the
classical barrier path in the framework of complementarity relationship between
the primal and dual linear programming problems. Kojima, Mizuno and Yoshise
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[8], used this framework to present a primal-dual algorithm that traces the central
path. Their algorithm is shown to converge in at most O(nL) iterations with a
computational effort of O(n?) arithmetic operations per iteration, resulting in a total
of O(n*L) arithmetic operations.

In this paper, we build on the ideas in [8] and [9], and obtain a faster algorithm.
The directions generated by our algorithm are the same as the directions generated
by the algorithm presented in [8]. However, working closer to the central path, as
defined and developed in [9], we are able to obtain convergence in at most O(v'nL)
iterations. Each iteration involves the inversion of a n X n matrix which can be done
in at most O(n*) arithmetic operations. Based on ideas presented in [6], one can
approximate the matrix to be inverted so that each iteration can be executed, by
way of rank-one updates, in an average of O(n””) arithmetic operations, as will be
described in Part II. Thus overall our algorithm requires O(n’L) arithmetic
operations. It should be noted that the breakthrough in this line of research was
obtained by Renegar [11], who was the first to achieve a speed of convergence of
O(vnL) iterations, where each iteration involves O(n’) arithmetic operations. His
algorithm is based on the method of centers following the central trajectory. Sub-
sequently, Vaidya [12] improved Renegar’s complexity to a total of O(n’L) arith-
metic operations using the same approach of the method of centers and the updating
scheme described in [6]. Independently, an equivalent complexity was also obtained
by Gonzaga [5], using the logarithmic barrier function approach. Both Vaidya’s
and Gonzaga’s algorithms are primal algorithms. It should be noted that in order
to simplify the complexity analysis presentation, we assume throughout the paper
that m =0(n).

In Part II, we extend our results to introduce a primal-dual algorithm that solves
convex quadratic programming problems in O(v/n L) iterations with a total of O(n’ L)
arithmetic operations. In order to emphasize the simplicity of the basic ideas
underlying our approach, we choose to defer some of the details of the proofs and
the speedup resulting from the rank-one updates of the matrix to be inverted in
each iteration to the second part of the paper.

Our paper is organized as follows. In Section 2, we present some theoretical
background. In Section 3, we present the algorithm. In Section 4, we prove results
related to the convergence properties of the algorithm. In Section 5, we discuss the
initialization of the algorithm. Finally, in Section 6, we conclude the paper with
some remarks.

2. Theoretical background

In order to facilitate the reading of this paper, we use a notation roughly similar
to the one in [8]. A discussion of the main results necessary to motivate the
development of our algorithm is presented in this section. A detailed discussion of
these results can be found in [9].
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We consider the pair of the standard form linear program and its dual

(P) min c¢'x
s.t.  Ax=b,
x=0,

(D) max b7y
st. Aly+z=g,
zz=0,
where A is an m X n-matrix and b, ¢ are vectors of length m and n respectively.
We assume that the entries of the vectors b, ¢ and the matrix A are integral. The
algorithm we consider in this paper is motivated by the application of the logarithmic

barrier function technique to problem (P). The logarithmic barrier function method
consists of examining the family of problems

n

(P,) min c¢"x—pu ¥ Inx
=1
st. Ax=b,
x>0,

where u >0 is the barrier penalty parameter. This technique is well-known in the
context of general constrained optimization problems. One solves the problem
penalized by the logarithmic barrier function term for several values of the parameter
u, with u decreasing to zero, and the result is a sequence of feasible points converging
to a solution of the original problem.

Before we can apply the logarithmic barrier function method, some assumptions
on the problems (P) and (D) are necessary. We impose the following assumptions:

Assumption 2.1. (a) The set S={xeR"; Ax=b, x>0} is non-empty.
(b) The set T={(y, z) eR™ xR"; Ay +z =, z>0} is non-empty.
(¢) rank(A)=m.

We say that points in the sets S and T are interior feasible solutions of problems
(P) and (D) respectively. The need for (a) is evident since the logarithmic barrier
function method is always applied in the interior of the set defined by the inequality
constraints. Assumptions (b) and (c) are also necessary as will become clear from
the discussion that follows.

