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Abstract

We show that a modified variant of the interior
point method can solve linear programs (LPS) whose
coefficients are real numbers from a subring of the al-
gebraic integers. By defining the encoding size of such
numbers to be the bit size of the integers that represent
them in the subring, we prove the modified algorithm
runs in time polynomial in the encoding size of the
input coefficients, the dimension of the problem, and
the order of the subring. We then extend the Tardos
scheme to our case, obtaining a running time which is
independent of the objective and right-hand side data.
As a consequence of these results, we show that LPs
with real circulant coefficient matrices can be solved
in strongly polynomial time. Finally, we show how the
algorithm can be applied to LPs whose coefficients be-
long to the extension of the integers by a fized set of
square roots.

1 Introduction

The question of whether a linear programming
problem can be solved in polynomial time was an-
swered in a landmark paper by Khachiyan in 1979. In
fact, both Khachiyan’s ellipsoid method [7] and Kar-
markar’s interior point method (6] solve linear pro-
grams (LPs) with rational coefficients in time that is
polynomial in the number of input coefficients and the
total number of bits in a binary encoding of the prob-
lem data. Nevertheless, several interesting questions
concerning the complexity of linear programming re-
main open. One of the main open questions is usually
stated as: Is there a strongly polynomial algorithm for
linear programming? Following standard usage (cf.
[15]), we say an algorithm for linear programming is
strongly polynomial if

(51) it consists of the elementary operations addition,
subtraction, multiplication, division, and compar-
ison,

(52) the total number of elementary operations per-

formed by the algorithm is polynomial in the

number of input items (ie., the number of co-
efficients in the matrices and vectors that define
the input), and

when applied to a rational instance, the (binary
encoding) size of the numbers that occur dur-
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ing the course of the algorithm is bounded by a
polynomial in the size and total number of input
items.

The conditional nature of (S3) stems from differ-
ences between rational number and real number mod-
els of computation. The standard model of computa-
tion for rational numbers is derived from the Turing
machine. Consequently, the time required to perform
an elementary arithmetic operation (S1) depends on
the bit size of the operands. Requirement (S3) ensures
that the time the algorithm spends performing any in-
termediate calculation is polynomial in the input size.
In the case of real numbers, linear programming is
usually modeled in terms of a machine that can per-
form any of the elementary operations (S1) in constant
time, regardless of the nature of the operands. (See [2]
for a rigorous treatment of general computation with
real numbers.)

Taking advantage of the dichotomy implied by (S3),
we can split the question of the existence of a strongly
polynomial algorithm into two easier questions:

(A) If the data is rational, does there exist an algo-
rithm satisfying (S1), (S2), and (S3)?

(B) If the data is real, does there exist an algorithm
satisfying (S1) and (S2)?

To date, efforts to find a strongly polynomial al-
gorithm for linear programming follow one of two
main approaches, distinguished by whether they are
directed at question (A) or at question (B). Those ef-
forts directed at question (A) involve modifying exist-
ing polynomial-time algorithms, such as the ellipsoid
method or variants of the interior point algorithm, so
that their running times become independent of the
size of at least part of the input data. In a key re-
sult along these lines, Tardos [15] showed that a LP
can be solved in time that is independent of the size
of the data in the objective and right-hand side vec-
tors. As a consequence, LPs in which the coefficient
matrix has ‘small’ rational entries, such as those that
arise frequently in combinatorial optimization, can be
solved in strongly polynomial time. Recently, Norton,
Plotkin, and Tardos [13] extended Tardos’ results by
giving an algorithm whose running time is indepen-
dent of the size of the data in a fixed number of rows
or columns of the coeflicient matrix.



Before discussing work directed at question (BR, we
mention some issues concerning the existing polyno-
mial algorithms for rational LPs. Both the ellipsoid
and interior point methods depend in a fundamental
way on upper and lower bounds on the magnitude of
certain numbers related to basic solutions of the LP.
These bounds allow the algorithms to be properly ini-
tiated and terminated, and are themselves part of the
theoretical complexity of the algorithms. If the prob-
lem is rational, the bounds are a function of the bit
size of the problem data and can be computed in poly-
nomial time. If the problem is not rational, it is still
possible to compute the necessary upper bounds in
polynomial time, but no polynomial method for com-
puting the lower bounds is known [10].

