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In this paper we present a comprehensive analysis of the max-flow problem with n
parametric capacities, and give the basis for an algorithm to solve it. In particular we give a
method for finding the max-flow value as a function of the parameters, and max-flows for all
parameter points, in terms of max-flow values to problems at certain key parameter points. In
the problem with nonzero lower bounds on the arc flows, we derive a set of linea: constraints
whose solution set is identical to the set of all feasible parameter points.

The intrinsic difficulty of the problem is compared with that of the general multiparametric
linear programming problem, and thus light is shed on the difficulty of the latter problem,
whose complexity is currently unknown.

1. Introduction

In this paper we present a comprehensive analysis of the structure of the
ma:: -flow problem with one or more parametric capacities, and give the basis for
an algorithm for its solution. Let G ={N, sf} be a directed graph (where N is the
nodes set and o the arcs set). Corresponding to each arc (i, j) in & is a pair of
real numbers (possibly —, ®) I(i, j), c(i, j) which we call respectively lower and
upper capacities. We define a circulation in G to be a real-valued function f on &
satisfying

O IGED=fG)=cG.) VG Ded,
(i) G, N)-f(N,i)=0 VieN,

where

fGN)= Y fGi), fND= Y flki).

G.Desd (ke

We may distinguish two nodes s and t as a source and sink. Then an s-t flow is
a real-valued function f on o satisfying (i) and (ii) Vi#s, t. The value of f is

* Work done while at University of California at Berkeley Mathematics Department and Tel Aviv
University Statistics Department.
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defined as f(N, t)—f(t, N) (=f(s, N)—f(N, 5)); we denote it V(f). In the max-flow
problem we seek an s-t flow f of maximum value. Note that every s-t flow f in
G ={N, o} defines a circulation in G'={N, o'}, o' =s4U{(t s)}, with V()=
f(t, s), and vice-versa. Thus the max-flow problem is equlvalent to the problem of
finding a circulation in G' with maximum f(t, s).

In this study we focus specifically on parametric upper capacities, and mdxcate
how the results can be modified to apply to lower capacities. We define the
problem as follows.

Let sf,={A’,..., A"} be some subset of arcs. A=(Ay,...,A,) will denote a
vector of parameters Let f, = o'\ &4, be the nonparametrized arcs. The problem
can then be written as follows:

P(A): max f(¢, s),

subject to
f(, N)—f(N,i)=0 VieN,
(AY)<f(A¥)<A,, k=1,...,n,
1G, j)<fGi,p=<c@i,)) VG et

We denote by V(A) the optimal solution value in P(A). We make the assumptions
that (i, j) < c(i, j) V(i, j) € &, and that P(A) is bounded for all possible values of A.
Our objective is to determine for which A the problem (PA) is feasible, and to
construct a function enabling us to explicitly calculate for every feasible A the
max-flow value and a max-flow itself.

We make use of the (generalized) max-flow min-cut theorem, which says that in
any network with fixed capacities the max-flow value is equal to the minimum
value among all s-t cuts. An s-t cut is a set of arcs

X, X)={G,plieX, jeX}

where X, X'_is a partition of N such that se X, te X; its value is defined to be
c(X, X)—1l{X, X) where

X, X)= ) cGj) and UXX)= Y 1G]
G e(X, X) G DX, X)
We also find as a result of our work a minimal cut (i.e., a cut of minimum value)
for every value of A such that P(A) is feasible.

Note that if we wish to consider the problem in which arc (i, j) has fixed upper
capacity c(i, j) and parametric lower capacity A, we may replace (i, j) by an arc
(j, i) with fixed lower capacity —c(i, j) and parametric upper capacity —A and
obtain an equivalent problem. Thus our results may be applied to the case in
which there also exist parametric lower capacities. We discuss how our feasibility
results may be modified to solve the feasibility question directly for the case of
parametric lower capacities only, without making this transformation. We do not



The max-flow p,oblem with parametric capacities 289

concern ourselves with the case in which both upper and lower capacities on the
same arc are parametrized.