Throughout this paper, we use the following notation. A point (x,y,z)e
R"xR™ xR" will be denoted by the lower case letter w, that is, w=(x, y, z). If x is
a lower case letter that denotes a vector x = (x, ..., x,)", then a capital letter will
denote the diagonal matrix with the components of the vector on the diagonal, i.e.,
X =diag(x,,..., x,). Given a real number a >0, we denote its logarithm to the
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natural base and to the base 2 by In a and log a respectively. Also, W will denote
the set defined as follows:

W={(xyz);xeS, (y,2)e T}

Observe that the objective function of problem (P,) is a strictly convex function.
This implies that problem (P, ) has at most one global minimum, and that this global
minimum, if it exists, is completely characterized by the Karush-Kuhn-Tucker
stationary condition:

c—uX le—ATy=0,
Ax=b, x>0,

where e denotes the n-vector of all ones and y is the vector of Lagrangian multiplier
associated with the equality constraints of problem (P, ). By introducing the n-vector
z, this system can be rewritten in an equivalent way as

ZXe—pue=0,
Ax—b=0, x>0, (2.1)
Aly+z-c=0.

A necessary and sufficient condition for problem (P,,) to have an optimal solution
for all >0 is given by the following result.

Proposition 2.1. Assume Assumption 2.1(a) holds and let u > 0 be given. Then problem
(P,) has an optimal solution if and only if the set of optimal solutions of problem (P)
is non-empty and bounded.

A proof of Proposition 2.1 can be found in [9] (see also [2]). From this result,
we immediately conclude that if (P,) has a solution for some w >0 then it has a
solution for all u>0. The role played by Assumption 2.1(b) is now provided by
the following result.

Proposition 2.2. Assume that problem (P) is feasible. Then the set of optimal solutions
of problem (P) is non-empty and bounded if and only if Assumption 2.1(b) holds, that
is, the set of interior feasible solutions of the dual problem (D) is non-empty.

The proof of Proposition 2.2 is an application of duality theory for linear program-
ming. As a consequence of the two previous propositions, we have the following
corollary.

Corollary 2.1. Under Assumptions 2.1(a) and (b), problem (P, ) (and consequently
system (2.1)) has a unique solution x(u), for all 4> 0.

The Karush-Kuhn-Tucker system (2.1) provides important information which
we now point out. Assume that u >0 is fixed in system (2.1). Since x>0, the first



R.D.C. Monteiro, 1. Adler / Path following algorithms 1 31

equation in system (2.1) implies that z > 0. The third equation in (2.1) then implies
that the point (y, z) is an interior feasible solution for the dual problem (D). From
Assumption 2.1(c), it follows that there is a unique y satisfying (2.1). We denote
the unique point (x, y, z) that satisfies (2.1) by w(u) = (x(u), v{(u), z(n)). Obviously
w(u)e W. The duality gap at point we W is by definition given by

gw)=c"x-b"y.
Using the two last equations in (2.1), one can easily verify that
gw)y=x"z, weW. (2.2)

In view of the above relation, we will always refer to the duality gap as the quantity
x"z instead of the usual one ¢'x—b"y. In particular, using the first equation in
(2.1), we obtain g(w(un))= I’l,l:L, for all u, and therefore g(w(u)) converges to zero
as w goes to zero. This implies that ¢'x(w) and b y(u) converge to the common
optimal value of problems (P) and (D) respectively. In fact, we have the following
stronger result (cf. [9]).

Proposition 2.3. Under Assumptions 2.1(a), (b) and (¢), as u—0, x(u) and
(y(u), z(w)) converge to optimal solutions of problems (P) and (D) respectively.

The following notation will be useful later. Let w=(x, y, z) € W. We denote by
fw)y=(fi(w),...,f,(w))" eR" the n-vector defined by

fiwy=xz, i=1,...,n
With this notation, the first equation of (2.1) written coordinate-wise becomes:

Siw(u)) =x(p)z(pu)=p, i=1,...,n
We denote by I the set (or path) of solutions w(gw), >0 for system (2.1}, i.e.,

F={w(p)=(x(n), y(u), z(n)); u>0}.