The second approach toward finding a strongly
polynomial algorithm for linear programming focuses
on answering question (B) for special classes of LPs.
Considering the discussion above, it is not surprising
that these efforts generally involve the construction
of algorithms that are greatly different from the ex-
isting polynomial algorithms for rational data. The
work of Megiddo provides important examples of this
second approach; in {8] a strongly polynomial algo-
rithm is given for feasibility problems in which at most
two variables appear in each inequality, and in [9] a
strongly polynomial algorithm is given for problems in
which the number of variables is fixed. Interestingly,
the combination of the ideas in this latter algorithm
with those in [15] led to the algorithm in [13).

In this paper, we show that linear programs whose
coefficient matrices are circulant can be solved in
strongly polynomial time. (LPs of this kind are re-
lated to discrete convolution and arise frequently in
image processing.) In proving this result, we are led
to an analysis of polynomial-time algorithms for lin-
ear programming in a subring of the algebraic inte-
gers. Specifically, we show that a variant of the inte-
rior point method can solve LPs whose coefficients are
real members of the set

Wy={a:a= ?;é ajw’ ;a; integer Vj},
where w = €2™/P is the first primitive p™* root of
unity. (We lose no generality by working with the
subring W, instead of the subfield Q, = {y : v =
Z?;é gjw’; g; rational Vj}.) The restriction to W, al-
lows us to define the ‘encoding size’ of the input num-
ber a to be the bit size of the integers aq,...,a,-1 in
the representation a = Ef;é ajwl.

The key to our construction is our ability to obtain
‘reasonable’ upper and lower bounds on certain quan-
tities involving the basic solutions of the LP. These
bounds are a function of p (the order of the subring
in which we work) and the encoding size of the data.
We use these bounds to show that the modified algo-
rithm’s running time is polynomial in the dimension
of the LP, the order p of the subring, and the en-
coding size of the data. We then proceed to modify
the scheme given by Tardos [15] for rational data so
that it works with data from W,. The modified Tar-
dos scheme gives us an algorithm whose running time

is independent of the encoding size of the objective
and right-hand side data (in fact, the objective and
right-hand side vectors are allowed to be arbitrary real
numbers).

Finally, we show that the numbers belonging to the
extension of the integers by a set of positive integer
square roots are embedded in W), for some known p.
Using our earlier results, we then obtain an algorithm
to solve LPs with such coefficients in time that 1s poly-
nomial in the problem dimension, the encoding size of
the input data, and the product of all the square roots.

The paper is organized in the following manner: In
section 2, we discuss circulant matrices and show that
LPs with a circulant coefficient matrix can be poly-
nomially transformed into an equivalent LP in which
the entries of the coefficient matrix are small in mag-
nitude and belong to W,,, where n is the dimension of
the matrix. We also show that if the original data is
rational then these entries are integers. In this case,
the Tardos scheme [15] gives us a strongly polynomial
algorithm directly. In section 3, we analyze general
LPs whose coefficients belong to W,. In particular,
we modify a variant of the interior point algorithm to
solve these problems in polynomial time. In section 4,
we use the results of section 3 and the scheme in [15] to
obtain an algorithm that runs in time independent of
the encoding size of the objective and right-hand side
data. In section 5, we show how our results can be
applied to LPs whose coefficients belong to an exten-
sion of the integers by a set of square roots. Finally,
in section 6, we conclude with some remarks.

2 Linear programming with circulant
matrices

In this section we bound the complexity of linear
programs whose coefficient matrices are circulant.

Definition. The pxp matrix A (possibly with com-
plex entries) is said to be circulant if and only if it
has the following form:

ap a; ap-~2 Gp-1
ap—1 Go ap-3 CGp_2
A= : .
aq a9 ap—1 ag
Given a vector aT = (a0,...,ap-1), we shall use

circ (a) to denote the circulant matrix defined above.
(If M is a matrix or vector, we use MT to denote the
transpose of M.)