~ We begin the ananysxs in aecuon 2 with the specnal ‘case in which ail lower
capacm&s are equal to zero In th:s relauvely simple case P(A) is always feasible.

Ot i madh o an 0o ba bhhin macianal mana " rwrn e b }

wne. Bon <
lll IGLLIVIL J WE CALGLHIU ulc lcauua WU I eiivial Lade, st wluuuuug tne I.Cbull.b

of Section 2 with known feasnblmy results in order to determine the set of all A

for which P(A) is feasible, and then modifying results of Section 2 to show how

P()) may be solved. Firally, since P(A) is actually a special case multidimensional
parametric right-hand-side linear program, we discuss in Section 4 how our
approach to this special case diflers from general parametric linear program
methodology (specifically, applied to our problem), and we point out how our
results can be instrumental in evaluating the practical limitations of multn-
dimensional parametric analysis.

We shall denote by 4 the set of all n-dimensional vectors 8 with components
equal to 0 or 1. Given 8e€ A we define n(4) by 0 (8)=0- ;' (where 0/0=w).
(For example, 7n(1,0, 1) =(0, %, 0).)

2. The zero lower capacities case

In this section we analyze P(A) under the assumption that I(i, j) =0 V(i, j) € 4.
We consider A =0 only. Our first resuit concerns the structure of V(A). For € A
we denote by M(5) the minimum value of all s-t cuts (X, X) in G for which
(i, i) € (X, X)iff &, = 1, where in evaluating the cut we set A, =0Vk such that
8, = 1. (The inclusion of arcs from £, is determined only by the minimum cut
value.) We take M(8) = if the set of s-t cuts containing exactly arcs (i, ji) with
o, =1 is empty.

Theorem 1.

V) =min{M@)+ 3. 8\ |54} (A=<0).
k=1

Proof. Follows directly from the max-flow min-cut theorem. (See [1]) O

Note that the max-flow value V(A) is a continuous piecewise linear function of
A over the n-dimensional nonnegative ortant. Specifically, let

rE)={}|vi=M@)+ ¥ dM}
k=1
then V()) is linear (with coefficients zero or one) over each of the nonempty sets

I'(8). The union of the sets I'(8) over all €A covers the n-dimensional
nonnegative ortant, and it is easy to see that each is a d-dimensional polyhedral
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set for some d <n. Note that there are at most 2" such sets (since this is the
cardinality of A). Obviously for n=1, I'(0)=[0, M(1)-M(0)] and I'(1)=
[M(1) — M(0), ).

Two typical cases for n =2 are shown in Fig. 1. (For a reference see [2].)

In order to obtain an explicit expression for V(A) it is necessary to compute all
M(8) which are relevant in the expression presented in Theorem 1. We next show
how this can be accomplished by solving a sequence of max-flow problems in G,

each with a special set of parameters A. In the following we adopt the convention
that ©-0=0.

Theorem 2. Given §€ 4, let (X, X) be a minimal cut ivi the network for problem
P(n(8)). (Thus its value is V(n(5)).)

@) If A*e(X, X) Yk for which &, =1, then M(5) = V(n(5)).

(b) If 3k such that & =1 and A*¢ (X, X), then

M(8)+ Y. § A =min {M(8)+ Y SkAkISGA\5} VA =0.
k=1

k=1

Proef. (a) Since &, =0=> 1, (8) == it is clear that A*¢ (X, X) Vk sgch that §, =0
(by our assumption that P(A) is always bounded). Thus A* e (X, X) iff§ =1, so
since (X, X) is minimal its value is M(5).

(b) Defire be A by &, =1if AXe (X X) and §, =0 otherwise. Obwously (since
(X, X) is minimal) M(8)=M(8) and § <§, so

M@)+ 2, A& =M@+ Y A8 VA0
k=1 k=1
and the resuilt follows.

Corollary. n
V(A)=min {V(n(a))+ Y Sh b€ A} VA =0.
k=1

Proof. Follows directly from Theorems 1 and 2. [0
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Note. Theorem 2 is proved for the case n =2 in [2].