The path I' is usually referred to as the central path associated with the LP problem
(P). The algorithm which will be presented in the next section is based on the idea
of following the central path I" closely with the objective of approaching the desired
solutions of problems (P) and (D). The path I' will serve as a criterion to guide
the points generated by the algorithm.

3. The algorithm

As in the previous section, we denote a point (x, y, z) e R" XR™ xR" by the lower
case letter w. The algorithm generates a sequence of points w*e W, k=0,1,2,...,
where the initial point w’ is provided as input to the algorithm. We require that the
initial point w’e W be a point satisfying some criterion of closeness with respect
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to the central path I. Given an LP problem in standard form, in Section 5 we show
how to construct an augmented LP problem so that Assumption 2.1 is satisfied. As
a consequence of this construction, we also show how to obtain an initial point
w’e W satisfying the criterion of closeness.

Given a current iterate (x, y, z)€ W, a vector of directions Aw=(4x, Ay, Az)¢€
R" xR™ xR" needs to be generated for the determination of the next iterate. Let
(%, 7, %) denote the next iterate. We obtain (%, , £) by setting £=x—A4x, =y — Ay
and Z=z— Az or in more compact notation, w=w — Aw.

According to [8], the direction Aw chosen to generate the next iterate W is defined
as the Newton direction associated with the Karush-Kuhn-Tucker system of
equations (2.1). If we denote the left hand side of the system of equations (2.1) by
H(w)= H(x, y, z), the Newton direction Aw at the point we W is determined by
the following system of linear equations:

D, H(w)Aw= H(w)

where D, H(w) denotes the Jacobian of H at w=(x, y, z). More specifically, the
Jacobian of H at w is given by

Z 0 X
D.H(w)=|A 0 0
0 AT I

and the Newton direction Aw = (Ax, 4y, Az) is given by the following system of
linear equations:

ZAx+ XAz = XZe — jie, (3.1a)
Adx =0, (3.1b)
ATAy+Az=0, (3.1¢)

where 4 > 0 is some prespecified penalty parameter. Note that the solution 4w =
(Ax, Ay, Az) of the system of equations (3.1) clearly depends on the current iterate
w = (x, , z) and on the penalty parameter i > 0. In order to indicate this dependence,
we denote the solution of system (3.1) by Aw(w, ).

By simple calculation, we obtain the following expressions for Ax, Ay, Az:

Ax=[Z'-Z'XAT(AZ ' XA"Y TAZ ' [(XZe — jie),
Ay =~[(AZ'XA") TAZ '|(XZe — jie),
Az=[AT(AZ ' XA 'AZ'|(XZe - fie).

Therefore, to calculate the direction Aw = (4x, Ay, Az), the inverse of the matrix
(AZ7'XA") needs to be calculated. Observe that all the other operations involved
in the computation of Aw = Aw(w, 1) are of the order of O(n?) arithmetic operations.
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We are now ready to describe the algorithm. Let & and & be constants satisfying

0=s0<} 0<é<vn, (3.2a)
6>+ 8°

—=<0(1-6 .
21-0) ( /vn), (3.2b)

where n is the number of columns of the constraint matrix A. One possible set of
values for the constants satisfying (3.2) is 8 =056 =0.35. At the beginning of the
algorithm, we assume that an initial point w®= (x°, y°, z°) € W is available such that
the following criterion of closeness with respect to the central path I' is satisfied:

[£(w®) — moel < Buo (3.3)

where | - || denotes the Euclidean norm and uo=(x%)"z° n.
We now state the algorithm.

Algorithm 3.1.

Step 0: Assume 6 and & are fixed constants satisfying (3.2). Let w®e W satisfy
(3.3). Let £ >0 be a tolerance for the duality gap.
Set k:=0.

Step 1: If (x*)z* < ¢, stop.

Step 2: Set pyyy = pr(1—8/vVn).
Calculate Aw* = Aw(w*, iy ).

Step 3: Set w*''=wk—Aw*,
Set k:=k+1 and go to Step 1.