Before focusing on linear programing, we need to
develop a number of the properties of circulant matri-
ces. We begin along these lines by defining a matrix
with the interesting property that it diagonalizes every
circulant matrix.

Definition. Let w be the first primitive p’® root of
unity; that is,

w= e where i = v—1.



Then we define F, to be the pxp matrix whose jk**
component is w0 —1(k=1),

The matrix F, is usually called the p** order
Fourier matriz, the label Fourier coming from the fact
that the product F,a represents the discrete Fourier
transform of the p-vector a. By using the identity
w! = wim°dP and by manipulating geometric series,
it is easy to show that /1/pF, is unitary; that
is, F;' = (1/p)Fy;, where F; denotes the Hermi-
tian transpose of F, (the jk'® component of Fyis

w(l"j)(l‘k)). In an effort to keep notation simple, we
omit the index p on F, when the size of the Fourier
matrix is clear from the context of the discussion.

We now state several well-known results on circu-
lant matrices. Detailed proofs of these results can be
found in [3].

Proposition 2.1 (i) Let A = circ (a) be a pxp cir-
culant matriz. Then the columns of the p** order
Fourier matrizc F are eigenvectors of A and the en-
tries of the p-vector Fa are the corresponding eigen-
values. (i) A is a pxp circulant matriz if, and only
if, A= (1/p)FGF* for some pxp diagonal matriz G.

Proposition 2.2 Let G be a pxp diagonal matriz and
let A= (1/p)FGF*. Then, the pseudoinverse (some-
times also called the generalized or Penrose-Moore in-
verse) of A is given by AT = (1/p)FGt F*, where Gt
s a pxp diagonal matriz with eniries

1/G;; if G5 #0
ij={ /Ou f Gj; #

otherwise.
It follows from proposition 2.2 and part (ii) of propo-
sition 2.1 that the matrix A is circulant if and only if
its pseudoinverse is circulant.
We turn now to an analysis of linear programming
with circulant matrices. Specifically, we consider the
following standard form problem:

(P)

min Tz
st. Az =b

z >0,
where a,b,c,z € R" and A = circ (a). It is easy to
see that if Az = b is consistent then (P) is equivalent
to the following problem:

(P’) min T
st. nAtAzr =nAtb
z >0

Now, by proposition 2.2 and part (ii) of proposition
2.1, AtA = {(1/n)FG*F*}{(1/n)FGF*}. Using the
identity (1/n)F*F = I, we then have nAt A = FDF*,
where D 1s a diagonal matrix with ones and zeros
in positions on the diagonal that correspond to the
positions of the nonzero and zero elements of G, re-
spectively. By the definition of F' and F* and since
w! = wimedn it s clear that each entry of the matrix
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nAY* A has the form Z;';Ol d;w’, where d; is either 0
or 1.
We now note that it is easy to compute A* from

Proposition 2.3 Let A be a given nxn circulant ma-
triz. Then it is possible to compute AT from A using
only Gaussian elimination and a constant number of
matriz multiplications, each of order n. Moreover, if
the elztries in A are rational, then so are the eniries
mn AT.

Next, we present a few standard results from num-
ber theory that will be of key importance when we
derive complexity bounds for rational instances of (P).

Definition. A complex number « is called an alge-
braic integer if there exists integers dy, ..., dg_; such

that of + dy_10*~1 4 .. 4 dy = 0.
Note that because it satisfies the polynomial equa-

tion w™ —1 = 0, the number w = €2™*/" is an algebraic
integer by the above definition.

Proposition 2.4 The set of algebraic integers is
closed under addition, multiplication, and negation.

Since w is an algebraic integer, proposition 2.4 im-

plies that if & has the form o = Y7 d;w’, where d;

is integer, then « is an algebraic integer.

Proposition 2.5 An algebraic integer is rational if
and only if it is an integer.

Proofs of propositions 2.4 and 2.5 can be found in
most texts on algebraic number theory (see, e.g., [5]).

