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1 Neural Network Model

The neural network model we use in this paper is the continuous-valued version of the McCulloch and
Pitts model whose dynamics is given by the following equation:

uw=—-u+d+ Wg(u) (1.1)

where g : Q >R (QCR), T€RLy, ueQ" de R™, W € R™ ™. Suppose Q is an open
interval in R and ¢ € Q. We call g an activation function. Various researchers (9], [2], [6], [14]) have
analyzed this dynamics in detail. Convergence and basin of convergence are two main issues of interest.

Of special interest are the neural networks which have a symmetric weight matrix W. The dynamics
of the above neural networks have been known to be such that it tends to the minima of a certain
quadratic function. This property is at the basis of their use as associative memory devices. On
the other hand, various researchers in the field of electrical engineering have realized and explored the
possibility of using these neural networks as devices to perform quadratic optimization. These reseachers
often implement the neural networks as analog electrical circuits, and borrow freely from the theory of
electrical circuits to analyse the properties of those circuits. What has been rarely seen is a treatment
of the topic based on the tremendous amount of work which has been done in the area of optimization
of quadratic function in the field of mathematical programming. The aim of this paper is primarily to
fill that gap and raise some interesting questions in the process.

2 Quadratic Optimization Problem

A fundamental problem in convex quadratic optimization is the following.

Problem 2.1 Convex Quadratic Optimization

Primal Dual
min 1/2z'Qz + c'z min 1/2v7Quv
subject to T >0 subject to —Qu <e

Here, Q is a symmetric positive semi-definite matrix. If we denote the slacks as z := ¢+ Qv and
denote the pseudo-inverse of the matrix Q as Q¥, then the dual of the above problem can be written
in a different form.



Problem 2.2 Convex Quadratic Optimization - Alternate Form

Primal Dual
min 1/2z'Qx + c'=z min 1/2(z — ¢)!Q*(z — ¢)
subject to T >0 subject to [I-QQ*(z—¢) =0
z >0

In this paper we will mostly deal with the alternate form of the convex quadratic optimization
problem. How can this primal-dual pair of quadratic problems be mapped to the single neural dynamics?
The following section sets up the framework to answer the above question.

3 Convergence

To analyze the convergence properties of the dynamics we will use the Generalized Liapunov Result
stated below. For a proof, the reader should refer to [5].

Let = z(t) be a solution of the following autonomous dynamical system.

z = f(z) (3.2)

where the function f is continuously differentiable in the domain of interest.

Definition 3.1 A set G is an invariant set for dynamic system 3.2 if whenever a point x on a system
trajectory is in G, the trajectory remains in G.

Theorem 3.2 Generalized Liapunov Result - Invariant Set Theorem
Suppose that

(a) V(x) € C? is a scalar function.

(b) The set Q, = {x: V(x) < s} is bounded.

(c) V(z) <0 within Q,.

(d) S is the set of points within Q, where V(a:) =0, and G is the largest invariant set within S.

Then every trajectory in Q, tends to G as time increases. [ |

The scalar function, V, in the above theorem is often called an energy function or a potential function.
In mathematics literature, it is also often called a Liapunov function.

Existence of a energy function for a dynamic system is often an indication of its good behavior. The
energy function helps in the analysis of the dynamic system because it is a scalar function that embodjes
a trajectory in multi-dimensional space.

We present two different functions, each of which acts as an energy function for the dynamics 1.1
under certain conditions in certain appropriate domain. Later, we will draw a parallel between this
energy function and certain other functions which are to be optimized.

We label the system under the first and second energy functions as Primal Model and Dual Model
respectively. The reason to call these models primal and dual will become clear later in the paper.



3.1 Primal Model

The associated energy function is:

n

fo(u) = —%g(u)TWg(u) - dTg(u) + /uj gl(v)vdv (3.3)
q

Jj=1

This energy function was first presented in this context by Hopfield and Tank [10]. Since then it has
been the basis of various other algorithms in the field of neural networks.
The following two propositions use Theorem 3.2 to prove a convergence result in our context.

Proposition 3.3 Suppose that

(i) 9(@—-R)ecC?

(i) ¢ >0 (i.e. g 18 strictly increasing).

(iii) W is symmetric.

(iv) Starting at u® = u(ty), u(t) € Q° fort > tg.

(v) The set Q, = {ue Q": fp(u) < fo(u(to))} is bounded.

then, any trajectory induced by 1.1 and starting at u® tends to the set {u : 4 = 0}. Moreover, the
trajectory converges to a first-order minima of fp.

