
Mathematical Programming 44 (1989) 297-335 297
North-Holland

AN IMPLEMENTATION OF KARMARKAR'S ALGORITHM
FOR LINEAR PROGRAMMING

I l an A D L E R , Maur i c io G.C. R E S E N D E * and G e r a l d o V E I G A

Department of Industrial Engineering and Operations Research, University o[" California,
Berkeley, CA 94720, USA

N a r e n d r a K A R M A R K A R

A T& T Bell Laboratories, Murray Hill, NJ 07974, USA

Received 29 June 1987
Revised manuscript received 14 March 1989

This paper describes the implementation of power series dual affine scaling variants of Karmarkar's
algorithm for linear programming. Based on a continuous version of Karmarkar's algorithm, two
variants resulting from first and second order approximations of the continuous trajectory are
implemented and tested. Linear programs are expressed in an inequality form, which allows for
the inexact computation of the algorithm's direction of improvement, resulting in a significant
computational advantage. Implementation issues particular to this family of algorithms, such as
treatment of dense columns, are discussed. The code is tested on several standard linear program-
ming problems and compares favorably with the simplex code MINOS 4.O.

Key words: Linear programming, Karmarkar's algorithm, interior point methods.

I. Introduction

We descr ibe in this p a p e r a family o f in te r io r po in t p o w e r series affine scal ing

a lgor i thms based on the l inear p r o g r a m m i n g a lgor i thm p resen ted by K a r m a r k a r

(1984). Two a lgor i thms f rom this family , co r r e spond ing to first and second o rde r

p o w e r series app rox ima t ions , were i m p l e m e n t e d in FORTRAN over the pe r iod

N o v e m b e r 1985 to M a r c h 1986. Both are tes ted on several pub l i c ly ava i lab le l inear

p r o g r a m m i n g test p r o b l e m s (Gay , 1985, 1986). We also test one of the a lgor i thms

on r a n d o m l y genera ted m u l t i - c o m m o d i t y ne twork flow p r o b l e m s (Ali and

Kenn ing ton , 1977) and on t imber harves t schedul ing p rob lems (Johnson , 1986).

Several au tho r s (see, e.g., Aronson et al., 1985; Lustig, 1985; Toml in , 1985; Tone,

1986) have c o m p a r e d imp lemen ta t ions o f in ter ior po in t a lgor i thms with s implex

m e t h o d codes , but have been unab le to ob ta in compet i t ive so lu t ion t imes. An

i m p l e m e n t a t i o n of a p ro jec t ed N e w t o n ' s ba r r i e r m e t h o d r epor t ed by Gi l l et al.

(1986) presents the first extensive c o m p u t a t i o n a l ev idence ind ica t ing tha t an in ter ior

po in t a lgor i thm can be c o m p a r a b l e in speed with the s implex me thod .

In our compu ta t i ona l exper iments , so lu t ion t imes for the in te r io r po in t

imp lemen ta t i ons are, in most cases, less than those requ i red by MINOS 4.0 (Mur t agh

and Saunders , 1977). Fu r the rmore , we are typ ica l ly able to achieve 8 digi t accuracy

* Current addressi AT&T Bell Laboratories, Murray Hill, NJ 07974, USA.

298 L Adler et al. / An implementation o f Karmarkar' s algorithm

in the optimal objective function value without experiencing the numerical difficulties
reported in previous implementations.

MINOS is a FORTRAN code intended primarily for the solution of constrained
nonlinear programming problems, but includes an advanced implementation of the
simplex method. An updated version, MINOS 5.0 (Murtagh and Saunders, 1983),
features a scaling option and an improved set of routines for computing and updating
sparse LU factors. This latest version of MINOS was not available at the University
of California, Berkeley, where the computational tests described in this paper were
carried out. We believe that for the purposes of this study, MINOS 4.O constitutes a
reasonable benchmark simplex implementation. Furthermore, as evidenced by the
results reported in Gill et al. (1986) we do not expect MINOS 5.O to perform sig-
nificantly faster for the test problems considered here.

The plan of the paper is as follows. In Section 2, we describe our Algorithm I,
a basic interior point method, commonly referred to as the affine scaling algorithm.
When Algorithm I takes infinitesimal steps at each iteration, the resulting continuous
trajectory is described by a system of differential equations. In Section 3, we discuss
the family of algorihms constructed by truncating the Taylor expansion representing
the solution of this system of differential equations. A first order approximation to
the Taylor expansion results in Algorithm I. We also implement Algorithm II, which
is obtained by truncating the Taylor expansion to a second order polynomial. We
show in Section 4 how an initial interior solution can be obtained and in Section
5 how the algorithms can be applied to general linear programming problems. In
Section 6, we describe the stopping criterion used in the computational experiments.
Section 7 discusses some implementation issues, including symbolic and numerical
factorizations, using an approximate scaling matrix, reducing fill-in during Gaussian
elimination and using the conjugate gradient algorithm with preconditioning to
solve problems with dense columns. In Section 8, we report the computational
results of running the algorithms on three sets of test problems. The first set is a
family of publicly available linear programs from a variety of sources. The others
are, respectively, randomly generated multi-commodity network flow problems and
timber harvest scheduling problems. We compare these results to those of the simplex
code MINOS 4.O and for the case of the multi-commodity network flow problems to
MCNFSS, a specialized simplex based code for multi-commodity network flow
(Kennington, 1979). Conclusions are presented and future research is outlined in
Section 9.

2. Description of the algorithm

Consider the linear programming problem:

P: maximize cTx

subject to Ax <~ b,

(2.1)

(2.2)

L Adler et a l . / A n implementation of Karmarkar's algorithm 299

where c and x are n-vectors, b an m-vector and A is a full rank m x n matrix, where
m ~> n and c # 0. In assumptions relaxed later, we require P to have an interior
feasible solution x °.

Rather than expressing P in the standard equality form, we prefer the inequality
formulation (2.1) and (2.2). As discussed later in this section, there are some
computational advantages in the selection of search directions under this formula-
tion. In Section 5, we show how to apply this approach to linear programs in
standard form.

The algorithm described below is a variation of Karmarkar ' s original projective
algorithm (Karmarkar, 1984), substituting an affine transformation for the projective
transformation, and the objective function for the potential function. Recently, it
came to our attention that this algorithm was first proposed independently by Dikin
(1967). Similar algorithms have been discussed by Barnes (1986) and Vanderbei,
Meketon and Freedman (1986). They, however, express the linear programming

problem in (standard) equality form. Following the taxonomy referred to in Hooker
(1986), the algorithms presented in this paper can be classified as dual affine scaling

algorithms. However, these algorithms are equivalent to their primal counterparts
applied to problems in inequality form.

Starting at x °, the algorithm generates a sequence of feasible interior points
{x ~, x 2, . . . , x k } with monotonically increasing objective values, i.e.,

b - A x k > 0 (2.3)

and

CTX k+l > CTX k, (2.4)

terminating when a stopping criterion to be discussed later is satisfied. Introducing
slack variables to the formulation of P, we have:

P: maximize cVx (2.5)

subject to A x + v = b, (2.6)

v/> 0, (2.7)

where v is the m-vector of slack variables.
Affine variants of Karmarkar ' s algorithm consist of a scaling operation applied

to P, followed by a search procedure that determines the next iterate. At each
iteration k, with v k and x k as the current iterates, a linear transformation is applied
to the solution space,

= D S ' v , (2.8)

where

D~ = d i a g (v ~ , . . . , v~). (2.9)

The slack variables are scaled so that x k is equidistant to all hyperplanes generating
the closed half-spaces whose intersection forms the transformed feasible polyhedral

300 L Adler et al. / An implementation of Karmarkar" s algorithm

set,

{x c ~ I D ~ A x <~ D~lb} . (2.10)

Rewriting equations (2.1) and (2.2) in terms of the scaled slack variables, we have

P: maximize cXx

subject to A x + D ~ = b,

v~>0.

The set of feasible solutions for P is denoted by

X = {x c R " l A x < ~ b } ,

and the set of feasible scaled slacks in P is

9 = { ~ c ~ m [3 x c X, a x + D ~ = b}.

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

As observed in Gonzaga (1988), under the full-rank assumption for A, there is a
one to one relationship between X and V, with

and

~(x) = D~l (b - ax) (2.16)

x(~) = (A T D ~ 2 A) - I A T D ~ I (D ~ ' b - ~). (2.17)

There is also a corresponding one to one relationship linking feasible directions hx
in X and he in V,, with

he = - D ~ l A h x (2.18)

and

hx = - (ATDU2A)- 'ATD~1he . (2.19)

Observe from (2.18) that a feasible direction in 1 ~ lies on the range space of D-~IA.

As in other presentations of affine variants of Karmarkar's algorithm, the search
direction selected at each iteration is the projected objective function gradient with
respect to the scaled variables. Since only the slack variables are changed by the
affine transformation, using (2.11) and (2.17), we can compute the gradient of the
objective function with respect to ~,

Vec(x(~)) = (V ex(~))TVxc(x) = - D ~ I A (A T D U2A)- 'c. (2.20)

The gradient with respect to the scaled slacks lies on the range space of D ~ A ,

making a projection unnecessary. Consequently, the search direction in V is

h e = - D ~ ' A (A T D ~ 2 A) lc, (2.21)

and from (2.19) the corresponding feasible direction in X can be computed,

hx = (ATDU2A)-%. (2.22)

I. Adler et al. / A n implementation o f Karmarkar ' s algorithm 301

Applying the inverse affine transformation to h~, we obtain the corresponding
feasible direction for the unscaled slacks,

h~=-A(ATD~2A) Ic. (2.23)

Under the assumption that c ~ 0, unboundedness is detected if h~ >~ 0. Otherwise,

the next iterate is computed by taking the maximum feasible step in the direction
h~, and retracting back to an interior point according to a safety factor 3,, 0 < 3' < 1,
i.e.