The Corollary to Theorem 2 provides us with a method for computing
: V(A) for any A =0 by calculating V(n(3)) for each 8 €A It should be noted that
- ~any method of compuung V(n(&)) can be used ~

'l\eonnS. GwenABO suppose thatAeI‘(S) foracertam SeA and letA‘ LAl
be the extreme points and {',...,{" the extreme rays (if any) of F(8) If
A=Yl o'+ Z 18, (with 2-1% 1L,a,=0,i=1,...,1,8,=0, j=1,...,p),
then the flow f(X) defined by f(A) =Y., a.f(A*), where each fA)isa max-ﬂow for
P(AY), is a max-flow for P(X).

In order to prove Theorem 3 we shall need the following lemma, in which we
show that I'(8) is bounded in the direction of the A, axis for every k such that
&=1.

Lemma 1. Suppose I'(5) is unbounded and let £ be a ray of I'() (i.e., X + vy € I'(§)
VA eI'(8) and y=0). Then Y%, 8% =0.

Proof. By definition, A € I'(5) implies that

M@)+ Y. 5\ =min [M(8)+ Y S |8eA}sM(0)<oo.
k=1

k=1

But since  is a ray of I'(5) we have that for A € I'(5),

M@)+ Y. &Gk +vE)<M(O) Vy=0.

k=1
Therefore Y., &y =0. O
Proof of Theorem 3. It is easy to verify the feasibility of f(A) (because f(A) is a
convex combination of f(A') which are feasible for P(A'), i=1, ..., l). Moreover,

the value of f(A) = V(f()) is equal to Y., a;V(A'), and since A € I'(5), we have
by Theorem 2

1 . .
V() = Z o V(AH) = Z a;(M(S')+ Z s.kM:)

i=1 i=1 k=1

=M(§)+ i &(i ai)\L).

k=1 i=1
But by Lemma 1,

-+ 3 Bil)
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ANV t ' A51R a AR ABNIYY ANJA & \ BA S 'V_ ;l“lll' W
all the extreme noints and extreme ravs of I'(8). The following ¢ llarv shows
treme points and extreme rays of I'(d). The following corollary shows

that we actually need only the extreme points

Corollary. Given X =0, suppose that X € I'(8) for a certain € A, and letA?,. .., A'
be the extreme points of ['(8). If there exist ay, . .., a, with A, =Yi_; a;A for all k
such that & =1 and X, =Y'_, a;AL for all k such that & =0, where o, =0,
i=1,...,0L and ', s =1, then fA)=Y}_, a:f(A") is a max-flow for P(A).

Proof. Define A =Y!_, ax'. Then A—AX is cleadly a ray of I'(8); thus it is a
nonnegative combination of £,..., {%, and sinre by the Lemma, £} =0Vk such
that 5, =1, i=1,..., p, the conditions of Theorem 3 are satisfied with the a;’s
assumed to exist here and some B;’s, and the resuit follows.

Lg o) FRESRSS. |l [ USRI g = seital LD L w___ % _ _ ___ _ . A _______a' __ Xr{r\
1 NS Precding rosults proviac us witl i€ 1oiiowing meinoa 10r Compuung via)
el o camner e, £ALY WL =N
allud d HIGATIIUW i) VA =U
‘l, A s b'vly VO & 111N v \"\U’, wr Dul'llls iz \"\U’l
(11} Enumerate all of the extrame nointe of I'(8) for each 8 A and comnute
‘.l, BdElSALSAAWA WARY R4ARE WA SAAW WA Wiliw yvllll\) A A \v’ aANsa WAWIL WV N\ el SAiEwS vvl..t’“‘v
max-flow at each of these points. (Note that by Theorem 2,
. ( . o -t
F@®)={A=0] V)= V(n@)+ 2. 8|.)
L 2

Once these computations are performed and recorded, P(A) can be solved for any
A =0 as follows:

(a) Find V(A) using the expression in the Corollary to Theorem 2 and thus at
the same time identify 6 € A for which A € I'(8).

