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In this paper we present a comprehensive anaIysis of the max-flow problem with n 
Parametriccapscities,and~thebasisforan~~tosolveit.Inparticularwegivea 
method for finding the max-flow v&ue as a function of the parameters, and max-fIows for all 
parameter points, in terms of max-flow vdues to problems at certain key parametez points. In 
the problem with nonzero lower bounds OIL the arc flows, we derive a set of lineax constraints 
whose sohition set is identical to the set of all feasl%le parameter points. 

The intrinsic diiBc&y of t&e problem is compared with that of the general mukiparametric 
bear prografflming problem, and thus light is shed on the difficulty of the latter problem, 
whose complexity is currently unknown. 

In this paper we present a comprehensive analysis of the structure of the 
max-fllow problem with one or more parametric capacities, and give the basis for 
an algorithm for its solution. Let G ={N, d} be a directed graph (where N is the 
nodes set and & the arcs set). Corresponding to each arc (i, j) in So is a pair of 
real numbers (possibly --,a) Z(i, j), c(i, j) which we call respectively lower and 
upper capacities. We dehe a circukrtion in G to be a real-valued function f on ~4 
satisfying 

(9 Z(i jMf(i jWc(i, j) V(i, j)Ed, 

(ii) f(i, N)- f(N, i) = 0 Vi EN, 

where 

fCi NJ = ( c fk i)= . 6. 
id fk j), fW, i) = 

(k: fkJ 

We may distinguish two nodes s and t as a source and sink. Then an s-t flow is 

a real-valued function f on & satisfying (i) and (ii) Vi f s, t. The vcllue of f is 

* Work done while at University of California at Berkeley Mathematics Department and Tel Aviv 
University Statistics Department. 
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defined as f(N, t) - f(t, IV) ( = f(s, N) - f(N, s)); we denote it V(f). In the max-flow 
problem we seek an s-t flow f of maximum value. Note that every s-t flow f in 
G = {IV, SIZ} defines a circulation in G’ - - {IV, J@}, ~3 = J@ u {(t, s)}, with V(f) = 

f(t, s), and vice-versa. Thus the max-flow problem is equivalent to the problem of 
finding a circulation in G’ with maximum f(t, s). 

In this study we focus specifically on parametric upper capacities, and indicate 
how the results can be modified to apply to lower capacities. We define the 
problem as follows. 

Let J& =(Al,. . . , A”} be some subset of arcs. A = (A,, . . . , A,, j will denote a 
vector of parameters. Let 94* =94’\& be the nonparametrized arcs. The problem 
can then be written as follows: 

P(h): max f(t, s), 

subject to 

f(i,N)-f(N, i)=O VidV, 

I(Ak)=Sf(Ak)SAk, k = 1,. . . , t2, 

Z(i,j)~f(i,j)~c(i,j) V(i, j)Es& 

We denote by V(A) the optimal solution value in P(A). We make the assumptions 
that Z(i, j) s c( i, j) V( i, j) E d2 and that P(h) is bounded for all possible values of A. 
Our objective is to determine for which A the problem (PA) is feasible, and to 
construct a function enabling us to explicitly calculate for every feasible A the 
max-flow value and a max-flow itself. 

We m:lke use of the (generalized) mux-flow min-cut theorem, which says that in 
any network with fixed capacities the max-flow value is equal to the minimum 
value among all s-t cuts. An s-t cut is a set of arcs 

(X,3F)={(i,j)) iEX,j&} 

where X, x is a partition of N such that s E X, t E x; its &we is defined to be 
c(X, z) - I(z, &X) where 

c(X, X) = c c&j) and I(z, X)= c Z(i, j). 
(i. J’k(X. r7) (i. jkR Xl 

We also find as a result of our work a minimal cut (i.e., a cut of minimum value! 
for every value of A such that P(A) is feasible. 