X k+l ~- X k -~- ah~, (2.24)

where

c~ = 31 x min{-v~/(h~), [(hv)~ < 0, i = 1 , m}. (2.25)

The above formulation allows for inexact projections without loss of feasibility.
Even if hx is not computed exactly in (2.22), a pair of feasible search direction can
still be obtained by computing

h~ = -Ahx. (2.26)

Given an interior feasible solution x °, a stopping criterion and a safety factor 3,,
Pseudo-code 2.1 describes Algorithm I as outlined in this section. As in subsequent
instances in this paper, algorithms are expressed in an Algol-like algorithmic notation
described by Tarjan (1983).

Pseudo-code 2.1. Algorithm I:

procedure Algorithm I (A, b, c, x °, stopping criterion, 3,)
1 k:=0;
2 do stopping criterion not satisfied
3 vk:=b--Axk;

4 D~ := diag(vlk, • • •, Vm),k.
5 hx := (ATD~2A)-1c;

6 hv := -Ahx;
7 if hv I> 0 ~ return fi;
8 a:=3,xmin{-vk/(h~)i l (h~)i<O, i = 1 , . . . , m};
9 xk+l:=xk+ahx;

10 k : = k + l ;
11 od
end Algorithm I.

3. A family of interior-point algorithms using power series approximations

Consider the continuous trajectory generated by Algorithm I when infinitesimal
steps are taken at each iteration (Bayer and Lagarias, 1989). Let us denote the path

3 0 2 L Adler et al. / An implementation of Karmarkar's algorithm

of interior feasible solutions for P by (~(~-), ~(z)), where the real parameter ~- is the
continuous counterpart to the iteration counter. For any value of z, the corresponding
search directions h~(,) and h~(~) can be computed by expressions (2.22) and (2.23).
Alternatively, the search directions can be described by an equivalent system of
linear equations,

T - 2 - A D~(~)h~(~) = c, (3.1)

Ah~(~) + h~(~) = 0. (3.2)

By taking infinitesimal steps, the resulting continuous trajectory is such that

d-~ (r) = h~(~) and (r) = h~(~). (3.3)

Given the system of linear equations (3.1) and (3.2), we replace the search directions
by the corresponding derivatives with respect to the trajectory parameter, resulting
in the system of nonlinear, first order differential equations

dfi
- A T D ~?')-~z (7) = c, (3.4)

d~ d~
A ~ (z) +U~ (~) = 0, (3.5)

with the boundary conditions

£ (0) = x ° and ~5(0)=v °, (3.6)

where the initial solution (x °, v °) is given and satisfies A x ° + v ° = b, v°> 0.
By following the trajectory satisfying (3.4)-(3.6), we can, theoretically, obtain the

optimal solution to P (Adler and Monteiro, 1988). In practice, we build an iterative
procedure where, after replacing the current iterate for the initial solution in the
boundary condition, an approximate solution to (3.4)-(3.6) is computed, using a
truncated Taylor power series expansion. The next iterate is determined through a
search on the approximate trajectory.

As discussed later in this section, the search procedure requires a suitable
reparametrization of the continuous trajectory,

z = p (t) , (3.7)

where p (t) is a monotonically increasing, infinitely differentiable real function such
that

x (t) = ~ (p (t)) and v (t) = ~ (p (t)) . (3.8)

Reparametrizing (3.4)-(3.6), we have

T 2 dv dp
- A D~(,)-dr (t) =-d-; (t)c, (3.9)

dx dv
A ~t-t (t) + ~ t (~') = 0, (3.10)

L Adler et al. / An implementation of Karmarkar's algorithm 303

and the boundary conditions

x (0) = x ° and v (0) = v °. (3.11)

Since we cannot compute an exact solution to (3.9)-(3.11), we use approximate
solutions to the system of differential equations as the backbone of a family of
iterative algorithms. At each iteration k, the algorithm restarts the trajectory with
an initial solution (x(0), v(0)) -- (x k-l, vk-1). A new iterate is generated by moving

on the approximate trajectory without violating nonnegativity of the slack variables.
The approximate solutions can be computed by means of a truncated Taylor
expansion of order r (Karmarkar et al., 1989), such that for t > 0,

i i r t dx
x(t) ~ ~(t) = x(0) + 2 ~ ~tTt / (0) (3.12)

i = l

and

r ti div 0
v(t)~-~2(t)=v(O)+ E ~-~t~()" (3.13)

i = l

From (3.9) and (3.10), we can compute derivatives of all orders for x(t) and v(t).
Consider the functions

F(t)=-D~],) and G(t)=D~(o, (3.14)

which satisfy

F(t)G(t) = -I. (3.15)

Applying Leibniz's differentiation theorem to the product F(t)G(t), we have

i! di-JF diG 0 for i>~1. (3.16)
(i_7)!j! ~ (t) dt--7 = j=O

From (3.16), the derivatives of F(t) can be computed recursively by

deE -2 dig i-1 i! d i -JF d i g
~~(t)=Dv(t)-~ti(t)-D~t) ~ . ~ (t) - ~ - 7 (t) fori>~l. (3.17)

j=l(i- j)! j l

Taking derivatives of both sides of (3.9), and rewriting the left-hand side of the
equation in terms of F(t) , we have

d ~ t ~ i F
-ATZ~(t)e=di~(t) c - ~ 7 for i ~ l . (3.18)

By combining (3.17) with (3.18), and annexing the appropriate derivative of (3.10),
we have a system of linear equations that recursively computes the derivatives of
x(t) and v(t) evaluated at t = 0 ,

ATF'~ -2 div d i i-I i! d i -JF dJv
- ~ ,-, ~(o) - ~ (0) = ~ (0)c + ATD~o) Y~ _7)~ J' ~ (0) d-~ (0), (3.19)

j = l (i • •

dix d~v
A~--~ (0) + ~ - 7 (0) =0. (3.20)

304 L Adler et al. / An implementation o f Karmarkar ' s algorithm

In an implementab le re formula t ion of (3.19) and (3.20), we el iminate the b inomial

terms by defining

1 d iF (3.21) v, ?-? (o),

1 dip (0), (3.22)
Pi = i~ dt --7

1 div
, ld~X(o) and z~ = - - - - (O). (3.23)

zx= i~ dt--7 i! dd

Solving (3.19) and (3.20), we have

i--1
z~ = pi(ATD;~o)A)-'c + (ATD;~o)A)-IATD~o) ~ Fi_jz j (3.24)

j = l

and

' - A z ~ x . (3.25) Z v ~

The app rox ima te t rajectory based on a power series of order r is rewrit ten as

£ (t) = x (O) + ~ t z x and g (t) = v (O) + ~ ' i i i t zv. (3.26)
i = l i=1

At i teration k, the next i terate is computed as

xk+l ~- X(O/) and v k + l = ~ (~) ,

with

(3.27)

= y x s u p { t l 0 ~ t ~ < 1, t~i(t)/>0, i = 1 , . . . , m}, (3.28)

where 0 < 7 < 1.
By selecting a suitable reparamet r iza t ion p (t) , the line search on g(t) that computes

cr in (3.28) can be l imited to the interval 0 ~ < t ~ < 1. Since £(t) and 15(t) depend solely
on derivatives of p(t) evaluated at t = 0 , the desired reparamet r iza t ion is fully
character ized by constants p , , . . . , Pr- Values for Pi are compu ted by selecting a row
index l, and forcing

and

~5~(1) = 0 (3.29)

d / x l ^ .
dt i (u) = 0 f o r i = 2 , . . . , r . (3.30)

Consider the search directions

h 1 = (ATD;~o)A) 'c (3.31)

L Adler et a l . /An implementation of Karmarkar's algorithm 3 0 5

and

hl~ = - A h ~ . (3.32)

From (3.24) and (3.25), we have

1 1 1 1 z x = p l h x and z~=plh~. (3.33)

Once again, under the assumptions that A is a full rank and e ¢ 0, unboundedness
is detected if h~ i> 0. Otherwise, we determine the row index ! by performing a ratio
test between v(0) and search direction h i , i.e.,

l = argmin{-v(O)/(hlv)i I (h~)~ < 0}. (3.34)
l ~ i < ~ m

This operation corresponds to searching along the first order approximation of
trajectory v(t). From the conditions imposed on the reparametrization by (3.30),
the truncated Taylor expansion in (3.26) is such that

15,(1) = v(O)+pmhl,, (3.35)

and from (3.29) and (3.33), we compute

p~ = -v,(O)/ (h ~)~. (3.36)

Iteratively, for i = 2 , . . . , r, we compute p~ and z~. Based on (3.24),

i 1 i
Z~ = pihx + h~ (3.37)

where

i - I
hi T --2 1 T - 1 = (A D,(o)A) A D~(o)~. Fi_jz~. (3.38)

j=l

To satisfy (3.30), we have

i 1 Pi = - (h:,)t/(h x)t. (3.39)

Pseudo-code 3.1 formalizes the algorithm based on a truncated power series of
order r. The computational experiments reported in Section 8 include Algorithm
II, which is the second order version of this algorithm. In a practical implementaion,
the additional computational effort, when compared to Algorithm I, is dominated
by the solution of systems of symmetric linear equations to compute hl for i =
2 , r. As in Algorithm I, if)?(t) is not obtained exactly, a pair of feasible
trajectories can still immediately be available. By computing

i = _ A x i x for i = l , . , r, zv . , (3.40)

we guarantee that (Y(t), v(t)) is a pair of feasible trajectories for 0 4 t ~ a, where
0 <~ c~ <~ 1 is the maximum feasible step.