In the next section, we prove that all points generated by the algorithm above lie
in the set W and that they remain close to the central path I in a sense to be
described later. We also show that Algorithm 3.1 terminates in at most
O(v'n max(log £, log n, log o)) iterations. This fact will enable us to show that
Algorithm 3.1 performs no more than O(n’*> max(log ¢ ', log n, log p)) arithmetic
operations until its termination.

4. Convergence results

We begin this section by stating the main result and its consequences. The main
result is stated as follows.

Theorem 4.1. Let 6 and & be constants satisfying relations (3.2). Assume that w =
(x, y, z) € W satisfies

If(w) = pel < (4.1)
where w =x'z/n and || - || denotes the Euclidean norm. Let i >0 be defined as

A =p(1—38/Vn). (4.2)



34 R.D.C. Monteiro, I. Adler | Path following algorithms I

Consider the point w=(X, 7, Z)cR"XR™ xR" given by w=w-—Aw, where Aw=
Aw(w, ). Then, we have

(@) [f(R)— frell < 04,

(b) we W,

(c) g(W)=x"2=ng.

The proof of Theorem 4.1 will be given at the end of this section. We now give
an intuitive interpretation of the measure of closeness (4.1). We can view f(w) not
only as denoting the vector XZe but also as a map from R"xR™xR" into R”
mapping w = (X, y, z) into the “complementary” vector XZe. Under this map, the
central path I' is mapped into the “diagonal” line f(I") ={ue; u > 0}. Also, if we
let w*=(x* y*, z*) denote the optimal solution which w(w) converges to, as u
approaches zero, then w* is mapped by f into the origin of R" (cf. Proposition 2.3).
The measure of closeness has its natural interpretation when viewed in the “com-
plementarity” space R". The image under f of the set of points w for which the
measure of closeness is satisfied for some u >0, is a “spherical” cone having as
central axis the “diagonal’ line f(I") and having as extreme point the origin of R",
Also, the angle formed by the central axis with all the extreme rays of the cone is
constant and depends on 6.

Note that (x"z/n)e is the closest point to f(w), we W, lying in the “diagonal”
line f(I'). Hence, || f(w)— ue| measures the Euclidean distance between f(w) and
the line f(I"). So, (4.1) can be interpreted as keeping the distance between the
images of w and I, under f, relatively small.

As a consequence of Theorem 4.1, we have the following result:

Corollary 4.1. The sequence of points (w*) generated by Algorithm 3.1 satisfies
(a) ”f(Wk) piell < O, for all k=1,2,.
(b) w e W, forallk=1,2,...,
(c) g(w)=(x"T"zF=np,, forallk=1,2,...,

where . = uo(1—8/vn)* for k=1,2,....

Proof. This result follows trivially by arguing inductively and using Theorem 4.1. [

Viewed with respect to the “complementarity space”, Corollary 4.1 says that, all
iterates generated by Algorithm 3.1 will lie within the cone and will get closer to
the extreme point of the cone, i.e. the origin of R”, by a factor of (1—8/+n) at each
iteration. Therefore we can view Algorithm 3.1 as a path-following procedure, i.e.,
the sequence of iterates (w*) attempts to trace the central path I” so that it eventually
converges to an optimal solution w* = (x*, y*, z*) for the pair of LP problems (P)
and (D).

We now derive an upper bound on the total number of iterations performed by
Algorithm 3.1.
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Proposition 4.1. The total number of iterations performed by Algorithm 3.1 is no
greater than k= [In(ns ' uo)v/n/ 8] where £ >0 denotes the tolerance for the duality
gap and po= (x°)"z% n is the initial penalty parameter.

Proof. From (c) of Corollary 4.1, the algorithm terminates whenever nu, < . Thus,
it is enough to show that k satisfies this inequality. By the definition of k we have

lns?—ﬁ
vn

=1n nug.