If the coefficient matrix A in (P) is rational we can
use propositions 2.4 and 2.5 to make a strong state-
ment about the form of the entries in nAt A, the co-
efficient matrix of (P'):

Proposition 2.6 If A is an nxn circulant mairiz
with rational coefficients, then the entries of nAtA
are integers.

Armed with the above results, we can easily bound
the complexity of rational instances of (P):

Theorem 2.1 Suppose that A is an nxn circulant
matriz and that the entries of A,b, and ¢ are rational.
Then (P) can be solved in strongly polynomial time.

Proof. As a preprocessing step in the solution of (P),
one can use Gaussian elimination to check the consis-
tency of Az = b. If Az = b is inconsistent, then obvi-
ously (P) is infeasible and no further work is required.
If Az = b is consistent, then by proposition 2.3 one
can convert (P% into the equivalent problem (P’) us-
ing Gaussian elimination and matrix multiplication.
In either case the dominant computational work is
Gaussian elimination, which is a strongly polynomial
operation (see [4]).

In the discussion preceding proposition 2.3 we es-
tablished that every entry « in the coefficient matrix



nA* A has the form a = Z;:ol djw! , where d; is either

0 or 1. Since |w/] = 1 for all j, we see that |a| < n.
But because we assume that A is rational, & must be
an integer by proposition 2.6. Thus, the coeflicient
matrix of (P') contains integers of absolute value at
most n. Moreover, the right-hand side of (P’) is ra-
tional; if (P) is rational then by proposition 2.3 A* is
rational, hence so is A1b.

Tardos [15] showed that LPs of the form (P’) with
rational coefficients can be solved in time polynomial
in the problem dimension and the binary encoding size
of the numbers in the coefficient matrix. Since the
binary encoding size of nAt A is polynomial in the
problem dimension,-(P’), and therefore (P), can be
solved in strongly polynomial time. O

For the purpose of analyzing LPs with circulant co-
efficient matrices and real coefficients (including those
in the objective and right-hand side), we adopt a
model of computation that allows constant time ad-
dition, subtraction, multiplication, division, and com-
parison of real numbers. Under this model we have
the following result:

Theorem 2.2 Suppose that A is an nxn circulant
matriz and that the entries of A, b, and ¢ are real num-
bers. Then (P) can be solved in strongly polynomial
time.

To prove theorem 2.2 we need a number of new
results concerning the numbers in nA*A. These re-
sults, which we shall obtain in sections 3 and 4, lead
in a natural way to an analysis of linear programming
in a subring of the algebraic integers. The proof of
theorem 2.2 follows directly from this analysis and is
given at the end of section 4.

3 LP over a subring of the algebraic

integers
We consider the following primal-dual pair of LPs:
(P) min Tz (D) max bTy
st. Az =b st. ATy+2z =c¢
z >0 z 20,

where A € R™*" b € R™,and ¢,z € R". Through-
out this section we assume that all entries of 4, b, and
¢ are real and belong to the following set:

p-1
W, = a:a:Zajwj;ajEZVj ,
ji=0

where w = e2™/P and where Z denotes the integers.
Because v/ = w/™°I?  the set W, forms a subring
of the complex numbers (i.e., W, is closed under ad-
dition, multiplication, and negation). We use ¥, to
denote the set of all real members of W; that is,
Vo =W, NR.

We now develop some properties of W, that will
prove useful in the analysis of linear programming to
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follow. Our immediate goal is to establish upper and
lower bounds on certain functions of @« € W,. To
obtain these bounds, we need a measure of the mag-
nitude of the coefficients ag, ...,a,—1 in the represen-

tation o = Zf;é ajwj. This representation, however,
is not unique for general p, since Z;f;_éwJ = 0 for
p > 1. The question of uniqueness of representation

motivates us to measure the magnitude of the repre-
sentation of « in the following manner:

Definition. Given a € W), we define the representa-
tion height of a with respect to W, to be:

p-1 p-1
Sp(a) = min Z Iajl ta= Eajw’;aj €ZVjy,
j=0 j=0
where w = e2™/?. We include the index p on Sp(a)
only when there is danger of confusion regarding the
set W, with respect to which the representation height
of « is to be taken. (Representation height should not
be confused with any of the various notions of height
encountered in number theory.)
Next, we state the main algebraic and metric prop-
erties of the function S.