3 0 6 L Adler et aL / An implementation of Karmarkar's algorithm

Pseudo-code 3.1. Power Series Algorithm:

procedure PowerSeries (A, b, c, x °, stopping criterion, 3/, r)

1 k : = 0 ;

2 do stopping criterion not satisfied

3 x(0) := xk;
4 v(0) := b - Ax(0);

5 Dr(o) := d i a g (v l (0) , . . . , v,,(0));
6 h~:=(ATD~o~A)-Ic; hvl"-.- -Ahx;l

1>_ 7 i f h o ~ 0 ~ r e t u r n fi;
• h 1 8 l :=argmm~i~m{-v(O)/(~)il (h~)~ < 0};

9 pl := -v,(O)/(hl~)~;
1 1 1 . 1 10 z~ := plh~; z~ .= plh~;

- 2 1 .
11 F~ := D ~ (o) Z ~ ,

12 for i = 2 , . . . , r ~
13 h~ := (ATD;~o)A) IATD;(Io)2~_11 Fi-jzYv;

i 1 14 p, := - (h~)l/(h~,)t;
i .__ 1 i i i 15 z~ . - pihx + h~; z~ := -Az~;

16 F~ := Dv(o)Zv -

17 rof;
18 ; (t) := x(O)ArET=l tizix'~ v(t) "b- v(O)-~-ET~l tiz'~;
19 a:=yxsup{t lO<~t<~l, ~ (t) > ~ O , i = l , . . . , m } ;
20 x k+l := ~(a) ;
21 k : = k + l ;

22 od
end PowerSeries.

4. In i t ia l s o l u t i o n

Algorithm I and the truncated power series algorithms require that an initial interior
solution x ° be provided. Since such solution does not necessarily exist for a generic

linear program, and a starting solution close to the faces of the feasible polyhedral
set can imply in very slow convergence (Megiddo and Shub, 1986), we propose a
Phase I /Phase I I scheme, where we first solve an artificial problem with a single
artificial variable having a large cost coefficient assigned to it.

Firstly, we compute a tentative solution for P,

x ° = (llbll2/IAc[[2)c. (4.1)

For the computational experiments reported in Section 8, we compute the initial

value for the artificial variable as

o - 2 x m i n { (b - A x °) i l i = 1 , . . . , m}. (4.2) X a

L Adler et aL / An implementation of Karmarkar's algorithm 307

Although it did not occur in any of the test problems reported in this paper, the
computat ion in (4.2) can be such that x ° =0 . Consequently, for application to

generic linear programs, we recommend an alternative computation of the initial
value of the artificial variable,

x ° = 2 x II b - Ax°ll2. (4.3)

The n + 1-vector (x °, x °) is an interior solution of the Phase I linear programming
problem

Pa: maximize cTx -- M x a (4.4)

subject to A x - e x , <~ b, (4.5)

where

e = (1, 1 ,1) r. (4.6)

The large artificial cost coefficient is computed as a function of the problem data,

T 0 0
M = tx x c x / x a , (4.7)

where tz is a large constant.
Initially, the algorithm is applied to Pa with a modified stopping criterion. In this

Phase I stage, the algorithm either identifies an interior feasible solution, or, if no
such solution exists, finds a solution that satisfies the stopping criterion for problem
P. With er defined as the feasibility tolerance, the modified stopping criterion for
Phase I is formulated as follows:

(i) I f x] < 0 at iteration k, then x k is an interior feasible solution for problem P.
(ii) I f the algorithm satisfies the regular stopping criterion and x k > er, P is

declared infeasible.

(iii) I f the algorithm satisfies the regular stopping criterion and k X~ < el, either
unboundedness is detected or an optimal solution is found. In this case, P has no
interior feasible solution.

I f Phase I terminates according to condition (i), the algorithm is applied to
problem P starting with the last iterate of Phase I and using the regular stopping
criterion.

5. Application to the general linear programming problem

It is not common practice to formulate a linear programming problem as in (2.1)
and (2.2). Instead, a standard form is usually preferred,

LPP: minimize bTy

subject to A Ty = C,

y>~0,

(5.1)

(5.2)

(5.3)

308 L Adler et al. / An implementation o f Karmarkar' s algorithm

where A is an m x n matrix, c an n-vector and b and y m-vectors. The dual linear
programming problem of (5.1)-(5.3), however, has the desired form:

LPD: maximize cTx (5.4)

subject to Ax<~ b, (5.5)

where x is an n-vector. Note that LPD is identical to P, as defined in (2.1) and
(2.2). At iteration k, with current solutions x k and v k, a tentative dual solution is
defined as

yk = D~2A(ATD~2A)- l c , (5.6)

where

Dv = d i ag (v~ , . . . , v,k,). (5.7)

This computation of the tentative dual solution, similar to the one suggested by
Todd and Burrell (1986), can be performed by scaling the first order search direction
in each iteration of the algorithm. From (2.23), for iteration k,

y k = D~2h~. (5.8)

The tentative dual solution minimizes the deviation from complementary slackness
with respect to the current iterate x k, relaxing the nonnegativity constraints (5.3)
(Chandru and Kochar, 1986). Formally, consider the problem

minimize ~ (v~yj) 2 (5.9)
j--1

subject to aXy = c. (5.10)

The tentative dual solution in (5.6) is the solution to the Karush-Kuhn-Tucker
stationary conditions of minimization problem given by (5.9) and (5.10). Under
nondegeneracy, given a sequence of feasible primal solutions converging to an
optimal solution, the corresponding sequence of tentative dual estimates also
converges to the optimal dual solution.

6. Stopping criterion

In the computational experiments reported in this study, both Algorithms I and II
are terminated whenever the relative improvement to the objective function is small,

i.e.,

]cT x k -- cTxk-I[/max{1, IcTxk-'I} < e, (6.1)

where e is a given small positive tolerance.
The tentative dual solution yk, computed in (5.6), can be used to build an

alternative stopping criterion. If yk and v k satisfy

A Ty k = C, (6.2)

L Adler et al. / An implementation of Karmarkar's algorithm 309

yk >~ O, (6.3)

y~v~=O, j = 1 , 2 , . . . , m, (6.4)

then, by duality theory of linear programming, yk is optimal for LPP and x k is
optimal for LPD. Since (6.2) is automatically satisfied, a stopping criterion, replacing
(6.1), such that the algorithm terminates whenever

yff~>-elllykl[2, j = l , 2 , m, (6.5)

and

ly~v~l ~ ~211y~ll211v~ll2, j = 1, 2 , . . . , m, (6.6)

for given small positive tolerances el and e2. The relations in (6.5) and (6.6) serve
as a verification that x k and yk are indeed approximate optimal solutions for LPD
and LPP, respectively.

Unboundedness of LPD is, theoretically, detected by the algorithm whenever
h~/> 0, i.e., the ratio tests in (2.25) and (3.34), involving the first order search direction
fail. In practice, an additional test is required, LPD is declared unbounded whenever
the objective function value exceeds a supplied bound.

7. Implementation issues

In this section, we briefly discuss some important characteristics of this implementa-
tion. A detailed description of the data structures and programming techniques
used in the implementation of Algorithms I and II is the subject of Adler et al. (1989).

7.1. Computing search directions

As in other variants of Karmarkar's algorithm, the main computational requirement
of the algorithms described in this paper consists of the solution of a sequence of
sparse symmetric positive definite systems of linear equations determining the search
directions for each iteration. In Algorithm I, for each iteration k, a linear trajectory
is determined by the feasible direction computed in

with

where

Bkhx = c, (7.1.1)

Bk = ATDv2A, (7.1.2)

D~ = diag(vlk, . . . , vk). (7.1.3)

Under the full-rank assumption for A, the system of linear equations in (7.1.1)
is symmetric and positive definite. Such systems of linear equations are usually
solved by means of the L U factorization,

Bk = LU, (7.1.4)

310 L Adler et al. / An implementation of Karmarkar's algorithm

where L is an m x m unit lower triangular matrix (a matrix that has exclusively
ones in its main diagonal), and U is an m x m upper-triangular matrix. In the case
of positive definite matrices, this L U factorization always exists and is unique.
Furthermore, if the system is also symmetric, the factor L can be trivially obtained
from U with

L = D u 1U T, (7.1.5)

where D u is a diagonal matrix with elements drawn from the diagonal of U.
Rewriting (7.1.1), we have

(L U) h x = e. (7.1.6)

Direction hx in (7.1.6) can be determined by solving two triangular systems of linear
equations, performing a forward substitution

L z = c, (7.1.7)

followed by a back substitution

Uhx= z. (7.1.8)

In each iteration of the higher order algorithms described in Section 3, the additional
directions in (3.37) and (3.38) also involve the solution of linear systems identical
to (7.1.1), except for different right-hand sides. Solving these additional systems of
linear equations involve only the back and forward substitution operations, using
the same L U factors. Furthermore, during the execution of the algorithm only D~
changes in (7.1.2), while A remains unaltered. Therefore, the nonzero structure of
A T D ~ 2 A is static throughout the entire solution procedure. An efficient implementa-
tion of the Gaussian elimination procedure can take advantage of this property by
performing, in the beginning of the algorithm, a single symbolic factorization step,
i.e., operations that depend solely on the nonzero structure of the system matrix.
For example, at this stage of the algorithm, we determine the nonzero structure of
L U factors and build a list of the numerical operations performed during the
Gaussian elimination procedure. At each iteration k of the algorithm, the actual
numerical values of Bk are computed and incorporated in the symbolic information.
Next, the numerical factorizat ion is executed, by traversing the list of operations,
yielding the L U factors.