The second inequality is due to the fact that In(1 —x) =< —x for all x <1 and the last
equality follows from the definition of w,. Therefore k satisfies nuz< e and this
completes the proof of the proposition. [

Define the size L(A, b, ¢} of a linear programming problem in the standard form
(P) as
largest absolute value of the determinant+ 1) 1

L(A, b, c)= (log<

of any square submatrix of A

+ [log(1+max |¢;|) ]+ [log(1+max |b)|) ]+ [log(m +n)].

It is a well-known fact that if, at some iteration k, we have a point w*e W such
that the duality gap satisfies (x*)"z* <27°"| then from w*, we may obtain optimal
solutions for problems (P) and (D) in O(m’n) arithmetic operations (cf. [10]).
Using this observation, we obtain

Corollary 4.2. If the initial penalty parameter w, satisfies jo=2°" then Algorithm
3.1 solves the pair of LP problems (P) and (D) in at most O(v/'nL) iterations.

Proof. Follows directly from the previous proposition. [

In Section 5, we will see that the initial point w® can be chosen in such a way
that wo= (x°)Tz°%/ n satisfies po=2°". As a consequence of the previous result, we
have:

Corollary 4.3. Algorithm 3.1 solves the pair of LP problems (P) and (D) in no more
than O(n’*°L) arithmetic operations.

Proof. At every iteration, the computational effort is dominated by the calculation
of the inverse of the matrix A(Z*)'X*AT which requires O(n?) arithmetic
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operations. By Corollary 4.2, Algorithm 3.1 terminates in at most O(v/n L) iterations.
These two observations immediately conclude the proof of the corollary, [

In Part II of this paper, we will see that Algorithm 3.1 can be modified to yield
an algorithm which does not only solve linear programming problems but also
convex quadratic programming problems in at most O(n’L) arithmetic operations.
This reduction in the complexity will be achieved by introducing a suitable approxi-
mation of the inverse of the matrix involved in the computation of the directions
generated by Algorithm 3.1.

We now concentrate our effort towards proving Theorem 4.1. Let w=(x, y,z)e W
and £ >0. Let Aw = (A4x, Ay, Az) be the direction Aw(w, &). Let w=w —Aw. The
next result provides expressions for the product of complementary variables f;(w),
i=1,...,n and the duality gap g(w)=x"%

Proposition 4.2. Let w, @, Aw and w be as above. Then, we have

filw) =g+ AxAz, (4.3)

(4x)T(4z)=0, (4.4)

g(W)=ni. (4.5)
Proof. By definition, we have for all i=1,...,n,

filw) =Xz,

=(x;— 4x;)(z;— 4z)
= x,;z; — (x;,4z; + z;,4x;) + Ax;Az;
=4+ AxAz;

where the last equality follows from (3.1a). This shows (4.3). Multiplying (3.1b)
and (3.1c) on the left by (4y)" and (Ax)T respectively, and combining, we obtain
(4.4). Recall from (2.2) that g(w)=Y_, f;(#). Summing expression (4.3) over all
indices i=1,..., n and noting (4.4), we obtain (4.5). This completes the proof of
the proposition. [

We now state and prove some preliminary results that will be useful in the proof
of Theorem 4.1.

Lemma4.1. Letr, s and t be real n-vectors satisfying r+ s = tand r's = 0. Then, we have

I
2

|RSe|| =

where R and S denote the diagonal matrices corresponding to the vectors r and s
respectively.
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Proof. Using the assumptions, we obtain
I+ s < el + s P +2r s = lr+ 5] = ||o||?
which implies that ||[t][?/2= | r|| ||s]| = ||RSe||, where the last inequality follows by

using the definition of the Euclidean norm. This completes the proof of the
lemma. []

Let w=(x,y,z)e W and > 0. Let Aw=(Ax, 4y, Az) be the direction Aw(w, &).
Let AX and AZ denote the diagonal matrices corresponding to the vectors Ax and
Az Consider the vector Af € R” defined as Af = (AX)(AZ)e. The next result provides
an upper bound on the Euclidean norm of the vector Af.