Proof : Since g € C? by (i), fp € C%. We now prove that the energy function strictly goes down with
time.

Vip(4) = (-Wg(u) - d + u)g (u) = —irg' (u)
fo= uTpr(u) = —uT(i‘g (u)) <0
We used the fact that W is symmetric for the derivation in the first equation and the fact that g is
a strictly increasing function for the second equation.
If we let f, be the scalar function in Theorem 3.2 then requirements (a) and (c) are satisfied. Moreover,
requirement (b) is implied by assumptions (iv) and (v) directly. Hence, the function fp is a Liapunov
function for the dynamics 1.1 and using the theorem, we can conclude that any trajectory induced by

1.1 and starting at u9 tends to the set {u: fp(u) = 0}. But note that fp =0 & 4 =0. Thus the first
part of the result follows. To see the second part, note that 7 f,(u) = —ug'(u) = 0. |

3.2 Dual Model

The associated energy function is:

n

fa(w) = —}(u— T WH(u-d)+ 3 / * g(v)dv (3.4)
=1’

where, W is the Penrose-Moore pseudo-inverse of the matrix W. For definition of the Penrose-Moore
pseudo-inverse, see [12].

This energy function is interesting in the way it operates. It is not valid in the entire domain as
the energy function associated with primal model. Instead, it is operative on a certain affine space. It
differs in two more ways. It needs —W to be positive semi-definite and the activation function need
not be monotonic. '

The following proposition provides the details:



Proposition 3.4 Suppose that

(i) 9(Q - R) e C2

(ii) =W is symmetric and positive semi-definite.

(iii) Starting at u® = u(ty),u(t) € Q" fort > t,.

(iv) P(—u® +d) =0 (uwhere P=1- W+W).

(V) The set Q= {u€ Q": Pu= Pd, fa(u) < fa(u®))} is bounded.

then, any trajectory induced by 1.1 and starting at u® tends to the set {u : @ = 0}. Moreoever, the
trajectory converges to a first order minima of fa(u) restricted to the affine space P(—u + d)=0.

Proof : ;From the definition of the Penrose-Moore pseudo-inverse, WYWW+ = W+ Ww+w =
W, WW* = (WWH)T and WHW = (W*W)T. These properties and the given fact that —W is
symmetric positive semi-definite implies that —W+ is also symmetric positive semi-definite. (See [8]
for proofs.) That in turn implies W*W = Ww+. Moreover, PW = PW* = .

It is easy to show that all the trajectories which start on the affine space Pu = Pd stay on it. This
follows from the calculation at u = 0.

TP4 = P(-u’+d)+ PWg(u)
P(—u® + d)

= O(using assumption (iv))

All the higher derivatives are similarly in the null space of P at u = u%. Hence, using the Taylor series
expansion, P is zero everywhere on the mentioned affine space.

Since u(t) stays on the affine space, we need to look at the derivative of the energy function restricted
to this affine space only.

Viiuw) = Wt (u-d)+g(u)
= —W¥(-u+ Wg(u)) + g(u)
= +Wti+ Pg(u)

faw) = 4Ty fi(u)
= +d" Wi 4 o7 Pg(u)
= +atwtu+o
<0

In fact, fd(u) equals zero if and only if @ is zero. Suppose that uW ¥4 = 0. Since, —W* is positive
semi-definite, this implies that W+ 4 = 0. Since Pii = u— W+ W = O,u=WtWu=WWwWtq=0.
Hence, fy(u) =0 & u = 0.

Also, since g € C? by (1), fa € C2. If we let fa be the scalar function in Theorem 3.2 then the
requirements (a) and (c) are satisfied. Moreover, the requirement (b) is implied by assumptions (iii)-(v)
directly. Hence, the function f; is a Liapunov function for the dynamics 1.1, which implies that any
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trajectory induced by 1.1 and starting at u® tends to the set {u: fd(u) = 0}. But as we proved above,
fd(u) =0 < u = 0. Hence the first part of the result follows. For the second part, recall that the first
order conditions for u’ to be a minima of f4(u) subject to P(—u + d) = 0 is that 7 f4(u') + Py =0
for some vector y. Now note that 7 fy(u) = Pg(u) in limit as & = 0. Therefore, in limit the first-order
minima conditions are satisfied if we substitute y = g(u). =

The conditions required for convergence under the two models are different. The following corollary
collects all the common conditions.