7.2. Using an approximate scaling matrix

Based on the theoretical approach suggested by Karmarkar (1984), a significant
reduction in the computational effort can be achieved by using an approximate
scaling matrix when computing the numerical values for matrix Bk at each iteration.
The matrix for the system of linear equations in (7.1.1) is replaced by

Bk = ATD~2A, (7.2.1)

L Adler et a l . / A n implementation of Karmarkar's algorithm 311

where /)k is an approximate scaling matrix, computed by selectively updating the
scaling matrix used in the preceding iteration. The approximate scaling matrix at
each iteration k is computed as follows:

/~k(i,i)=l'/)k~ 1(i,i), i f l D v (i , i) - - f f) k _ l (i , i) l / l L) k _ l (i , i)] < 6 ,
(7.2.2)

(D~(i, i), if IDa(i, i) - 19k-1(i, i)[/ll)k--l(i, i)[~> 6,

for a given 6 > 0. After computing the current approximate scaling matrix according
to (7.2.2), we define

a = / ~ k 2 -- /~k2_1 , (7.2.3)

Then, we have the update expression

Bk = hk-~ + ATAA. (7.2.4)

This enables us to update the linear system matrix by rescaling only a reduced set
of columns of A T .

7.3. Ordering for sparsity

When a sparse matrix is factored, fill-in usually occurs. The triangular factors contain
nonzero elements in positions where Bk has zeros. Fill-in degrades the performance
of the sparse Gaussian elimination used to compute the L U factorization, also
affecting the back and forward substitution operations. It is possible to reduce fill-in
by performing a permutation of columns and rows in Bk.

If P is a permutation matrix, then (7.1.1) and

(PBkpT)phx = Pc (7.3.1)

are equivalent systems. Furthermore, there exists a permutation matrix 15 such that
the fill-in generated in the triangular factors is minimized. Unfortunately, finding
this permutation matrix is an NP-complete problem (Yannakakis, 1981). However,
the minimum degree and minimum localfill-in ordering heuristics (Rose, 1972) have
been shown to perform well in practice (Duff, Erisman and Reid, 1986). We use
either the minimum degree heuristic as implemented in subroutine MD of the Yale
Sparse Matrix Package (Eisenstat et al., 1982), or the minimum local fill-in
implementation in de Carvalho (1987).

7.4. Treating dense columns in the coefficient matrix

In the presence of a few dense columns in A T, ATD~2A will be impracticably dense,
regardless of the permutation matrix. Consequently, we face prohibitively high
computational effort and storage requirements during Gaussian elimination. To
remedy this situation, we make use of a hybrid scheme in which we first perform
an incomplete factorization of ATD~2A. Next, we use the incomplete Cholesky
factors as preconditioners for a conjugate gradient method to solve the system of
linear equations defined in (7.1.1).

312 I. Adler et al./ An implementation of Karmarkar's algorithm

Let (N, _K/~) be a partition of the column indices of A T, such that the columns of
A~ have density smaller than a given parameter A. At iteration k, the incomplete
Cholesky factors Lk a n d / ~ are such that

A T Dv2AN = I-~kl-~ T. (7.4.1)

Using the conjugate gradient algorithm, we solve the system of linear equations

Qu =f, (7.4.2)

where

and

Q = £~(ATD~ZA)(£~) -1, (7.4.3)

f = £~1c. (7.4.4)

The search direction hx is computed by performing a back substitution operation,
solving

u = f~hx. (7.4.5)

Given a termination tolerance ecg > 0, the conjugate gradient algorithm is outlined
in Pseudo-code 7.4.1.

Pseudo-code 7.4.1. Conjugate Gradient Algorithm:

procedure ConjugateGradient (Q,f, ecg)

1 Uo := f;
2 r0:= Q u o - f ;
3 po := -ro;
4 i:=0;
5 do - ,

6 qi := Qpi;
7 cei := I[rll~/pTq,;
8 Ui+ 1 := Ui+O~ipi,

9 ri+l := Qui+~ - f ;
10 fli:-----Ilri+all2/llrill2;

11 P i+ l := --ri+l+~iPi;
12 i:= i+1;
13 od
end ConjugateGradient.

8. Test problems

In this section, we report the computational results of running our implementations
of Algorithms I and II on a set of linear programming test problems (Gay, 1985,

I. Adler et al. / An implementation of Karmarkar's algorithm 313

1986) available through NETLIB (Dongarra and Grosse, 1987). NETLIB is a system
designed to provide efficient distribution of public domain software to the scientific
community through computer networks, e.g. Arpanet, UNIX UUCP network, CSNET,
Telenet and mTNET. We also report the results of running Algorithm I on linear
programs generated by two models. The first set is composed of randomly generated
mult i-commodity network flow problems generated with MNETGN (Ali and

Kennington, 1977). The other is a collection of timber harvest scheduling problems
generated by EORPLAN (Johnson, 1986), a linear programming based system used
for long-range planning by the US Forest Service.

8.1. The NETLIB test problems

This collection of linear programs consists of problems contributed by a variety of
sources. It includes linear programming test problems from the Systems Optimization
Laboratory at Stanford University, staircase linear programs generated by Ho and
Loute (1981), and many real world problems. We considered in our tests all of the
available problems that do not have a BOUNDS section in their MPS representation,
since the current version of our code cannot handle bounded variables implicitly.

Table 8.1.1 presents the statistics for 31 test problems obtained from NETLIB,

ordered by increasing number of nonzero elements in the coefficient matrix A, after
adding slack variables. The dimensions of the problems include null or fixed
variables, sometimes removed by a preprocessor before applying a linear program-

ming algorithm. The number of rows does not include the objective function. In
column 4, the number of nonzero elements of A is displayed. Column 5 gives the
number of nonzero elements of the lower triangular portion of the permuted (p A) T p A

matrix, using the minimum degree ordering heuristic. Column 6 gives the nonzero
elements in the Cholesky factor. The fill-in is the difference between columns 6 and

5. The entries in columns 5 and 6 for problem Israel are those used by the algorithm,
i.e., after 6 dense columns of A T are dropped.

All test runs, with the exception of those of Algorithm II, were carried out on
the IBM 3090 at U.C.-Berkeley under VM/SP CMS. Algorithm II test runs were con-
ducted on the IBM 30Sl-K at U.C.-Berkeley, also under VM/SP CMS. FORTRAN programs
were compiled using the FORTVS compiler with compiler options OPT(3), NOSYM and
NOSDUMP. The reported c e u times were computed with utility routine DATETM,
taking into account preprocessing (e.g. input matrix cleanup, ordering and symbolic

factorization) and all operations until termination. However, they exclude the effort
required to translate the linear programs from MPS format.

Execution times for Algorithm I and Algorithm II are compared to those of the
simplex code MINOS 4.0. The reported cPu times for MINOS are those of subroutine
DRIVER, which also excludes the time to read and translate the MPS input file. The
results of solving the NETLIB test problems by MINOS 4.0 are displayed in Table 8.1.2.
In running MINOS, we use default parameters except for LOG FREQ = 200 and
ITERATIONS = 7 5 0 0 . The problem size parameters, ROWS, COLUMNS and ELEMENTS,

314 L Adler et al./ An implementation of Karmarkar's algorithm

Table 8.1.1
NETLIB test problem statistics

Problem Rows Columns nonz(A) nonz((PA)TPA) 1 nonz(L)

Afiro 27 51 102 90 107
ADLitt~ 56 138 424 377 404
Scagr7 129 185 465 606 734
Sc205 205 317 665 654 1182
Share2b 96 162 777 871 1026
Sharelb 117 253 1179 967 1425
Scorpion 388 466 1534 1915 2324
Seagr25 471 671 1725 2370 2948
ScTapl 300 660 1872 1686 2667
Brandy 220 303 2202 2190 2850
Scsdl 77 760 2388 1133 1392
Israel 174 316 2443 3545 3707
BandM 305 472 2494 2929 4114
Scfxml 330 600 2732 3143 4963
E226 223 472 2768 2683 3416
Se~8 490 1275 3288 1953 5134
Beaconfd 173 295 3408 1720 1727
Scsd6 147 1350 4316 2099 2545
Sh~O4s 402 1506 4400 2827 3134
Scfxm2 660 1200 5469 6306 9791
Sh~041 402 2166 6380 4147 4384
Sh~O8s 778 2467 7194 3552 4112
ScTap2 1090 2500 7334 6595 14870
Scfxm3 990 1800 8206 9469 14619
Sh~12s 1151 2869 8284 4233 5063
Scsd8 397 2750 8584 4280 5879
ScTap3 1480 3340 9534 8866 19469
CzProb 929 3340 10043 6265 6655
25FV472 821 1876 10705 10919 33498
Sh~081 778 4363 12882 6772 7128
Sh~12l 1151 5533 16276 8959 9501

1 Using the minimum degree ordering heuristic.
2 25FV47 is also known as BP822.

w e r e set to t he exac t n u m b e r o f rows , c o l u m n s a n d n o n z e r o e l e m e n t s o f the coef f ic ien t

mat r ix . In this f a sh ion , MINOS selects the v a l u e fo r the all i m p o r t a n t PARTlAL PRICE

p a r a m e t e r a c c o r d i n g to its bu i l t - in de f au l t s t ra tegy. U s i n g the de f au l t p a r a m e t e r s ,

~ 1 N o s 4.o a c h i e v e d 7 d ig i t a c c u r a c y on all p r o b l e m s , i f c o m p a r e d to the o p t i m a l

o b j e c t i v e v a l u e s r e p o r t e d in G a y (1986).