(b) Let A', i=1,...,1 be the extreme points of I'®) and f(A}), i=1,...,1
assnciated max-flows (available from (ii) above). Find coefficients «;,..., 0 =0
with Yi.; ;=1 such that A, =Y_, a;Ak Vk such that &, =1, A, =Y, aA} VK
such that §, =0. (If necessary these can be found by soiving a linear program.)

o .. £\

(o o) P . 2 YA B N < RS AN
inen a max-ftow for P{A) 1S JA) =i of(A%).

Kwamnla Cancidar Fig )
~amamspats UONSIGCT Cig. <.
(i\ Solve PO O P(Q o0 Ploo ) and Ploo o0l In thic avamnla Af(S) =
2 2V IR Uy, SRV, E), S5, QG %5, 99,0 Al UiS SRamipas, vinG),
V(n(8)) ¥seA
(i) Enumerate points A',A% A% A% A° and compute max-flows f(A}), i=

i,...,5 (Eg, A4=(V(x, 0)-V(0,0),0).)
Given A =0, we have (we use the particular A in Fig. 2 as our example):
(a) 8=(0,1), V(A\)=M(0, 1) +A,.
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(b) The extreme points of I'(0, 1) are A3, A%, A%; thus (in this case) we find a =0
such that A, =aA$+(1—a)A3 and take f(A)=af(A*)+(1—a)f(A?).

Remarks. (1) It is not efficient to solve P(n(8)) separately for every 8cA.
Depending on the method used it is probably possible to use the solution for one
8 as a starting point for the next. The determination of a sequence by which the
P(n(8)) are solved could increase the efficiency of an algorithm based on the
results presented here.

(2) It would be inefficient to require enumeration of the extreme points of the
I'(5) separately for each & € A, since most extreme points are common to more
than one set. An algorithm exploiting the neighboring relationships of the sets
I'(8) would be preferable.

(3) It is well-known that if all capacities are integer (in our case, this would
have to include the parameters) then there exists an integer max-flow. However,
the convex combinations of flows advocated here will not in general be integer
even if the fixed and parametric capacities are integer. (Obviously, if the max-flow
is unique the unique integer solution would be obtained.)

(4) It can be seen from the structure of V(A) that the parametric max-flow
problem is intrinsically one requiring effort that increases exponentially with the
number of parameters. In fact the cosaputational effort of any good algorithm
based along the lines suggested here would be proportional to the cardinality of 4,
which is equal to 2" where n is the number of parameiers. We discuss the
rami‘cations of this fact in terms of the general multi-parametric linear program
in the last section.

3. The nonzero lower capacities case

In this section we extend the preceding results to the case in which the lower
capacities are not necessarily all zero.
The introduction of nonzero lower capacities raises the question of feasibility of
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P(A) for a given A. Therefore we proceed first to determine the feasibility set
F={A=0|P(A) has a feasible solution}.

We shall deal with the feasibility problem using the standard technique of defining

a new network G ={N, of} with zero lower capacities and new upper capacities.

The existence or nonexistence of a feasible flow for P(A) is determined by solving

a max-flow problem in G. We can apply the results of Section 2 to obtain ¥.
We make the following definitions:

S={ieN|UN,i)— Ui, Ny=a(i)>0},
T={ieN| (i, N)— N, i)=b(i)>0},
I={ie N|Il(i, N)- (N, i)=0},
a(§)=Y a(,  b(T)=} bl

ieS ieT
The network G ={N, s} is defined as follows:
N=NU{5, 1},
A=AU{GE )] jeSYU{G, D|te T}
We define upper capacities &(i, j) on arcs of sf by:
(a(j) if i=5 j€S,
b(i) ifj=1ieT,
c(i, DG, j) if (i, j)esd,,
LA— G D=A i L)=A%ed,.

¢(i, j)= <

We define the corresponding max-flow problem P(A) in G as follows:
P(A): max (i, 5),
subject to
f(N,)—f(i, N)=0 VieN,
O<fii, )<EéGJ) VG jled\st,,
O<f(i, <M, k=1,....n

We shall denote 2 max-flow for P(A) by f(A) and its value by V(A). The
relationship between the max-flow value of P(A) and feasibility of P(A) is given in
the following theorem.