Corollary 3.5 Suppose that

(i) 9(Q - R) eC2

(ii) ¢ > 0 (i.e. g is strictly increasing).

(iii) —W is symmetric and positive semi-definite.

(iv) Starting at u° = u(ty), u(t) € Q™ fort > t;.

(v) P(—u®+d)=0 (where P=1-WtW).

(vi) The set Qp = {u € Q": fr(u) < fp(u(ty))} is bounded.

(vii) The set Qy={u€ Q": Pu= Pd, fi(u) < fq(u®)} is bounded.

then, any trajectory induced by 1.1 and starting at u® tends to the set {u : & = 0}. Moreover, the
trajectory converges to a first order minima of fy (subject to the affine constraints P(u + d) =0) and

fp-

Proof : Follows directly from Proposition 3.3 and 3.4. =

Here, the reader should note that the conditions under which the two energy functions operate are
different. However, even under conditions which satisfy the requirements for both, the two energy
functions are still not identical. Therefore, the difference in two energy functions is not just on the
surface.

A question which arises is what is the physical significance of two different energy functions for the
same neural dynamics. The answer lies in the physical implementation of the above dynamics. There
are two natural ways of implementing this dynamics, one where the primary variable is u and the other
where the primary variable is g(u). Depending upon which one is the primary variable, a physical
system can have two different kind of potential functions with some physical significance. Indeed, the
above dynamics can be implemented using electrical circuits in two different ways. One method uses
non-linear resistors, while the other uses non-linear capacitors.

There is obvious similarity between primal model energy function and the primal objective function
of Problem 2.2 (with the substitution & = g(u) and again between dual model energy function and the
dual objective function of Problem 2.2 (with the substitution 2 = —u). The only difference is a term
solely involving activation functions. In the next two sections, we look at these similarities more closely.
We study the role of the extra term which involves activation functions.

4 Optimization

We present three different interpretations of the neural dynamics in this section. We use Proposition 3.3

for a primal interpretation, Proposition 3.4 for a dual interpretation and Corollary 3.5 for a primal-dual
interpretation.



Throughout this section we use the following specializations.

W = -Q (4.5)
d = —¢ (4.6)

We will denote the inverse function g~! by A if it is well-defined. We further denote g(u) by  and u
by —z. Under these new notations,

fr@) = 1/227Qx + Tz + Z/Ij h(v)dv, (4.7)
5 J9(a)
fa(z) = 1/2(z-¢)TQ*(z—¢) - Z /z; g(—v)dv. (4.8)
7 J-

Note that functions f, and fg minus their last term involving the activation function are identical to
the primal and dual objective function respectively of Problem 2.2. Denote the last term of fpand fq
as rp and rq respectively.

rp(@) = ; /g(q)h(v)dv (4.9)
raz) = -3 / 9(=v)dv (4.10)
j —-q

Suppose {gs : > 0} is a family of activation functions smoothly parameterized by a single parameter
B. Denote the corresponding last terms as 1'5 and rg .

4.1 Primal Trajectories

Proposition 4.1 Suppose that

(i) 95: Qs — (—ag,0) for some ag > 0,

(ii) g € C? is an onto strictly increasing function,

(iii) Forv >0, limg_ 7'5 (v) = constant,

(iv) Forv <0, limg_,g rg(v) = oo,

(v) Either ag = 0o, or limy—, _qo, hg(v) = co.

(v) The primal level sets of Problem 2.2 are bounded, and

(vi) There is available a vector x° such that z° € (—ag,o0)™.

Then, starting at u® = h(z®) the neural network whose dynamic is given in 1.1 converges to xP.

Moreover, for a small enough value of B, xP is an approzimate primal solution to Problem 2.2 to the
required degree.



4.2 Dual Trajectories

Proposition 4.2 Suppose that

(i) gp: (—00,78) = R for some 78 > 0,

(ii) gp € C2,

(iii) For v > 0, limg_g rdﬂ(v) = constant,

(iv) Forv <0, limg_g rdﬂ(v) = 00,

(v) FEither vg = oo, or lim,—. ., gg(v) = o0.

(v) The dual level sets of Problem 2.2 are bounded, and

(vi) There is available a vector z° such that I-QQ*)(2°-¢)=04and 2% ¢ (—vg,00)".