S ince the ~ETLIB test p r o b l e m s are no t in t he f o r m d e s c r i b e d by (2.1) and (2.2),

A l g o r i t h m s I a n d I I so lve the c o r r e s p o n d i n g d u a l l i n e a r p r o g r a m m i n g p r o b l e m s . A

p r i m a l o p t i m a l so lu t i on is o b t a i n e d f r o m (5.6), i n v o l v i n g the last s ca l ing m a t r i x D~

a n d the last s ea rch d i r e c t i o n fo r the d u a l s lacks. By con t ras t , w i n o s so lves the test

p r o b l e m s in its o r ig ina l fo rm. T a b l e s 8.1.3 a n d 8.1.4 s u m m a r i z e c o m p u t a t i o n a l resul ts

fo r A l g o r i t h m I on the set o f test p r o b l e m s , us ing , r e spec t ive ly , the m i n i m u m deg ree

L Adler et al. / An implementation of Karmarkar's algorithm

Table 8.1.2

MINOS 4.0 test statistics (IBM 3090)--NETLIB test problems

315

Problem Phase I lter. Total iter. Time (sec.) Objective value

Afiro 2 6 0.01 -4.6475319 e +02
ADLittle 28 119 0.23 2.2549495 e +05
Seagr7 38 81 0.29 -2.3313897 e +06
Sc205 30 111 0.45 -5.2201997 e +01
Share2 b 83 119 0.26 -4.1573247 e +02
Sharelb 238 391 1.27 -7.6589255 e +04
Scorpion 146 215 1.06 1.8781247 e +03
Scagr25 228 614 4.54 -1.4753432 e +07
ScTapl 184 305 1.98 1.4122500 e +03
Brandy 185 313 1.34 1.5185099 e +03
Scsdl 97 261 1.02 8.6666659 e +00
Israel 72 281 1.54 -8.9664483 e +05
BandM 207 472 2.54 -1.5862800 e +02
Scfxml 238 437 2.04 1.8416758 e +04
E226 69 568 3.68 -1.8638928 e +01
Scrs8 135 523 5.64 9.0429701 e +02
Beaconfd 9 41 0.18 3.3592486 e +04
Scsd6 189 576 2.69 5.0500000 e +01
ShipO4s 309 395 3.54 1.7987147 e +06
Scfxm2 432 792 8.18 3.6660260 e +04
Ship041 441 593 7.18 1.7933246 e +06
ShipO8s 470 657 9.16 1.9200982 e +06
ScTap2 667 1121 22.02 1.7248071 e +03
Scfxm3 646 1196 19.31 5.4901252 e +04
Ship12s 561 718 12.78 1.4892361 e +06
Scsd8 585 1590 14.53 9.0499997 e +02
ScTap3 696 1273 32.87 1.4240000 e +03
CzProb 1035 1955 39.08 2.1851968 e +06
25FV47 1262 7157 217.67 5.5018494 e +03
Ship081 594 958 14.72 1.9090552 e +06
Ship121 782 1268 26.10 1.4701879 e +06

a n d the m i n i m u m loca l f i l l- in o r d e r i n g heu r i s t i c s . T a b l e 8.1.5 p r e s e n t s resu l t s f o r

A l g o r i t h m II , w h i c h uses t h e m i n i m u m d e g r e e o r d e r i n g heur i s t i c .

B o t h A l g o r i t h m s I a n d II w e r e t e s t e d w i t h t he f o l l o w i n g p a r a m e t e r se t t ings . T h e

sa fe ty f a c t o r p a r a m e t e r w a s set to 3' = 0.99 fo r t he first 10 i t e r a t i o n s a n d y- - -0 .95

t h e r e a f t e r . B o t h a l g o r i t h m s w e r e t e r m i n a t e d w h e n t h e r e l a t ive i m p r o v e m e n t in t h e

o b j e c t i v e f u n c t i o n fell b e l o w e = 10 -8. In P h a s e I, t h e v a l u e o f t he ar t i f ic ia l v a r i a b l e

cos t d e f i n e d in (4.7) w a s d e t e r m i n e d by t h e c o n s t a n t / x = 105. T h e d i a g o n a l u p d a t e

t o l e r a n c e w a s set to 6 = 0.1 a n d the c o l u m n d e n s i t y p a r a m e t e r fo r b u i l d i n g t h e

i n c o m p l e t e C h o l e s k y f a c t o r i z a t i o n in t he c o n j u g a t e g r a d i e n t a l g o r i t h m w a s set to

h = 0 . 3 .

T a b l e 8.1.6 c o m p a r e s e x e c u t i o n t imes fo r t h e t h r e e a l g o r i t h m s , c v u t i m e s d i s p l a y e d

f o r MINOS a n d A l g o r i t h m I w e r e m e a s u r e d o n t h e IBM 3090, w h i l e t h o s e f o r A l g o r i t h m

316 I. Adler et al. / An implementation of Karmarkar's algorithm

Table 8.1.3

Algorithm 1 test statistics (~BM 3090)--NETLIB test problems (minimum degree ordering heuristic)

Problem Phase Iiter. Total iter. Time (sec.) Objective value

Afiro 1 20 0.04 -4.6475315 e +02
ADLittle 1 24 0.12 2.2549496 e +05
Scagr7 3 25 0.17 -2.3313898 e +06
Sc205 4 29 0.28 -5.2202061 e +01
Share2b 4 28 0.29 -4.1573224 e +02
Sharelb 7 39 0.58 -7.6589319 e +04
Scorpion 5 25 0.51 1.8781248 e +03
Scagr25 3 28 0.69 - 1.4753433 e +07
ScTapl 6 34 0.85 1.4122488 e +03
BrandY 38 38 1.52 1.5185099 e +03
Scsdl 2 19 0.41 8.6666666 e +00
Israel ~ 8 38 4.00 -8.9664483 e +05
BandM 7 33 1.54 -1.5862802 e +02
Scfxml 33 33 1.97 1.8416759 e +04
E226 40 40 1.56 -1.8751929 e +01
Scrs8 39 39 2.30 9.0429695 e +02
Beaconfd 23 23 0.69 3.3592486 e +04
Scsd6 2 22 0.83 5.0500000 e +01
ShipO4s 5 31 1.26 1.7987145 e +06
Scfxm2 38 38 4.38 3.6660261 e +04
Ship04l 5 31 2.31 1.7933245 e +06
ShipOSs 5 34 1.58 1.9200982 e +06
ScTap2 7 33 6.71 1.7248068 e +03
Scfxm3 37 37 6.66 5.4901254 e +04
Ship12s 4 35 1.91 1.4892361 e +06
Scsd8 2 24 1.68 9.0500000 e +02
ScTap3 7 36 9.44 1.4240000 e +03
CzProb 3 46 9.76 2.1851927 e +06
25FV47 44 55 46.17 5.5018494 e +03
Ship081 5 34 4.00 1.9090552 e +06
Shipl21 5 34 4.89 1.4701879 e +06

The conjugate gradient algorithm was triggered when running this test problem.

I I a re f r o m t h e IBM 3081-K. F o r t he sake o f c o n s i s t e n c y , w h e n c o m p u t i n g the cPU

t i m e ra t io b e t w e e n MINOS a n d A l g o r i t h m II , t he e x e c u t i o n t i m e s f o r MINOS are

t h o s e o f t he I~M 308a-K. F igu re s I a n d 2 i l l u s t r a t e g r a p h i c a l l y the p e r f o r m a n c e s o f

MINOS a n d A l g o r i t h m I.

Tab le 8.1.7 f o c u s e s on five s u b g r o u p s o f p r o b l e m s , w h e r e e a c h s u b g r o u p is m a d e

u p o f p r o b l e m s h a v i n g the s a m e s t ruc tu re , o r g e n e r a t e d by the s a m e m o d e l . In this

t ab le , r a t ios o f MINOS i t e r a t i o n s to A l g o r i t h m I i t e r a t i ons , MINOS CPU t ime p e r

i t e r a t i o n to A l g o r i t h m I cPV t i m e p e r i t e r a t i o n a n d MINOS to ta l Cpu t i m e to A l g o r i t h m

I to ta l c P u t i m e are g iven .