Lemma 4.2. Let Af be defined as above. Then, we have

Lfw) = el
fmin

where fo,=min{x;z;;i=1,..., n}.

lari=

Proof. Let D=(Z'X)"?. Multiplying both sides of equation (3.1a) by (XZ) '/,
we obtain

D 'Ax+ DAz = (XZ) '*(f(w) ~ jie).
Note also that from (4.4), we have (D' Ax)"(DAz) = 0. In view of these two relations,
we can apply Lemma 4.1 with r=D™'Ax, s = DAz and t=(XZ) "*(f(w)— fie) to
obtain
141 | =11(AX)(AZ)e|
=|(D7'AX)(DAZ)e|
<3|(XZ)7(f(w) - de)|?
17 (fiw)—4A)
Y Z —
A 2
Nfw) — fief]
2fmin

and this completes the proof of the lemma. O
We are finally ready to prove Theorem 4.1.

Proof of Theorem 4.1. We will first prove (a). In view of relation (4.3), we need to
show that |Af || < 64. To show this inequality, note that by Lemma 4.2, it is enough
to show that

1 Cw) — el _
2fmln
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Since w =x"z/n, it follows that (f(w)—ue)"e=0. Using this equality, relations
(4.1) and (4.2) and the fact that |e]| =+/n, we obtain

If(w) = fiell” = f(w) — e |+ | ue - e
= (0u)*+(lu— il llel)?
= ()’ +(8p)”
=(07+8%)u’

Note also that by (4.1), we have f,;,= (1 —6)u. Thus
If ()= el _ 67+
Un  20-0)"

<0(1-6/Vn)u =04

where the last inequality follows from (3.2b) and the equality follows from (4.2).
This proves (a).

We will now prove (b). From (3.1b), (3.1c) and the fact that we W, it follows
that w = (£, 7, 7) satisfies A £=b and A"§+ %= c. We have just to show that £ and
% are strictly positive vectors to conclude that w € W. The proof is by contradiction.
Assume that x; <0 or Z; <0 for some index i. From (a), we have £z, =(1—-6)2>0.
Then, it follows that £, <0 and Z, <0, which in turn implies that Ax,Az, > x;z;. On
the other hand, we have AxAz < |Af| <64 < 6u. Hence, we have 6u> xz; =
(1-6)p which contradicts the fact that 8 <3. This proves (b).

Statement (c) follows immediately from (4.5). This completes the proof of the
theorem. [

Note that by achieving the measure of closeness in (a) of Theorem 4.1, we
automatically maintain feasibility. This raises the question of how large 8 (which
measures the decrease rate in the duality gap) can be in order to guarantee that
we W (and disregarding the measure of closeness in (a) of Theorem 4.1).
Specifically, suppose we are given a point we W satisfying (4.1) and our aim is
only to guarantee that w =w—Awe W where Aw = A(w, &) with & given by (4.2).
It is a consequence of the proof of Theorem 4.1 that if we choose § satisfying

0> +5° - 0+ 5’
200-0)(1-8/vn) =~ 2(1-86)?
then we W. In particular, if wel, and therefore we can set #=0, then &<
[2(1—6/+/n)]"? is sufficient to guarantee that w e W. Thus, in this case, as n— oo,
the largest possible 8, which provably guarantees that we W, approaches v2.

<1,

5. Initialization of the algorithm

Given an LP in standard form and its dual, we have assumed in Section 2 that
conditions (a) and (b) of Assumption 2.1 are valid. In general, this is not the case.
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In order to circumvent this difficulty, we introduce another LP problem in standard
form, which we call the augmented problem, whose solution will yield a solution
to the original problem. Moreover, the size of the original problem and that of the
augmented problem are of the same order. This fact will enable us to show that the
complexity results of Section 4 also hold for LP problems which do not satisfy
Assumption 2.1 or for which a proper initial point is not known a priori. For this
augmented problem, we will see that an initial point w® lying on the central path
I', and consequently satisfying the criterion of closeness (3.3), is readily available.
The discussion in this section is intended to be brief. The reader is referred to
Section 6 of Part 11 for a more detailed description which deals with initialization
for convex quadratic programming problems.
Let the original problem be stated as follows.