Proposition 3.1 Let o, € W,. Then,
(i) S(ao;)+ bB3) < la|S(a)+ [b]S(B) for any integers a
and b,

(it) S(ap) < S$(2)S(B),
(i) || < S(a),
(iv) Ifa #0, |a] > (S(a))*~?.

Proof. (Outline) Statements (i), (é), and (iii) follow
easily from the definition of representation height. To
see that (iv) holds, consider a € Z? such that S(a) =
llalli, and let A = circ (a). Then |e|® is a nonzero
eigenvalue of AAT. Note that each eigenvalue of AAT
is bounded in magnitude by S(e). But, since AAT
is integer, the product of its nonzero eigenvalues has
magnitude at least one. O

We shall use proposition 3.1 to derive several use-
ful results concerning matrices and systems of equa-
tions whose coefficients belong to W,. These results
are most easily stated in terms of the quantities intro-
duced below.

Definition. Let M be an rxs matrix all of whose en-
tries M;;, belong to W,. We define the representation
height of the matriz Af to be:

T(M) = max(S(M;e)}-

Now, let k = max{r,s} and

A(M) = (kT(M))*.



Then, we define the representation size of the matriz
M to be

L(M) = log(A(M)).
We use similar notation when discussing linear pro-
grams. Given M e R™**, d € R", and g € R’, we de-
fine A(M,d, g) and L(M,d,g) to be A(Q) and L(Q),
respectively, where

We refer to L(M,d, g) as the representation size of
the linear program {mmg v Mv=dv>0} We
use analogous notation for the representatlon size of a
system of linear equations.

a=% %]

M d

Having fixed notation, we now state some key prop-
erties of matrix determinants.

Proposition 3.2 Let B be a rxr nonsingular mairiz
all of whose entries Bjy belong to Wy, and let A =

A(B). Then,
(i) det(B) € W,
(ii) S(det(B)) < A,
(1i)) A17P < |det(B)| < A.

As a corollary, we have the following result:

Corollary 3.1 Let M and d be rxs and rx1 matri-
ces, respectively, all of whose eniries belong to Wy,
and let A = A(M,d). If v is a basic solution to the
system Mv = d, then every nonzero component v; of
7 satisfies A™P < [9;] < AP,

Using the above results, we can modify almost any
variant of the interior pomt method [6] or the ellip-
soid method [7] to solve problem (P) in polynomial
time. In the remaining part of this section, we shall
show how to modify the primal-dual path following al-
gorithm and its analysis as presented in [11] and [12].
Since most of the algorithm and analysis are not af-
fected by the change from rationals to V},, we present
only the necessary modifications.

For the purposes of the complexity analysis, we as-
sume that we have a machine that performs addition,
subtraction, multiplication, division, and comparison
of real numbers in constant time per operation. Im-
plicit in our derivation of the basic complexity results
1s the assumption that, for any instance of (P), a
bound on the representation size of the instance is
part of the input data. (For our purposes, this as-
sumption is essentially equivalent to the requirement
that S(a) be part of the input for every coefficient «
in the problem instance.) Later, we adopt a more nat-
ural input scheme and show that the basic complexity
results extend easily to this case.

Next, we use the properties of the set W, and the
function § to establish a theoretical stopplng point
for an interior point algorithm applied to (P) and (D).
Because the discussion involves systems of inequahties
and linear programs, we shall assume that the matrices
and vectors we encounter are real.
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Proposition 3.3 Let the primal-dual pair ( a) and
(D) be given and let all the entries in A, b, and c be-
long to V. Assume we have a pomt W= (z ¥, %) fea-
sible to (P) and (D) that satisfies 37z < (6nA)~2%,
where A = A(A,b,c). Then from @, we can find a
point w* = (z*,y*,z*) in no more than O(n3) arith-
metic opemtions, such that z* is optimal to (P) and
y* and 2* are optimal to (D).