T a b l e 8.1.8 p r e s e n t s d e t a i l e d resu l t s r e l a t e d to t h e g e n e r a t i o n o f p r i m a l s o l u t i o n s

in A l g o r i t h m 1. Let t be t he n u m b e r o f i t e ra t e s g e n e r a t e d by the a l g o r i t h m . The

L Adler et a l . /An implementation of Karmarkar's algorithm 317

Table 8.1.4

Algorithm I test statistics (1BM 3090)--NETLIB test problems (min imum local fill-in ordering heuristic)

Problem Phase I i ter . Total iter. Time (sec.) Objective value

Afiro 1 20 0.05 -4.6475315 e +02
ADLittle 1 24 0.13 2.2549496 e +05
Scagr7 3 24 0.18 -2.3313898 e +06
Sc205 4 28 0.26 -5.2202061 e +01
Share2b 4 29 0.32 -4.1573224 e +02
Sharelb 7 38 0.47 -7.6589319 e +04
Scorpion 5 24 0.49 1.8781248 e +03
Scagr25 3 29 0.70 -1.4753433 e +07
ScTapl 6 33 0.80 1.4122488 e +03
Brandy 38 38 1.49 1.5185099 e +03
Scsdl 2 19 0.44 8.6666666 e +00
Israel ~ 8 37 4.01 -8.9664483 e +05
BandM 7 30 1.26 - 1.5862802 e +02
Scfxml 33 33 1.66 1.8416759 e +04
E226 34 34 1.58 -1.8751929 e +01
Scrs8 39 39 2.28 9.0429695 e +02
BeaconJd 23 23 0.62 3.3592486 e +04
Scsd6 2 22 0.84 5.0500000 e +01
ShipO4s 5 30 1.01 1.7987145 e +06
Scfxm2 38 39 3.83 3.6660261 e +04
Ship041 5 28 1.39 1.7933245 e +06
ShipO8s 5 32 1.35 1.9200982 e +06
ScTap2 7 34 5.52 1.7248068 e +03
Scfxm3 37 40 5.87 5.4901254 e +04
Ship12s 4 35 1.75 1.4892361 e +06
Scsd8 2 23 1.82 9.0500000 e +02
ScTap3 7 36 7.78 1.4240000 e +03
CzProb 3 52 3.64 2.1851927 e +06
25FV47 44 54 31.70 5.5018494 e +03
Ship081 5 31 2.44 1.9090552 e +06
Ship121 5 32 3.43 1.4701879 e +06

1 The conjugate gradient algorithm was triggered when running this test problem.

n o r m a l i z e d d u a l i t y g a p

Ib Ty ' - c T x'l/Lb' yt I (8 .1 .1)

i s g i v e n i n c o l u m n 2. C o l u m n 3 p r e s e n t s t h e m a x i m u m n o r m a l i z e d p r i m a l i n f e a s i b i l i t y

m a x { I A ~ y t - e, i l l lc l l=li= 1, 2 , . . . , n} . (8 . 1 . 2)

C o l u m n 4 g i v e s t h e m i n i m u m n o r m a l i z e d p r i m a l e n t r y ,

m i n { y l / l l y ' l l z l i = 1, 2 , . . . , m } (8 .1 .3)

a n d c o l u m n 5 t h e m a x i m u m n o r m a l i z e d c o m p l e m e n t a r i t y v i o l a t i o n

max{lylv',[/lly'[[2llv'll21i= 1, 2 , . . . , m } . (8 . 1 . 4)

318 I. Adler et al. / An implementation of Karmarkar's algorithm

Table 8.1.5

Algorithm II test statistics (IBM 3081-K)---NETLIa test problems (minimum degree ordering heuristic) ~

Problem Phase Iiter. Total iter. Time (sec.) Objective value

Afiro 1 15 0.08 -4.6475315 e +02
ADLittle 1 18 0.27 2.2549496 e +05
Scagr7 3 19 0.43 -2.3313898 e +06
Sc205 3 20 0.66 -5.2202061 e +01
Share2b 4 21 0.69 -4.1573224 e +02
Sharelb 5 33 1.47 -7.6589319 e +04
Scorpion 4 19 1.22 1.8781248 e +03
Scagr25 3 21 1.7l -1.4753433 e +07
ScTapl 5 23 2.00 1.4122488 e +03
BrandY 24 24 2.79 1.5185099 e +03
Scsdl 2 16 1.10 8.6666666 e +00
Israel 6 29 8.22 -8.9664483 e +05
BandM 4 24 3.46 -1.5862802 e +02
Scfxml 30 30 4.94 1.8416759 e +04
E226 30 30 3.54 -1.8751929 e +01
Scrs8 29 29 5.07 9.0429695 e +02
Beaconfd 17 17 1.51 3.3592486 e +04
Scsd6 2 18 2.13 5.0500000 e +01
ShipO4s 4 22 2.85 1.7987145 e +06
Scfxm2 29 29 9.28 3.6660261 e +04
Ship04l 4 21 4.71 1.7933245 e +06
ShipOSs 4 21 3.30 1.9200982 e +06
ScTap2 5 25 13.55 1.7248068 e +03
Scfxm3 30 30 14.25 5.4901254 e +04
Shipl2s 3 23 4.17 1.4892361 e +06
Scsd8 2 18 4.22 9.0500000 e +02
ScTap3 6 27 19.59 1.4240000 e +03
CzProb 3 35 14.33 2.1851927 e +06
Ship081 4 23 8.12 1.9090552 e +06
Shipl21 4 23 10.07 1.4701879 e +06

1 Problem 25FV47 was not solved with Algorithm II, as its current implementation does not incorporate
a dense window data structure (Adler et al., 1989) necessary to solve this problem under a 4 Mbytes
memory limit.

F r o m t h e r e s u l t s a b o v e , we m a k e t h e f o l l o w i n g o b s e r v a t i o n s :

• I t e r a t i o n s fo r A l g o r i t h m I v a r y f r o m 19 to 55 (see T a b l e s 8.1.3 a n d 8.1.4),

g r o w i n g s l o w l y w i t h p r o b l e m size.

• A l g o r i t h m I is, in g e n e r a l , f a s t e r t h a n MINOS, w i t h a s p e e d - u p o f u p to 10.7

(s ee T a b l e 8.1.6 a n d F i g u r e s 1 a n d 2). T h e to t a l p r o b l e m se t e x e c u t i o n t i m e w a s

5.14 t i m e s f a s t e r . MINOS, w a s f a s t e r o n 5 s m a l l p r o b l e m s , all h a v i n g less t h a n 225

r o w s a n d 3500 n o n z e r o m a t r i x e l e m e n t s .

• I f t h e t e s t p r o b l e m s a re c a t e g o r i z e d i n to t h r e e g r o u p s a c c o r d i n g to n u m b e r o f

n o n z e r o e l e m e n t s : " s m a l l " (Afiro-ShipO4s), " m e d i u m " (Scfxrn2-Shipl2s) a n d

" l a r g e " (ScsdS-Ship121), A l g o r i t h m I is, f o r e a c h c o r r e s p o n d i n g c a t e g o r y , o n t he

L Adler et al. / An implementation of Karmarkar's algorithm 319

Table 8.1.6

Comparison of run times 0BM 3090)--NETLIB test problems (minimum local fill-in ordering heuristic)

Problem MINOS Alg. I Alg. II MINOs/Alg. I MINOS/AIg. II
time time time I time ratio time ratio 1
(sec.) (sec.) (see.)

Afiro 0.01 0.05 0.08 0.2 0.5
ADLittle 0.23 0.13 0.27 1.8 1.7
Scagr7 0.29 0.18 0.43 1.6 1.2
Sc205 0.45 0.26 0.66 1.7 1.6
Share2b 0.26 0.32 0.69 0.8 0.9
Sharelb 1.27 0.47 1.47 2.7 1.8
Seorpion 1.06 0.49 1.22 2.2 2.1
Scagr25 4.54 0.70 0.71 6.5 6.1
ScTapl 1.98 0.80 2.00 2.5 1.7
Brandy 1.34 1.49 2.79 0.9 1.1
Sesdl 1.02 0.44 1.10 2.3 2.2
Israel 1.54 4.01 8.22 0.4 0.4
BandM 2.54 1.26 3.46 2.0 1.9
Scfxml 2.04 1.66 4.94 1.2 1.0
E226 3.68 1.58 3.54 2.3 1.7
Scrs8 5.64 2.28 5.07 2.5 1.9
Beaeonfd 0.18 0.62 1.51 0.3 0.3
Scsd6 2.69 0.84 2.13 3.2 3.9
ShipO4s 3.54 1.01 2.85 3.5 2.1
Scfxm2 8.18 3.83 9,28 2.1 1.8
Ship041 7.18 1.39 4.71 5.2 2.5
ShipOSs 9.16 1.35 3.30 6.8 4.6
SeTap2 22.02 5.52 13.52 4.0 2.8
Scfxm3 19.31 5.87 14.25 3.3 2.5
Ship12s 12.78 1.75 4.17 7.3 5.6
Scsd8 14.53 1.82 4.22 8.0 7.7
SeTap3 32.87 7.78 18.95 4.2 3.0
CzProb 39.08 3.64 14.33 10.7 4.3
25FV47 217.67 31.70 NA 6.9 NA
Ship081 14.72 2.44 8.12 6.0 4.0
Ship121 26,10 3.43 10.07 7.6 5.5

1 IBM 3081-K CPU times and minimum degree ordering heuristic in Algorithm II.

a v e r a g e 1.8, 4.0 a n d 6.8 t i m e s f a s t e r t h a n MINOS. O n e m a y i n f e r a g r o w t h in t h e

r e l a t i v e s p e e d o f A l g o r i t h m I w i t h r e s p e c t to MINOS, as p r o b l e m s izes i n c r e a s e .