(P) min ¢TX
st. Af=b,
x=0,

where A is an m x /i matrix which has full row rank and b, ¢ are vectors of length
m and 7 respectively. We assume that the entries of the vectors b, ¢ and the matrix
A are integral.
In order to state the augmented problem, we need to define some quantities. Let
=#A+2and m=m+1. Let L=L(A, b, &) denote the size of (P). Let « =2 and
A =2t Let K, and K, be constants defined as follows:

Ky =ar(i+1)—A&"e, K. = . (5.1)
The augmented problem can be stated as follows.
(P) min "X+ K %,
st.  Af+(b-ArAe)%, =b,
(ae— &)X+ ax,_, = K,,
X=0, X, =0, %,=20,

where ¥ = (X;,...,%,.,)" is an (n~2)-vector and %,_, and %, are scalars. The dual
of problem (P) is then given as follows.

(D) max b5+ K,
st.  AJ+(ae—EFa+i=4
ay,+Z,.,=0,
(b—rAe)5+32,=K,,

=0, 2,.,=0, z,=0,

N

>
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where y is an (m —1)-vector, 7 is an (n —2)-vector and y,,, Z,_, and Z, are scalars.
These problems can be recast in the notation of problems (P) and (D) of Section
2 as follows. Let x = (X7, %,_;, %) TeR", y=(F", §.)"€eR™ and z= (7,2, ,,%,)" €
R". Define beR™, ceR" and AcR™" as follows:

-~

o ¢ . - .
b A 0 b—AAe
b= = A= . .

(Kb)’ et [(ae—af « 0 ] (52)

With this notation, we can then rewrite problems (P) and (D) as in Section 2. We
refer to these two formats interchangeably.
Consider the point w°=(x’, y°, z°) defined as follows:

x’=(,..., A DTeR”, (5.3a)
y°=(0,...,0,-1)"eR", (5.3b)
22=(a,...,a, ar) eR". (5.3¢)

Using (5.1), one can easily verify that Ax"=b and A"y’+z°=c. Hence, w’e W.
Moreover, f(w°) = ale, which implies that w® lies on the central path I'. If we let
o= @A then we obtain the criterion of closeness (3.3).

Note that, by construction, problems (P) and (D) have feasible solutions and
therefore optimal solutions. In Section 6 of Part II, we show the following:

Let x=(x,..., %) and (3, 2)=((31,..., ¥m) ', (z1,..., z,)") be optimal solutions
for problems (P) and (D) respectively. Then

(i) If x,z,_, =0 then, we have the following possible cases.

() If x,=0 and z,.,=0 then X=(x,,...,x,,)" and (§ %)=
(P1y- vy Ym-t)T, (21, ..., 2,-,)7) are optimal solutions for (P) and (D)
respectively.

(b) If x, #0 then (P) is infeasible.

(¢) If z,_; #0 then (P) is unbounded.

(ii) If x,z,_, # 0 then (13) is either unbounded or infeasible. In this case, we solve
the LP problem obtained by replacing the objective function of problem (P) by the
linear function K. X,. If the resulting optimal solution %, for this problem satisfies
X, =0 then (13) is unbounded. Otherwise, (P) is infeasible.

(iii) The sizes of problems (P) and (f’) are of the same order.

It is clear from the above that one can solve problem (P) via (P) in O(AL)
iterations and with a total of O(7i*°L) arithmetic operations.

6. Remarks

The purpose of this paper is to present a theoretical result. Thus in order to simplify
the presentation, we constructed & = u(1— 8/vn). Obviously, one can use & which
is less than or equal to the above value, but which still guarantees (a) of Theorem
4.1. In this way, one can accelerate the convergence of the algorithm.
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Additional improvements in actual implementation, such as more judicious selec-
tion of 6 and 8, introduction of a step size for the direction combined with a search
procedure for the parameter u and a more practical choice of the initial point
resulting in a smaller initial duality gap are possible and remain to be tested.

As mentioned in the introduction, we assumed throughout the paper that m =
O(n). However, if we drop this assumption then one can easily verify that the
complexity achieved in this paper (Part I) expressed in terms of m and n is
O(n'’m’L). Somewhat better bounds in terms of m and n can be achieved by using
an approximation scheme as presented in Part II.
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