Note that if we wish to consider the problem in which arc (i, i) has fixed upper 
capacity c(i, j) and parametric lower capacity A, we may replace (i, j) by an arc 
(j, i) with fixed lower capacity -c(i, j) and parametric upper capacity -A and 
obtain an equivalent problem. Thus our results may be applied to the case in 
which there also exist parametric lower capacities. We discuss how our feasibility 
results may be modified to solve the feasibility question directly for the case of 
parametric lower capacities only, without making this transformation. We do not 
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concern ourselves with the case in which both upper and lower capacities on the 
same arc are parametrized. 

We begin the analysis in Section 2 with the special case in which all lower 
capacities are equal to zero. In this relatively simple case P(A) is always feasible. 
In Section 3 we extend the results to the general case, first combining the results 
of Section 2 with known feasibility results in order to determine the set of all A 
for which P(h) is feasible, and then mod!ifying results of Section 2 to show how 
P(A) may be solved. FirMy, since P(A) is actually a special case multidimensional 
parametric right-hand-side linear program, we discuss in Section 4 how our 
approach to this special case differs from general parametric linear program 
methodology (specifically, applied to our problem), and we point out how our 
results can be instrumental in evaluating the practical limitations of multi- 
dimensional parametric analysis. 

We shall denote by A the set of all rr-dimensional vectors 8 with components 
equal to 0 or 1. Given 8~6 we define q(A) by TJ&)=O-&~ (where O/O==). 
(For example, q( 1, 0,l) = (0, 00, O).) 

In this section we analyze P(h) under the assumption that Z(i, j) = 0 V( i, j) E d. 
We consider h 3 0 only. Our first result concerns the structure of V(A). For 6 E A 
we denote by M(S) the minimum value of all s-t cuts (X, X) in 6 for which 
( ik, jk) E (X, x) iff I& = 1, where in evaluating the cut we set Ak = 0 Vk such that 
S, = 1. (The inclusion of arcs from &!* is determined only by the minimum cut 
value.) We take M(6) -00 if the set of s-t cuts containing exactly arcs (&, jlC) with 
& = 1 is empty. 

Th- 1. 

V(A)=min{M(S)+ f &hk IlkA} (AGO). 

Proof. Follows directly from the max-flow min-cut theorem. (See [l].) Cl 

Note that the max-flow value V(A) is a continuous piecewise linear function of 
A over the n-dimensional nonnegative ortant. Specifically, let 

r(6) = {A 1 V(A) = M(8)+ i s,A,}; 
k=l 

then V(A) is linear (with coefficients zero or one) over each of the nonempty sets 
r(6). The union of the sets r(8) over all &A covers the n4imensional 
nonnegative ortant, and it is easy to see that each is a d-dimensional polyhedral 
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Fig. 1. 

set for some d s n. Note that there are at most 2” such sets (since this is the 
cardinality of A). Obviously for n = 1, r(O)=[O, M(l)-M(O)] and r(l)= 

CM(l) - M(O), 9. 
Two typical cases for n = 2 are shown in Fig. 1. (For a reference see [2].) 
In order to obtain an explicit expression for V(A) it is necessary to compute all 

M(S) which are relevant in the expression presented in Theorem 1. We next show 
how this can be accomplished by solving a sequence of max-flow problems in G, 
each with a special set of parameters h. In the following we adopt the convention 
that m*O=O. 

Theorem 2. Given 6 E A, let (X, X) be a minimal cut iti the network for problem 
B(&)). (Thus its value is V(q@)).) 

(a) If Ak E (X, 2) Vk for which & = 1, then M(s) = V(&)). 
(b) If 3k such that & = 1 and A k ti (X, X), then 

Proof. (a) Since gk = 0 + qk (6) = 00 it is clear that Ake (X, 2) Vk such that & = 0 
(by our assumption that P(h) is always bounded). Thus Ak E (X, X) iff & = 1, so 
since (X, X) iis minimal its value is M(6). 

(bj Define 8 E d by & = 1 if Ak E (X, x) and & = 0 otherwise. Obviously (since 
(/X, X) is minimal} M(8) 2 M(8) and 8 C 8, so 

and the result follows. 

c~oroIItary. 