• I n T a b l e 8.1.7, w h e r e p r o b l e m s w i t h s i m i l a r s t r u c t u r e a r e g r o u p e d t o g e t h e r , o n e

c a n o b s e r v e t h a t MINOS'S d i s a d v a n t a g e in n u m b e r o f i t e r a t i o n s g r o w s w i t h p r o b l e m

size, w h i l e i ts a d v a n t a g e in t i m e p e r i t e r a t i o n s e e m s to l eve l off f o r t h e l a r g e r

p r o b l e m s . T h i s is so, b e c a u s e MINOS r e f a c t o r s t h e b a s i s a f t e r a f ixed n u m b e r o f

i t e r a t i o n s . R e f a c t o r i z a t i o n r e q u i r e s w o r k t h a t is in t h e s a m e o r d e r o f o n e i t e r a t i o n

o f A l g o r i t h m I, d o m i n a t i n g t h e w o r k c a r r i e d o u t in t h e i n t e r m e d i a t e i t e r a t i o n s . A l s o ,

as t h e p r o b l e m size i n c r e a s e s , t h e o v e r h e a d i n c u r r e d b y A l g o r i t h m I in t h e p r e p r o c e s s -

i ng is a b s o r b e d a n d t h e r e f o r e o n e s h o u l d e x p e c t t h e r a t i o o f w o r k p e r i t e r a t i o n

320 I. Adler et al. / An implementation of Karmarkar' s algorithm

4O

CPU Time
(seconds)

35-

30-

25-

20-

15-

l0

\

.". Algorithm 1

.~. i ! ~

0 t" I I I I I T ~ V--
0 2 4 6 8 10 12 14 16

Number of Nonzero Elements (thousands)

Fig. 1. MINOS 4.0 and Algorithm I (cPu times, I B M 3090)--NETLIB test problems (minimum local fill-in
ordering heuristic in Algorithm I). (Test problem 25FV47 is not included in this graph.)

between the two algorithms to be at worst proportional to the inverse of the

refactorization frequency. Thus, relative to simplex based codes, Algorithm I
becomes increasingly faster as the problems get larger.

• The optimal objective values reported in Table 8.1.3 are accurate within 6 and

8 digits if compared to the values reported in (Gay, 1985, 1986). The primal solution

computed at termination was accurate in most cases with the exception of problems

C z P r o b and 2 5 F V 4 7 (see Table 8.1.8). The primal-dual relation presented for

problem I s rae l are based on an implementation using direct factorization to compute

the search directions at each iteration.
• All of the above considerations made for Algorithm I are valid for Algorithm

IL Furthermore, Algorithm II requires on average 26% less iterations to converge

to 8 digit accuracy than Algorithm I. However, this does not translate into any

significant gain in solution time, since the extra work per iteration in the current

implementation offsets the savings in the number of iterations. We believe that by

321

Ratio

/

11

10

9

8

7

6

5

4

3

2

1

0

I. Adler et al. / An implementation o f Karmarkar' s algorithm

I I I - - 7 I T l V -
0 2 4 6 8 10 12 14 16

Number of Nonzero Elements (thousands)

Fig. 2. MINOS 4.o/Algorithm I (cPu time ratio, IBM 3090)--NETLIB test problems (minimum local fill-in
ordering heuristic in Algorithm I).

refining the extra computation, further reduction in work per iteration in Algorithm

II is possible, leading to a faster implementation.
• The conjugate gradient algorithm, with column density parameter A = 0.3, was

important for solving test problem Israel . Factorization times for that problem were

reduced significantly, when compared with an earlier version of Algorithm I, where

the conjugate gradient routine was not implemented. Even though dropping a few

dense columns did not significantly affect convergence of the dual solution, it did

not generate a direction precise enough for computing an accurate primal solution

at termination. This, however, can be accomplished by means of a more exact
solution to the system defining the last direction. Actually, by using an exact

factorization in the last iteration the accuracy of the primal solution for problem

I s rae l was similar to those reported for the other problems.

• Comparing Table 8.1.3 and Table 8.1.4 we observe a clear advantage in using

the minimum local fill-in ordering heuristic. While the ordering algorithm for this

322 L Adler et al. / An implementation of Karmarkar's algorithm

Table 8.1.7

Iteration, time per iteration and total time ratios for NETLIB subgroups (IBM 3090) (minimum local fill-in
ordering heuristic)

Problem R o w s Columns MINOS/Alg. I MINOS/AIg. I MINOS/AIg. I
iter. ratio time/iter, ratio time ratio

Scsdl 77 760 13.7 0.169 2.32
Scsd6 147 1350 26.2 0.122 3.20
Scsd8 397 2750 69. l 0.115 7.98

Scfxml 330 600 13.2 0.093 1.23
Scfxm2 660 1200 20.3 0.105 2.14
Scfxm3 990 1800 29.9 0.110 3.29

ScTapl 300 660 9.2 0.268 2.47
ScTap2 1090 2500 33.0 0.121 3.99
ScTap3 1480 3340 35.4 0.119 4.22

ShipO4s 402 1506 10.3 0.340 3.50
ShipOSs 778 2467 20.5 0.330 6.79
Ship12s 1151 2869 20.5 0.356 7.30

Ship041 402 2166 21.2 0.244 5.17
Ship081 778 4363 30.9 0.195 6.03
Shipl21 1151 5533 39.6 0.192 7.61

heur is t ic usua l ly involves longer p rocess ing t imes, the reduc t ion in fill-in results in

a fas ter G a u s s i a n e l imina t ion p rocedure . Since the same order ing is used in every

i te ra t ion o f the l inear p r o g r a m m i n g a lgor i thm, the total savings more than offsets

the extra p rocess ing in the o rder ing p rocedure . The sum of the so lu t ion t imes

(inc luding reorder ing) for all test p rob l ems was r educed f rom 119.10 seconds to

89.11 seconds with min ima l local fill-in, co r r e spond ing to a 25% reduct ion . Solut ion

t imes for A lgo r i t hm I with min ima l local fill-in were fas ter on 21 o f the 31 test

p rob l ems and on 11 o f the 12 p rob l ems having more than 5000 nonze ro e lements

(see de Carva lho , 1987).

8.2. Multi-commodity network f low problems

In this sect ion, we r epor t on 11 m u l t i - c o m m o d i t y ne twork flow p rob lems genera ted

with MNETGN (Ali and Kenn ing ton , 1977), a r a n d o m m u l t i - c o m m o d i t y ne twork

flow p r o b l e m genera tor . MNETGN genera tes a r a n d o m ne twork s t ructure based on

the n u m b e r o f arcs and nodes supp l i ed by the user. A dd i t i ona l user specif icat ions

inc lude the n u m b e r o f commodi t i e s and the ranges o f arc costs and capaci t ies . Table

8.2.1 d i sp lays the bas ic da ta for this set o f test p rob lems . We genera ted mult i -

c o m m o d i t y ne twork flow p r o b l e m by varying the n u m b e r o f nodes and commodi t i es

and keeping the same re la t ive number o f arcs. The test p rob lems were solved with

Algor i thm I, M~NOS and MCNF85 (Kenn ing ton , 1979), a special pu rpose s implex

code for m u l t i - c o m m o d i t y ne twork flow prob lems . A lgor i thm I used the min imum

degree o rder ing heur is t ic and the same p a r a m e t e r se lect ion desc r ibed in Sect ion

1. Adler et al. / An implementation of Karmarkar' s algorithm

Table 8.1.8

Primal dual relations-Algorithm I (I~M 3090)--NETLIB test problems

323

Problem Relative Max. normal. Min. normal. Max. normal.
duality gap primal infeas, primal entry complem, viol.