Theorem 4. (i) V(A)<a(S)VA.
(i) P(A) es feasible iff V(A) = a(S). (Remark. By construction, a(S)=b(T).)
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Proot. (i) Since ({5}, N\{5)) is an §-f cut of capacity a(S).
(ii) (a) Suppose P(A) is feasible and let f bea feasnble ﬂow Deﬁne a flow f on
, G as follows ;

fx, y)= ﬂnﬂ an,(&wed
fG x)=a(x), xeS,

f(x,)=b(x), xeT.
It is easy to verify that f satisfies conservation. In addition, it clearly satisfies
capacity constraints (by definition of ¢, since f did) and has value a(8).

(b) Let f be a flow in G of value a(S). Define f on & by f(x, y)=f(x, y)+
I(x, y). Again it is easy to verify that f is a feasible flow on G. []

In the next theorem we apply the results of Section 2 to Theorem 4 to obtain &.

Theorem 5. (i) F=¢ iff V(n(0))=a(S).
(i) If ¥#9, then

3 8= Vin(0)— Vin(8) + 3. 8I(A%) V5eal,

k=1 k=1

F={A=0

Proof. By the corollary to Theorem 2, since A, =A, —I(A¥) we have
V) =min { Vin(@)+ 3. s~ 3. 8d(a9)[5ea),
k=1 k=1

and since V(n(0))= V(A) for any A, P()A) is feasible iff this quantity is equal to
a(S). Thus:
_ (i) Clearly if V(n(0))<a(S), then F=9 (since V({0)=V(A) for any A). If
V(0(0)) = a(S) then for A sufficiently large V(n(0))= V(A) so F#§.

(ii) Assuming V(n(0))= a(S), then since P(A) is feasible iff the above minimum
is equal to a(S), we have that P(A) is feasible iff the above minimum is equal to
V(n(0)), i.e., iff

VnO)<Vn@)+ ¥ 8- ¥ 8l(A%) Vsea,
k=1

k=1

and the result follows by rearranging terms. (]

Thus, the explicit determination of % can be accomplished by a method similar
to that of obtaining V(A) in the previous section (here the flow problems are
solved in G instead of G).

The set &, if nonempty, is a polyhedral set imbedded in the n-dimensional
nonnegative ortant with up to 2" —1 facets; that is, ¥ can be expressed as the
solutions to a set of at most 2" — 1 nonredundant linear inequalities in n variables.
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The structure of & is rather simple and redundant inequalities can be easily

PRSPPI R | NP T Jh DI Hpp, noomantatad oo -2

UﬁlCLlCU alia l(ulllUVCU ll UCBIICU lll ldLl, llIC lucquauly aaauualcu wuu a glvcuk

Sedis redundant iff

) [i 8(A%) - Vin@)|= ¥ &A%~ VB,

8e8 Lk=1

where & is any subset of L(§)={6€ A | § <8} such that Y;.58 =4.
To simplify the presentation we shall write ¥ as

.‘%:{A?O! 8.\ =d(5), ae}

T

1

where

d(S)Emax[{ Y [ Z i‘;kl(A")~\7(n(8))|S<;L(§), Y s=5},

deS L k=1 8eS

j:

81(A%) - V(@ |

k=1

We remark that to find the feasibility set for a problem with parametric lower
capacities only, we may define a network similar to G but depending on the fixed
upper capacities, prove a theorem analozous to Theorem 4, and use it in an
analogous way to prove a Theorem analogous to Theorem S. The development
from here on can then be appropriately adapted to the parametric lower capacity
case. However, if we wish to consider problems with both parametric lower and
upper capacities, the transformation described in Section 1 for changing all
parametric lower capacities to parametric upper capacities must be made.

Our next objective is analysis of the function V(A). This task is not as simple as
in the zero lower capacity case; although Theorem 1 is easily extended, the
explicit determination of V(A) is more complicated and requires, besides the
solution of max-flow problems, the solutions of as many linear programs whose
complexities increase with n. Theorem 6 is a generalization of Theorem 1.