Next, we state the minimum improvement made in
the duality gap during each iteration of the primal-
dual path following algorithm.

Proposition 3.4 Let w® = (2%,4°,2°) be a valid ini-
tial point for the przmal—dual path foIlowzng algorithm
given in [11] when applied to (P) and (D). Then
the algonthm generates a sequence of feasible points

= (2%, y*, 2*) satisfying

(zk)Tzk < O)T 0

—/1/n)*.

Proof of proposition 3.4 follows directly from the fact

that the convergence proofs given for the algorithm in

[11] do not rely on the rationality of the input data.
We can now state the main results of the section.

Theorem 3.1 Let § > L(A,b,c) be given. Then, un-
der the model of computatzon iscussed above, prob-
lems (P) and (D) can be solved in time polynomial in
p, n, and §.

Proof. For rational data, it is shown in [12] that the
solutions to (P) and (D) can be obtained by solving
a pair of artificial problems whose size is order of the
size of (P) and (D). The artificial pair has the prop-
erty that a valid starting point, with known duality
gap, is readily available for the primal-dual algorithm.
In our case, it is a straightforward exercise to show
that we can construct a similar pair of artificial prob-
lems whose representation size is order of L(A,b,c)
and whose starting point has a duality gap that is
299 Using propositions 3.3 and 3.4, it is easy to
show that, given this initial duality gap, the number
of iterations performed by the primal-dual algorithm
is polynomial in p, n, and §. Proof of the theorem then
follows by noting that the work performed in each it-
eration of the algorithm is polynomial in n. O
Theorem 3.1 1s derived under the assumption that
a bound on the representation size of (P) is input
along with the problem coefficients. As an alterna-
tive, we may consider a model of input based on an
integer representation of the problem coefficients. In
this model, we assume that every number o € V}, in an
instance of (P) is encoded for input as a set of integers
ao, .. .,ap-1, such that o = ZJ o ajw’. To ensure «

can be calculated from its integer representation, we
also assume that the machine has available the real
part of w (= cos2w/p), or that it can calculate this
number.

We work with a different measure of input size in
the integer-based model. We define the encoding size
of @ € W, to be the sum of the binary encoding sizes



of the integers aq,...,a,—1 in the above expansion.
Similarly, we define the encoding size of a matrix or
LP to be the sum of encoding sizes of its coefficients.

We now restate our earlier complexity bounds in
terms of the integer-based input model.

Theorem 3.2 Under the model of computation dis-
cussed above, problems (P) and (D) can be solved in
time polynomial in p, n, and the encoding size of (P).

Proof. The result follows immediately from theorem
3.1 by noting that the encoding size of (P) is an upper
bound on the representation size of (P). O

4 Tardos scheme for LP over a subring
of the algebraic integers

In this section, we use the results of section 3 to
modify the Tardos scheme for solving combinatorial
linear programs [15]. The modifications permit us to
solve problem (P) of section 3 in time polynomial in
n, p, and the size of the matrix A4, independent of the
objective and right-hand side data. (In fact, the objec-
tive and right-hand side coefficients may be arbitrary
real numbers.)

We shall follow the presentation of Tardos’ algo-
rithm given by Schrijver in [14, section 15.2], although
we present only those key propositions needed for the
switch from rationals to V;.

We consider (P) and (D), the primal-dual pair of
LPs defined at the beginning of section 3. In order to
show that these problems can be solved in polynomial
time independent of the numbers in b and ¢, we need
several sensitivity results and a guarantee that we can
find a feasible solution in time independent of the size
of the right-hand side. We begin with the sensitivity
results (propositions 4.1 and 4.2).

Let 2’ be defined as the solution of the following
problem:

min [E4[P

st. ATy+2z =c.
As in [14], we may assume 2z’ # 0 without loss of
generality. Now define the vector ¢’ as ¢/ = "”l,Ap:l z.

Note that ¢’ can replace ¢ in (P) without changing
the optimal solution. Hence, we lose no generality by
assuming that the objective vector ¢ in (P) already
has the form of ¢'.