V(A) = tin v(9)(8))+ f i&h, ; 6 E A VA 20. 
k=l 

Proof. Follows irectly from Theorems 1 and 2. U 
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Note. Theorem 2 is proved for the case n = 2 in [2]. 
The Corollary to Theorem 2 provides us with a method for computing 

V(A) for any A ~0 by calculating V(q(6)) for each 6 E A. It should be noted that 
any method of computing V(q(9)) can be used. 

3). Givcn~bO,suPPOSethath~r(~)foracertain~~Aandleth’,..,A’ 
be the exbme points and (El,..., Cp the extmne rays (if any) of r(6). If 
~=C,,C#+CIP,~@# [with CI1q=l,q*O,i=l ,..., Z,&aO, j=l,.._, p), 
then the f&w f(i) defined by f(x)=cI1 cqf(A’), where each f(A') is CL max-fbw for 
P(A'), is a max-jbw for P(x). 

In oxlet to prove Theorem 3 we shall need the following lemma, in which we 
show that Z”(8) is bounded in the direction of the hk axis for every k such that 
$=l. 

Lemma 1. Suppose r(8) is unbounded ad let fbe a ray ofr<S) (i.e., i+q&S(S) 
#tA~~(ti)and~~O). Theol&,&&=O. 

prod. By definition, A E Z@) implies that 

A!@)+ i &Ak=min M(6)+ f t& 16~A 
I 

s M(0) < 00. 
k=l k=l 

I3ut since [ is a ray of r(8) we have that for h^ E r(6), 

M(6)+ f &();lc+&~M(O) VyaO. 
k=l 

Roof of lbeorcm 3. It is easy to verify the fefisibility of f(i) (because f(i) is a 
convex combination of f (Ai) which are feasible for P(h’), i = 1, . . . , 1). Moreover, 
the value of f(x) = V(f(I)) is equal to Em1 qV(A’), and since A’ E r(6), we have 
by Theorem 2 
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Thus, V(f(i))= M(g)+c;,, -k-k 8 A = V(i), since k r(6); and f(i) is a max-flow 
for P(Q. CI 

Note that Theorem 3 enables us to find a max-flow for P(,f) after we enumerate 
all the extreme points and extreme rays of r(8). The following corollary shows 
that we actually need only the extreme points. 

Corolky. Given 1 2 0, suppose that h E I@) for a certain 8~ A, and let A ‘, . . . , h’ 
be the extreme points of r(8). If there exist q, . . . , q with & =z-i qh: for all k 
such that & = 1 and & 2 Cfzl qAh for all k such that & “0, where q ~0, 

i=l,.. . ,I, and zfCl q = 1, then f(~)=~~=l cuiffh’) is a max-fbw for P(i). 

ProoL Define i =ciel qlr’. Then I-- 1 is clearly a ray of I’(6); thus it is a 
nonnegative combination of t’, . . . , I’, and since by the Lemma, & = 0 Vk such 
that & =1, p’=l,... , p, the conditions of Theorem 3 are satisfied with the q’s 
assumed to exist here and some @i’s, and the result follows. 0 

The preceding results provide us with the following method for computing V(A) 
and a max-flow f(A) VA a 0. 

(i) For every 6 EA find V(q(6)) by solving P(q(6)). 
(ii) Enumerate all of the extreme points of r(6) for each 6 E A and compute 

max-flow at each of these points. (Note that by Theorem 2, 

ro=(A~O 1 V(h)= V(q(S))+ f is&}.) 

k=l 

Once these computations are performed and recorded, P(A) can be solved for any 
A 2 0 as follows: 

(a) Find V(A) using the expression in the Corollary to Theorem 2 and thus at 
the same time identify 6 E A for which A E r(6). 