Then, starting at u = —29 the neural network, whose dynamic is given in 1.1, converges generating

2# satisfying (I — QQM) (2P —¢) =0. Moreover, for a small enough value of B, 2P is an approzimate
dual solution to Problem 2.2 to the required degree.

4.3 Primal-Dual Trajectories

Proposition 4.3 Suppose that

(i) 95 : (—0,78) — (—ag,00) for some ag,vg >0

(ii) gp € C? is an onto strictly increasing function,

(iii) For v > 0, limg_o 7'5 (v) = constant and limg_,q rdﬂ (v) = constant,
(iv) Forwv <0, limg_.g 'rg(v) = 00 and limg_ rdﬂ(v) = oo,

(v) The primal and dual level sets of Problem 2.2 are bounded, and

(vi) There is available a vector z° such that (I — QQ+)(20 — c) =0 and 20 € (—ag, c0)".

Then, starting at u = —29 the neural network, whose dynamic is given in 1.1, converges generating
2# satisfying (I — QQ*) (2P —¢) =0. Moreover, for a small enough value of 8, = = g(u) and 2P are
approzimate primal and dual solution respectively to Problem 2.2 to the required degree.

5 Relationship to Known Continuous Trajectories

The natural question to ask at this stage is: what relationship, if any, does the previous trajectories
have to previously known continuous trajectories in the mathematical programming literature.



5.1 Primal

In terms of primal variables & the neural trajectories can be written down in the following form.

b= -t (Qz +c+ hy(x)) (5.11)
hg(z)

It is apparent that the trajectory {x(¢) : ¢t > 0} is not a gradient descent for any scalar func-
tion. However, one can show that it follows gradient of the energy function f, under a non-Euclidean
Riemannian metric. It is known that any n X n symmetric and positive definite matrix M whose
entries m;; are smooth function of the coordinates defines a Riemannian Metric. We can use M =
diag(h'ﬂ(zl), h'ﬂ(zg), veeny h'ﬂ(zn)) It can be shown that gradient of a function f with respect to metric
M, is M~17f. Therefore, the gradient of the function fp with respect to metric M, is exactly the
negative of the right hand side of the dynamics 5.11.

To see another link, consider the dynamics 5.11 with the specific function hg(z) = —§/z.

B =-X*(Qx+c—BXLe) (5.12)

The notation X denotes a diagonal matrix with X;; = z; and e denotes a vector of 1’s. The trajectory
{z(t) : t > 0} is identical (up to a scaling factor 3) to the so called u-Barrier Continuous Trajectory
described in [13] applied to Problem 2.2. It has been studied and compared to the previous two
trajectories by Gill et al. in [7] and Shub in [15].

These trajectories are closely related to affine-scaling trajectories in the sense that for 8 = 0, they
are identical to them. For a more detailed presentation, see [1] and a series of papers [3], [4] and [11].

5.2 Dual

In terms of dual variables z the neural trajectories can be written down in the following form.

z=-z+c+Q%g(-2) (5.13)

Recall that the trajectory {z(¢) : t > 0} stays on the affine space (I — QQ7%)(z —¢) = 0. It is not clear
if this trajectory follows the gradient of any scalar function.

Specifically, consider the energy function f;. The gradient of f4 is Q*(z — ¢) — g(—z). This gradient
projected on the affine space (I — QQ%)(z —¢) =01is QQT(Q* (2 — ¢) — g(—2)) Using the fact that
QQ*1 = QT Q, we get the projected gradient as z —c — QQ*g(—z). On comparing the right hand side
of equation 5.13, one can conclude that the above trajectory is a projected steepest descent trajectory
for function fy if and only if QQ* = Q™ or equivalently Q* (= Q) is a projection matrix.’

5.3 Primal-Dual

The primal-dual trajectory {(z(t) = g(u(t)),2(t) = —u(t)) : t > 0} is such that {z(t) : ¢ > 0} and
{2(t) : t > 0} have the properties of a primal and dual trajectory respectively, which are described in
the previous two sections.

Under the special case when Q7 is a projection matrix, an interesting conclusion can be drawn. If the
trajectory z(t) starts on the mentioned affine space, then it is a projected steepest descent trajectory for
function f;. On the other hand, trajectory z(t) = g(—=2(t)) is a u-Barrier trajectory which is also a a
steepest descent trajectory with respect to a well-defined Riemannian metric. Therefore, the properties
associated with u-Barrier trajectories can be associated with projected steepest descent trajectories
under these conditions.
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