Now, let & = ([e1],.- -, [en])T, where [ci] denotes
the smallest integer not less than ¢, and consider the
following primal-dual pair of LPs:

bT

(P') min &z (D') max y
st. Axr =b st. ATy+2z =¢
z >0 z >0.

Using the properties of representation height and fol-
lowing the proofs given for rational problems by Schri-
jver [14], one can prove the following sensitivity re-
sults.

Proposition 4.1 Let (g, %) be an optimal solution to
(D') and let A = A(A,b,8). Then, [|Z|lo > mAPHL.
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Proposition 4.2 Let (§,%) be an optimal solution to
(D), and suppose that (D) has an optimal solution.
Let' A = A(A,b,8). Then there ezists an optimal so-
lution (y*,2*) to (D) such that

(i) lly" = Flleo < mA?,
(ii) ||2* = Z|leo < mAPH,

(i4) zf >0, where k = arg max;{Z}.

Next, we state a result that is key in proving that
a feasible solution to a linear program can be found
in time independent of the size of the right-hand side
(cf. [14, Lemma B}).

Proposition 4.3 Let A be a mxn matriz of rank m,
all of whose entries belong 1o V,. Let d = ((A? +
1),(A7 +1)%,..., (AP + 1)")T, where A = A(A). Then
every basic solution of the system Az = Ad is nonde-
generate (i.e., for every mxm nonsingular submatriz
B of A, the vector B~ Ad has no zero components).

By following the Tardos scheme as presented in [14,
section 15.2], one can easily (though tediously) verify
that propositions 4.1 through 4.3 contain all the mod-
ifications to the proofs of Tardos’ algorithm necessary
for the switch from rationals to V5.

Theorem 4.1 Let 6§ > L(A) be given. Then problems
(P) and (D) can be solved in time polynomial in p, n,
and 6.

Proof. Note that the effort involved in rounding off
the objective and right-hand side vectors in Tardos’
algorithm depends only on the size of m, n, and A(4)
and not on the size of b or ¢, since these vectors are
scaled before rounding. Therefore, the rounding pro-
cedure is polynomial even if b and ¢ are real.

Because we have available the polynomial-time al-
gorithm for LPs with coefficients in V}, developed in
section 3, the result follows by the arguments in [14,
section 15.2] together with propositions 4.1 through
43. 0

The next theorem follows immediately from theo-
rem 4.1 by noting that the encoding size of A is an
upper bound on L(A).

Theorem 4.2 Problems (P) and (D) can be solved in
time polynomial in p, n, and the encoding size of the
matriz A.

We are now able to prove the claim, made in section
2, that LPs with real circulant coefficient matrices are
strongly polynomial.

Proof of Theorem 2.2. By the discussion in section
2, we have an apriori bound on the representation size
of the coefficient matrix, namely L(nAtA) < 2nlogn.
Proof of the theorem follows directly from this bound
and theorem 4.1. O



5 LP in quadratic field extensions

In this section, we use our earlier results to ob-
tain the complexity of linear programs in which the
coefficients are integer linear combinations of inte-
ger square roots. In particular, we consider LPs
whose coefficients belong to Z(dy,...,dy), where we
define Z(dy,...,dy) to be the additive and multi-
plicative ring generated by 1,4/dy,...,/dy; that is,

1;..-,dg) consists of all numbers that have the
form }~ a;(vdy)* (V/dz)?? - - - (V/di)*, where a; is an
integer and the summation runs over all (distinct) k-
tuples J; = (j1,...,j1) with elements that are either
0 or 1. Because we are interested in linear programs
with real coefficients, we shall assume that the d; are
positive.

Our strategy is to find an integer ¢ such that the
set Z(dy,...,d;) is embedded in the set W,. Using
this result, we bound the representation height of « €
Z(dy, .. ., di) with respect to W, by a function of the
coeflicients in the representation of o in terms of the
cross products of the \/E . We then apply the results
of sections 3 and 4, which bound the complexity of a
LP by a function of its representation size.

We begin by stating a key result due originally to
Gauss. Proof can be found in many advanced texts
on number theory (see, e.g., [5]).