(b) Let A’, i= I,. .., I be the extreme points of r(S) and f(A’), i = 1,. . . , I 

associated max-flows (available from (ii) above). Find coefficients cyl, . . , , aI ~4 

ukfa If=1 cyi = 1 such that Ak =Cfzl aiA:Vk such that & = 1, Ak )_Ciml qA;Vk 
such that S, = 0. (If necessary these can be found by solving a linear program.) 
Then a max-flow for P(A) is f(A) =xf=, <y&hi). 

Example. Consider Fig. 2. 

(9 Solve NO, O), RO, 04, Rm, 0), and P(QJ, 00). In this example, M(6) = 
V(q(8)) Vi3 E A. 

(ii) Enumerate points A ‘, A2, A ‘, A4, As and compute max-flows f (A’), 
1 9*-*7 5. (E.g., ?a 4 = (V@, 0) - V(O,O), O).) 

Given ha 0, we have (we use the particular h in Fig. 2 as our example): 
(a) S = (0, l), V(A) = M(0,l) +X2. 

i= 
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Fig. 2. 

(b) The extreme points of r(O, 1) are h3, h4, A’; thus (in this case) we find CY 20 
such that &= aAz+(l-a)A$ and take f(i)=af(h4)+(1-a)f(A3). 

R~BRU&S. (1) It is not efficient to solve P(r,@)) separately for every S E A. 

Depending on the method used it is probably possible to use the solution for one 
6 as a starting point for the next. The determination of a sequence by which the 
P(q(S)) are solved could increase the efficiency of an algorithm based on the 
results presented here. 

(2) It would be inefficient to require enumeration of the extreme points of the 
r(6) separately for each 6 E A, since most extreme points are common to more 
than one set. An algorithm exploiting the neighboring relationships of the sets 
r(6) would be preferable. 

(3) It is well-known that if all capacities are integer (in our case, this would 
have to include the parameters) then there exists an integer max-flow. However, 

the convex combinations of flows advocated here will not in general be integer 
even if the fixed and parametric capacities are integer. (Obviously, if the max-flow 
is unique the unique integer solution would be obtained.) 

(4) It can be seen from the structure of V(A) that the parametric max-flow 
problem is intrinsically one requiring eRort that increases exponentially with the 
number of parameters. In fact the coidrputational effort of any good algorithm 
based along the lines suggested here would be proportional to the cardinality of A, 
which is equal to 2” where n is the number of parameiers. We discuss the 
ramScations of this fact in terms of the general multi-parametric linear program 
in the last section. 

3. The nonzero lower capacities case 

In this section we extend the preceding results to the case in which the lower 
capacities are not necessarily all zero. 

The introduction of nonzero lower capacities raises the question of feasibility of 
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P(A) for a given A. Therefore we proceed first to determine the feasibility set 

9 = (h > 0 1 P(A) has a feasible solution}. 

We shall deal with the feasibility problem using the standard technique of defining 
a new network & = {&, &) with zero lower capacities and new upper capacities. 
The existence or nonexistence of a feasible flow for P(h) is determined by solving 
a max-flow problem in e?. We can apply the results of Section 2 to obtain 3F. 

We make the following definitions: 

S=(iENlZ(N,i)-I(i,N)=a(i)>O}, 

T={ieNI Z(i,N)-I(N,i)=b(i)>O}, 

Z={iENIZ(i,N)-I(N,i)=O), 

a(S)= z a(i), b(T)= c b(i). 
id iET 

The network G =(a, d} is defined as follows: 

~=~U{(S.j)~jES}lJ((i,~~tET}. 

We define upper capacities Z(i, j) on arcs of 2 by: 

I a(r’) if i=$jES, 

C(i, j)= 
b(i) if j=[ ieT, 

c(i, j)-l(i, j) if (i, j)E& 

hk -I(i, j)=& if (i, j)=AkE9Q1. 

We define the corresponding max-flow problem P(A) in B as follows: 

&A): max f(f, S), 

subject to 

We shall denote a max-flow for p(A) by f(A) and its value by v(A). The 
relationship between the max-flow value of P(h) and feasibility of P(A) is given in 
the following theorem. 

Theorem 4. (i) p(h) G a(S) VA. 