Theorem 6.
V(A) =min {M(&) +ki Sy | aeA} Ve
=1
(M(8) is defined as in Section 1.)
Proof. Same proof as Theorem 1. [

As before, the M(8) for 6 € A are not readily available. Theorem 7 provides the
basis for a method of computing M(8) for every €A or showing that the
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particular quantity
M@+ Y &

k=1

is redundant in the expréssion above for V(A). We first prove a Lemma.

Lemma 2. Given 8¢ 4, consider the following linear program:
Q(5):max p
subject to J

M@+ Y B =8IA—-pn=0 V6eL(), ArcF
k=1

(@) If F#Q, then Q(5) has an optimal solution ¥ € A.
(i) If (&, A) is an optimal solution, then

& =min {M(s)er,g s |aeL(5)}- Y 5k
- k=1 k=1
(iii) If(;; X) isan opfimal solution, then
fA=min {M(t)a,gv ). &M b€ L(s)}; Y &M VAeF
. k=1 k=1
Proof. Follows directly from the formulation. 3

'l!lo;orem 7. Let (X, X) be a minimum cut associated with P(nm(8)+A), where
(@, A) is an optimal solution of Q(d).
(a) If A*e(X, X) for all k such that &, =1, then
M) =V(n(B)+X)— Y &k
k=1
(b) If 3k such that &, =1 and A¥e (X, X), then

M@+ Y §A =min {M(8)+ Y S| SEL(S)} Vie &
k=1 k=1

Proof. (a) The proof is analogous to the Eroof of Theorem 2(a). B
(b) Define €A by & =1iff A*e(X, X). Then the value of (X.X) in the
network for P(n(8)+A) is

M@)+ Y, &k
k=1
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and by minimality
M(é) + Z sk):k = M(s—) + S;cxk‘

k=1 k=1

Thus by Lemma 2(ii),

Hence by 2(iii),

min {M(8)+ Z S laeL(E)}sﬁ+ }'f Sih <M(5)

k=1

which proves the claim. [J

The foregoing results suggest an algorithm designed along the following lines.
We present not an algorithm in all detail bui rather only the basis for one. We
assume that & is already given (that is, 4(8) has been computed V8 A). We
denote by F(i) the set {84 ||8|=i}, i=1,...,n where |8|=|{i |8, =1}

(i) Compute M(8) V& € F(1). (Note that no linear programs are needed at this
stage, since A, =d(8) for 5, =1 can be used.)

(ii) Given all the relevant M(8) for & € Um;! F(i), then for every & € F(m):
(ii.a) Solve the linear program Q(38); let (ii, \) be an optimal solution.
(ii.b) Solve the max-flow problem P(n(8)+A); let (X, X) be an associated

minimum cut.

(ii.c) If A*e (X, X) for every k such that § =1, let M(§)= V(n(8)+A)—
Yu_1 8Ay; otherwise M() is always redundant in the expression for the function
V(A).

(iii) Set m=m+1 and go to (ii) unless m =n.

The construction of min-cuts and max-flows as functions of the parameter
vector A would be analogous to the construction presented in Section 2. In
particular, the min-cut associated with P(n(§)+A) is also a min-cut for all
Ael@@)={reF | M(B)+Yr_, &A= V(A)} and the extreme points of I'(8) V6 €
A can be enumerated and used as in Section 2.

4. Comparisons and ramifications concerning general multi-parametric methods
The problem P(A) is a special case of the multidimensional parametric right-

hand-side linear program, a solution method for which is given in [3]. In this
section we compare our method with this general method (which can be adapted
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slightly to network analysis and applied to our problem), and indicate how our
results are of theoretical interest since they imply ramifications concerning the
difficulty of the general problem For convenience we refer to *“‘our method”
instead of “an algorithm based on our results.” (Note: See also the remarks at the
end of Section 2.)