Proposition 5.1 Let p be an odd prime and let w =
e2mi/p, Then,
p-1 R
wa: VP ifp=1mod4
‘0 tv/P ifp=3mod4.
j=

Note that, for any k, the set Wy contains both
Wi and i = v/—1. It follows that if p is a prime and
p = 3mod 4, then Wy, contains Z(p) = {a : o =
a+by/p;a,b € Z}. To complete the characterization
of prime numbers, we make the easily verified obser-
vation that Wg contains Z(2).

Using the above results and the prime factorization
theorem for integers, we can characterize an embed-
ding of Z(d) for d not necessarily prime:

Proposition 5.2 Let d be a positive integer. Then
Waa contains Z(d). Moreover, Sig(\/d) < d.

Making an easy generalization of proposition 5.2,
we next characterize an embedding of the ring gener-
ated by a number of square roots.

Proposition 5.3 Let dy,.
and let d H;.°=1 d;.
Z(dy,...,dg).

Proposition 5.4 Let dy,...,d; be positive ntegers
and let d = [[i_, dj. Let « € Z(dy,...,dy) have the
representation o = Zaj(S\/ch)j‘(\/E)jLn(\/ﬁ)j*,
where a; is an integer and the summation runs over
all (distinct) k-tuples J; = (ju,...,ji) with elements
that are either 0 or 1. Then, Sys(a) < dY |aj|.

..,dy be positive integers
Then, Waq contains
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We now apply these results to bound the complex-
ity of LPs whose coefficients belong to Z(dy, ..., dy).
As in sections 3 and 4, we assume that we have a ma-
chine that can perform arithmetic operations on real
numbers in constant time per operation, and that the
machine has available \/;17 , for all j, or that it can
calculate these numbers. We also assume that every
number o € Z(dy, ..., d;) in a problem instance is en-
coded for input as a set of 2% integers that are the
coefficients in the representation of « in terms of the
cross products of the \/Z We define the encoding
size of o to be the sum of the binary encoding sizes
of these coefficients, and we define the encoding size
of a matrix to be the sum of the encoding sizes of its
entries.

Theorem 5.1 Let (P) be the standard form LP de-
fined at the beginning of section 3. Suppose that all the
coefficients in (P) belong to Z(dy,...,dy) for positive

integers dy, ..., dy with d = Hle d;. Then (P) can

be solved in time polynomial in n, d, and the encoding
size of the matriz A.

Proof. Using proposition 5.4, it is easy to show that
the encoding size of A is an upper bound on L(A), the
representation size of A. Proof of the theorem then
follows from theorem 4.1. O

If d is fixed, theorem 5.1 implies that (P) can be
solved in time polynomial in the problem dimension
and encoding size. We improve these results in a se-
quel paper [li, obtaining a bound which, although ex-
ponential in £k, is polynomial in the bit size of d and
the problem encoding size.

6 Remarks

In light of the results obtained here on the complex-
ity of LPs with coefficients from Wp, it may be worth
investigating what interesting classes of real numbers
can be embedded in W,. It is well-known that every
finite Abelian extension of the rationals can be embed-
ded in the extension of the rationals by the p'* root
of unity, for some p (see, e.g., [5]). Therefore, there
may be other classes of LPs whose complexity can be
bounded in the manner developed in section 5 for LPs
with coefficients from a square-root extension of the
integers.

More ambitiously, one may ask if it is possible to
obtain complexity results for other classes of algebraic
numbers without first embedding the numbers in W,.
Recently, by using some additional material from num-
ber theory in conjunction with an approach similar to
that of sections 3 and 4, we have obtained such results
for all algebraic numbers {1].

In some sense, our approach in this paper has been
to encode a set of algebraic numbers as integers for in-
put to a machine that performs real arithmetic. It is
natural to ask whether the requirement for real arith-
metic can be relaxed to the point where all computa-
tions are performed symbolically, using integer arith-
metic only. We believe this can be done both here and
in the more general context of an algorithm for all al-



gebraic numbers, and we plan a subsequent report on
this question.
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