(ii) P(Aj ;S feasible ifi v(A) = a(S). (Remark. By construction, a(S) = b(T).) 
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pnnrt, (i) Since ({g}, fi\{g}) is an S-f cut of capacity u(S). 
(ii) (a) Suppose P(A) is feasible and let f be a feasible flow. Define a flow f on 

6 as follows: 

Rs Y)'f(JhYkhY), (JbYk@ 

M9X)=a(x), =s, 

It is easy to VW@ that f satisfies conservation. In addition, it clearly satisfies 
capacity constraints (by definition of 3, since f did) and has value a(S). 

(b) Let f be a flow in G of value u(S). Define f on & by f(x, y) = f(x, y) + 
1(x, y). Again it is easy to verify that f is a feasible flow on G. 0 

In the next theorem we apply the results of Section 2 to Theorem 4 to obtain 9. 

Tolceorem 5. (i) 55% fd ifi V<,(O)) = a(S). 
(ii) If *# 8, then 

5F=(AaO 
I 

5 6,& 2 e(q(O))- v(q(S)) + f s,l(Ak) VSEA}. 
k=l k=l 

M. By the corollary to Theorem 2, since ii, = hk - Z(Ak) we have 

~(A)=tin{%@))+ f 6,Jk- i 6,J(Ak)~tkA), 
k=l k=l 

and since 8(?(0))2 e(A) for any A, P(A) is feasible iff this quantity is equal to 
u(S). Thus: 

(i) Clearly if q(q(O))< a(S), then 5F = $8 (since v(ry(,O) 2 @A) for any A). If 
e(q(O)) = d(S) then for A sufhciently large ~(T)(O)) = v(A) so iFP$!h 

(ii) Assuming 8(11(O)) = a(S), then since P(A) is feasible iff the above minimum 
is equal to a(S), we have that P(A) is feasible ifl the above minimum is equal to 
q(q(O)), i.e., iff 

$(q(O))C v(r)(6))+ e &A, - 5 &l(Ak) V6 ~4, 
k=l k==l 

and the result follows by rearranging terms. Cl 

Thus, the explicit determination of S can be accomplished by a method similar 
to that of obtaining V(A) in the previous section (here the flow problems are 
solved in G instead of G). 

The set 9, if nonempty, is a polyhedral set imbedded in the n-dimensional 
nonnegative ortant with up to 2” - 1 facets; that is, 3 can be expressed as the 
solutions to a set of at most 2” - 1 nonredundant linear inequalities in n variables. 
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The structure of 9 is rather simple and redundant inequalities can be easily 
detected and removed if desired. In fact, the inequality associated with a given 
8~ A is redundant iff 

c [ i akl(Ak)- 2 f 6ki(Ak)- 6(q(&), 
6eS k==l k=l 

where s is any subset of L(8) ~(8 E A 16 < &} such that LEs S = & 
To simplify the presentation we shall write @ as 

k = 1 

where 
I 
E 

d(8) = max 
[( [ 

8;s k$, &RAk) - V(M)) 1 S E 2% c 8 = 8}, 
/ 

@i-ES 
1 

/ 

2 $&A”)- i+j(ii)) . 

k=l 

We remark that to find the feasibility set for a problem with parametric lower 
capacities only, we may define a network similar to G but depending on the fixed 
upper capacities, prove a theorem analogous to Theorem 4, and use it in an 
analogous way to prove a Theorem analogous to Theorem 5. The development 
from here on can then be appropriately adapted to the parametric lower capacity 
case. However, if we wish to consider problems with both parametric lower and 
upper capacities, the transformation described in Section 1 for changing all 
parametric lower capacities to parametric upper capacities must be made. 

Our next objective is analysis of the function V(h). This task is not as simple as 
in the zero lower capacity case; although Theorem 1 is easily extended, the 
explicit determination of V(A) is more complicated and requires, besides the 
solution of max-flow problems, the solutions of as many linear programs whose 
complexities increase with n. Theorem 6 is a generalization of Theorem 1. 