In parametric methods where we wish to solve a problem for all values of a
parameter vector A, we actually first solve a number of problems for certain
specific values of A and record the information; we will refer to this as phase 1.
Afterwards, given any specific A we must use the information from phase 1 to
obtain a solution for A; we will call this phase 2. Phase 1 for the general method
in [3] consists of solving the problem for a particular starting value of A and
performing sensitivity analysis; specifically, the region of parameters for which the
starting basis is optimal is found as the solution set to a system of linear
inequalities, and after solving a certain linear program one facet of the set is
determined. An alternate solution for the facet is found by performing a pivot (if
adapted to network methods, by performing a flow augmention—see[1]), a new
region is found, and the process continues. Our phase 1 consists of (i) and (ii) of
the method given in Section 2.

We wish to discuss similarities and distinctions between the two methods in
both phases 1 and 2.

In phase 1 both methods produce a partition of the parameter space in which
the optimal solution value is an affine function over each region of the partition.
The most important distinction is in these partitions; in fact, our partition contains
the partition found in the general method. In the one-dimensional case, for
example, the general method would generate a sequence of intervals, each
corresponding to an augmenting path (see [1]); the endpoint of the last interval
found would be the A beyond which the optimal solution value remains constant
(i.e., there are no more augmenting paths). Our method produces exactly this
point (namely, V()—V(0)) and only ithe two intervals [0, V(x)— V(0)] and
[V(s2) —V(0), =), which are in some sense intrinsic to the problem. (We refer in
this instance to the zero lower capacity case.) A similar situation would result in
higher dimensions. Furthermore, in our method we know that the number of
regions in the partition is at most 2", whereas in the general method nothing is
known about this a priori. In fact, since our solution may have as many as 2"
“intrinsic” regions and the general method applied to our problem in general
produces even more than this, and since our problem is simpler than the generai
multiparametric linear program, we see that the general method applied to the
general problem must be very complicated.

We next discuss differences in the effort in actually generating the partition. In
the zero lower capacity case we obtain our partition easily after solving ai most 2"
max-flow problems in any order. (Some order of solving the problems can
increase the efficiency by using one solution as the starting point for the next.)
The general method, as we saw above, not only involves solving a linear program
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to find each facet of every region, but also requires extremely complex logistics in
order to keep track of the facets and regions covered. In the nonzero lower
capacity case we must solve also up to 2" linear programs (or.e for each region);
buz this is still much less effort than in the general case where one linear program
must be solved for each facet of a larger number of regions. Also, notice that our
method saves work if it is known that all lower capacities are zero; the general
method would proceed exactly the same way in both cases.

We now compare the form of the information obtained after phase 1 in both
methods. In the general method a set of inequalities must be stored for each
region; our method requires storage of only <2" numbers {une for each region).
If one is interested only in the max-flow value, in the general method we need
also store one number for each region; our method contains this information in
the <2" constants referred to above. If one is interested in min-cuts, we need
only record one for each region; this is true in both methods but in a true sense
our method produces the minimum number of such regions. Note, however, that
if we wish to produce max-flows, our method also requires storage of the
inequalities defining each region, in order to find the extreme points, whereas the
general method records just onc max-flow (and an augmenting path) per region.

We now turn to phase 2, the computation of the solution for a given A. We first
discuss the determination of feasibility or infeasibility (if lower capacities are not
identically zero). In the general method we must substitute A into a system of
inequalities for each region, whereas in our method we substitute A into only
=2"—1 terms and find the minimum.

After feasibility is determiued, in order to find the max-flow value our method
requires additionally the substitution of A into <2" more terms in order to find
which region contains A ; in the general method the region is found simultaneously
as feasibility is determined (however, this is still in general more work than in our
method).

To find a max-flow our method requires additionally the solution of one linear
program for each region (still less work than the general method).

We mention again (see Remark (3) at the end of Section 2) that our method
does not guarantee integer flows; the general method does.

Finally, we remark that our approach is global, and does not provide for the
reduction of effort if solutions are desired only for some small subset of the
parameter space. In this case the generzl method presented in [3], which is based
on sensitivity analysis, would be more =fficient.
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