Theorem 6. 

(M(S) is defined as in Section 1.) 

Proof. Same proof as Theorem 1. c1 

As before, thle M(6) for 6 E A are not readily available. Theorem 7 provides the 
basis for a method of computing M(6) for every 6 EA or showing that the 
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particular quantity 

is redundant in the exprission above for V(h). We first prove a Lemma. 

Lemma 2. Given 8~ A, consider the following linear program: 

Q(6) : max ~1, 

subject to / / 

M(S)+ f (&-&)hk-@d) vi!hEL(i!i), A E s. 
k=l 

(i) If S# $3, then Q(8) has an optimal solution Vg E A. 
(ii) I” (& i) is an optimal solution, then 

fi = min {M(6) +-& 6,& 16 E L(s)) - f 8,&. 
k-l k=l 

Proof. Follows directly from the formulation. q 

Tk~rem 7. Let (X, x) be (z minimum cut associated with P(&?)+h), where 
(LA) is an optimal so2ution of Q(6). 

(a) If Ak G (x, 2) for all k such that & = 1, t?len 

(b) If 3k such that & = 1 and AkG (X, z), then 

Proof. (a) The proof is analogous to the proof of Theorem 2(a). 
(b) Define 8 EA by 6k = 1 iff Ak E (X, x). Then the vaiue of (X, x) in the 

network for Q(6)+ A) is 

M(6)+ t 6&k, 
k=l 
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and by minimality 

Thus by Lemma 2(ii), 

6 = M(&-t i $.& - f &khk s M(6). 
k-l k=l 

Hence by 2(iii), 

which proves the claim. 0 

The foregoing results suggest an algorithm designed along the following lines. 
We present not an algorithm in all detail but rather only the basis for one. We 
assume that 9 is already given (that is, n(8) has been computed V6 E A). We 
denote by F(i) the set {6 E A 1 ISI = i}, i = 1, . . . , n where IS( =I{i 16 = I}\. 

(i) Compute M(6) V6 E F( 1). (Note that no linear programs are needed at this 
stage, since hk = d(S) for & = 1 can be used.) 

(ii) Given all 
(ii.a) Solve 
(ii.bb) Solve 

minimum cut. 
(ii.c) If A’ 

the relevant M(6) for 6 E U Ei’ F(i), then for every 8~ F(m): 

the linear program Q(g); let (ii, x) be an optimal solution. 
the max-flow problem P(q(&)+h); let (X,X) be an associated 

E(X, X) for every k such that & = 1, let M(8)= V(q(&tF)- 

c;=, Sk& ; otherwise M(6) is always redundant in the expression for the function 

V(A). 
(iii) Set m = 1’~ + 1 and go to (ii) unless wb = n. 
The construction of min-cuts and max-flows as functions of the parameter 

vector h would be analogous to the construction presented in Section 2. In 
particular, the min-cut associated with P(q(@ + i) is also a min-cut for all 
hd(@=(A~9( M(&)+x;=, &hk = V(A)} and the extreme points of I’(S) V6 E 
A can be emvmerated and used as in Section 2. 

4. Conmgarisons and ramifications concerning general muMi-parametric methods 

The problem P(A) is a special case of the multidimensional parametric right- 
hand-side linear program, a solution method for which is given in [3]. In this 
section we compare our method with this general method (which can be adapted 
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slightly to network analysis and applied to our problem), and indicate how our 
results are of theoretical interest since they imply ramifications concerning the 
difIiculty of the general problem. For convenience we refer to “our method” 
instead of “an algorithm based on our results.” (Note: See also the remarks at the 
end of Section 2.) 

In parametric methods where we wish to solve a problem for all values of a 
parameter vector A, we actually first solve a number of problems for certain 
specific values of A and record the information; we will refer to this as phase 1. 
Afterwards, given any specific A we must use the information from phase 1 to 
obtain a solution for A; we will call this phase 2. Phase 1 for the general method 
in [3] consists of solving the problem for a particular starting value of A and 
performing sensitivity analysis; specifically, the region of parameters for which the 
starting basis is optimal is found as the solution set to a system of linear 
inequalities, and after solving a certain linear program one facet of the set is 
determined. An alternate solution for the facet is found by performing a pivot (if 
adapted to network methods, by performing a flow augmention-see[ln, a new 
region is found, and the process continues. Our phase 1 consists of (i) and (ii) of 
the method given in Section 2. 

We wish to discuss similarities and distinctions between the two methods in 
both phases 1 and 2. 

In phase 1 both methods produce a partition of the parameter space in which 
the optimal solution value is an tine function over each region of the partition. 
The most important distinction is in these partitions; in fact, our partition contains 
the partition found in the general method. In the one-dimensional case, for 
example, the general method would generate a sequence of intervals, each 
corresponding to an augmenting path (see El]); the endpoint of the last interval 
found would be the A beyond which the optimal solution value remains constant 
(i.e., there are no more augmenting paths). Our method produces exactly this 
point (namely, V@J)- V(0)) and only the two intervals [O, V(=)- V(O)] and 
[V(=)-V(O), 00). which are in some sense intrinsic to the problem. (We refer in 
this instance to the zero lower capacity case.) A similar situation would result in 
higher dimensions. Furthermore, in our method we know that the number of 
regions in the partition is at most 2”, whereas in the general method nothing is 
known about this a priori. In fact, since our solution may have as many as 2” 
“intrinsic” regions and the general method applied to our problem in general 
produces even more than this, and since our problem is simpler than the generai 
multiparametric linear program, we see that the general method applied to the 
general problem must be very complicated. 

We next discuss differences in the effort in actually generating the partition. In 
the zero lower capacity case we obtain our partition easily after solving at most 2” 
max-flow problems in any order. (Some order of solving the problems can 
increase the efficiency by using one solution as the starting point for the next.) 
The general method, as we saw above, not only involves solving a linear program 
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to find each facet of every region, but also requires extremely complex logistics in 
order to keep track of the facets and regions covered. In the nonzero lower 
capacity case we must solve also up to 2” linear programs (ore for each region); 
but this is still much less effort than in the general case where 3ne linear program 
must be solved for each facet of a larger number of regions. Also, notice that our 
metlhod saves work if it is known that all lower capacities are zero; the general 
method would proceed exactly the same way in both cases. 

We now compare the form of the information obtained after phase 1 in both 
methods. In the general method a set of inequalities must be stored for each 
region; our method requires storage of orrly s2” numbers (one for each region). 
If one is intzrested only in the max-flow value, in the general method we need 
also store one number for each region; our method contains this information in 
the G 2” constants referred to above. If one is interested in min-cuts, we need 
only record one for each region; this is true in both methods but in a true sense 
our method produces the minimum number of such regions. Note, however, that 
if we wish to produce max-flows, our method also requires storage of the 
inequalities defining each region, in order to find the extreme points, whereas the 
general method records just one max-flow (and an augmenting path) per region. 

We now turn to phase 2, the computation of the solution for a given h’. We first 
discuss the determination of feasibility or infeasibility (if lower capacities are not 
idemically zero). In the general method we must substitute 1 into a system of 
inequalities for each region, whereas in our method we substitute h’ into only 
G 2” - 1 terms and find the minimum. 

After feasibility is determizied, in order to fmd the max-flow value our method 
requires additionally the substitution of i into ~2” more terms in order to find 
which region contains A; in the general method the region is found simultaneously 
as feasibility is determined (however, this is still in general more work than in our 
method). 

To find a max-flow our method requires additionally the solution of one linear 
program for each region (still less work than the general method). 

We mention again (see Remark (3) at the end of Section 2) that our method 
does not guarantee integer flows; the general method does. 

Finally, we remark that our approach is global, and does not provide for the 
reduction of effort if solutions are desired only for SOW small subset of the 
parameter space. In this case the general method presented in [3], which is based 
on sensitivity analysis, would be more r:fficient. 
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