Afiro 3.56 e -09 1.58 e -15 -5.76 e -24 7.99 e -12
ADLittle 3.69 e -09 1.05 e -11 -9.67 e -22 3.06 e -12
Scagr7 3.16 e -09 2,31 e -10 -4.02 e -20 6.27 e -13
Sc205 2.41 e -09 2,23 e -13 -2.61 e -02 2.73 e -13
Share 2b 6.83 e -11 2.09 e -12 -1.06 e -16 1.84 e -12
Sharelb 3.33 e -09 3.26 e -09 -1.73 e -21 8.31 e -15
Scorpion 2.84 e -09 5.27 e -12 -6.07 e -13 1.14 e -12
Scagr25 1.06 e -08 1.32 e -10 -9.73 e -23 4.50 e -13
ScTapl 2.25 e -09 1.41 e -13 -2.96 e -21 9.40 e -14
Brandy 1.34 e -09 4.00 e -06 -6.91 e -04 5.43 e -14
Scsdl 3.31 e -09 4.90 e -13 -1.05 e -14 1.17 e -11
Israel 1.22 e -09 5.46 e -12 -5.38 e -24 1.11 e -15
BandM 1.06 e -08 2.12 e -09 -1.28 e -16 1.76 e -13
Scfxml 1.20 e -07 7.29 e -07 -8.78 e -19 5.03 e -13
E226 4.10 e -09 3.36 e -07 -5.94 e -05 1.51 e -13
Scrs8 1.70 e -09 7.28 e -06 -1.67 e -09 3.55 e -15
Beaconfd 1.44 e -09 1.42 e -06 -6.48 e -06 9.23 e -12
Scsd6 9.81 e -10 4.30 e -10 -1.61 e -16 7.15 e -13
ShipO4s 8.34 e -09 2.41 e -09 -4.95 e -14 1.45 e -11
Scfxm2 1.54 e -08 5.99 e -10 -1.78 e -19 2.19 e -13
Ship041 2.15 e -09 2.25 e -11 -1.75 e -16 3.01 e -12
ShipO8s 1.56 e -09 1.09 e -11 -4.24 e -18 1.40 e -12
ScTap2 1.06 e -08 9.57 e -15 -6.09 e -20 2.00 e -13
Scfxm3 9.29 e -09 4.11 e -10 -5.37 e -20 8.30 e -14
Shipl2s 8.16 e -09 1.78 e -09 -1.74 e -15 2.96 e -12
Scsd8 4.26 e -09 1.35 e -14 -4.67 e -21 6.15 e -13
ScTap3 1.73 e -09 1.08 e -14 -1.01 e -20 4.23 e -14
CzProb 1.60 e -09 1.11 e -05 -1,02 e -19 1.19 e -14
25FV47 1.22 e -08 5.43 e -03 -3.17 e -06 7.54 e - 15
Ship081 4.11 e -10 1.02 e -09 -3.05 e -18 4.29 e -13
Ship121 1.27 e -09 9.38 e -10 -2.19 e -17 2.83 e -13

8.1. Al l r u n s w e r e c a r r i e d o u t o n a n IBM 3090. T a b l e s 8 . 2 . 2 - 8 . 2 . 4 a n d F i g u r e 3 p r e s e n t

t h e s t a t i s t i c s f o r t h e s e r u n s .

W e l is t b e l o w a f e w o b s e r v a t i o n s o n t h e t e s t r e s u l t s r e p o r t e d o n t h i s s e c t i o n .

• M u l t i c o m m o d i t y n e t w o r k s p r o v i d e a n i m p o r t a n t c l a s s o f t e s t p r o b l e m s o n w h i c h

a g e n e r a l p u r p o s e s i m p l e x m e t h o d p e r f o r m s p o o r l y (s e e T a b l e 8.2.3 a n d F i g u r e 3) .

T h e b e h a v i o r o f o u r i m p l e m e n t a t i o n o f A l g o r i t h m I c o n f i r m s o u r e a r l i e r o b s e r v a t i o n

t h a t t h e r e l a t i v e s p e e d - u p in r e l a t i o n t o t h e s i m p l e x m e t h o d g r o w s w i t h s ize . A

s i m i l a r l e v e l i n g off o f t h e t i m e p e r i t e r a t i o n r a t i o s b e t w e e n t h e t w o s i m p l e x b a s e d

c o d e s a n d A l g o r i t h m I is o b s e r v e d (see T a b l e s 8.2.5 a n d 8.2.6) . T h e o n l y e x c e p t i o n

w a s f o r t h e MCNF85 to A l g o r i t h m I r a t i o o n t h e 5 - c o m m o d i t y p r o b l e m s . T h e t r e n d

in t h e d a t a s u g g e s t s t h a t l e v e l i n g off s h o u l d o n l y o c c u r f o r l a r g e r n e t w o r k s , i.e.

324 L Adler et al. / An implementation of Karmarkar's algorithm

Table 8.2.1

Multi-commodity network flow test problems statistics

Problem Nodes Commodities LP rows LP columns nonz(A)

MUL031 300 1 1406 2606 5212
MUL041 400 1 1888 2488 6976
MUL051 500 1 2360 4360 8720
MUL061 600 1 2853 5253 10506

MUL043 400 3 2008 4027 9670
MUL053 500 3 2489 4949 11876
MUL063 600 3 2981 5882 14126

MUL035 300 5 208l 4436 11196
MUL045 400 5 2793 5948 15068
MUL055 500 5 3477 7637 19182
MUL065 600 5 4135 8800 22140

Table 8.2.2

Algorithm I test statistics (IBM 3o9o)--Multicommodity networks (minimum
degree ordering heuristic in Algorithm I)

Problem Phase Iiter. Total iter. Time (sec.)

MUL031 3 33 6.51
MUL041 2 28 ll.79
MUL05I 2 33 23.07
MUL06I 2 31 30.96

MUL043 2 27 24.27
MUL053 2 30 47.84
MUL063 2 28 58.57

MUL035 2 30 55.81
MUL045 2 30 104.34
MUL055 2 36 204.71
MUL065 2 35 309.50

networks with more than 600 nodes. As before, the number of iterations grows
slowly, never exceeding 36.

• It is interesting to note that despite being a general purpose implementation,
Algorithm I performed comparably to MCNFSS. A tailored implementation of
Algorithm I (e.g. with integer operations and specialized Gaussian elimination)
could improve on current results. Furthermore, the trend in the data (Table 8.2.6)
suggests that for larger problems Algorithm I could outperform M C N F 8 5 .

• The objective values for the solutions obtained with our implementation of
Algorithm I achieved 8 digits accuracy when compared to the values obtained by
MINOS. Also a feasible primal solution was recovered at the end of the algorithm
with the same degree of accuracy.

L Adler et al. / An implementation of Karmarkar's algorithm

Table 8.2.3

MINOS 4.0 test statistics (IBM 3o9o)--Multicommodity networks

Problem Phase I iter. Total iter. Time (sec.)

MUL031 362 940 12.73
MUL041 457 1351 24.11
MUL051 620 1807 40.65
MUL061 817 2358 63.88

MUL043 2498 5926 196.38
MUL053 3366 8115 345.69
MUL063 4855 12286 677.31

MUL035 2930 6691 249.71
MUL045 4611 12193 666.58
MUL055 5919 15238 1045.67
MUL065 7693 21915 1885.34

325

Table 8.2.4

MCNF85 test
networks

statistics (IBM 309o)--Multicommodity

Problem Total iter. Time (sec.)

MUL031 931 7.42
MUL041 1087 11.39
MUL051 1892 24.87
MUL061 3082 53.45

MUL043 4983 45.23
MUL053 5158 55.60
MUL063 16983 243.35

MUL035 4132 34.64
MUL045 10558 111.30
MUL055 8862 121.66
MUL065 16624 260.44

8.3. T i m b e r harves t s c h e d u l i n g p r o b l e m s

In this section, we report on 11 t imber harvest schedul ing problems generated with

FORPLAN (Johnson, 1986). Based on data collected for a Uni ted States na t iona l

forest, a series of t imber harvest schedul ing models of increasing sizes were generated.

U n d e r the f ramework of FORPLAN, a forest is divided into m a n a g e m e n t uni ts called

ana ly s i s areas, each compris ing a collect ion of acres f rom across the forest, sharing

similar si lvicultural and economic characteristics. Our test problems were created

by successively increasing the n u m b e r of analysis areas, resul t ing in models that

represent subsets of the original forest. FORPLAN is widely used th roughout the

Uni ted States na t iona l forest system, yielding very large l inear programs that pose

326 L Adler et aL / An implementation of Karmarkar's algorithm

Table 8.2.5

M~Nos/Algorithm I performance ratios--Multicommodity networks (minimum local fill-in ordering
heuristic)

Problem Nodes Commodities MINOS/Alg. I MINOS/AIg. I MINos/Alg. I
iter. ratio time/iter, ratio time ratio

MUL031 300 1 28.5 0.069 1.96
MUL041 400 1 48.3 0.042 2.04
MUL051 500 1 54.8 0.032 1.76
MUL061 600 1 76.1 0.027 2.06

MUL043 400 3 219.5 0.037 8.09
MUL053 500 3 270.5 0.027 7.23
MUL063 600 3 438.8 0.026 11.56

MUL035 300 5 223.0 0.020 4.47
MUL045 400 5 406.4 0.016 6.39
MUL055 500 5 423.3 0.012 5.11
MUL065 600 5 626.l 0.010 6.09

Table 8.2.6

MCNF85/Algorithm I performance ratios--Multicommodity networks (minimum local fill-in ordering
heuristic)

Problem Nodes Commodities MCNF85/Alg. I MCNF85/AIg. I MCNFS5/AIg. I
iter. ratio time/iter, ratio time ratio

MUL031 300 1 28.2 0.0404 1.14
MUL041 400 1 38.8 0.0249 0.97
MUL051 500 1 57.3 0.0188 1.08
MUL061 600 1 99.4 0.0174 1.73

MUL043 400 3 184.6 0.0101 1.86
MUL053 500 3 171.9 0.0068 1.16
MUL063 600 3 606.5 0.0069 4.15

MUL035 300 5 137.7 0.0045 0.62
MUL045 400 5 351.9 0.0030 1.07
MUL055 500 5 246.2 0.0024 0.59
MUL065 600 5 475.0 0.0018 0.84

a c o n s i d e r a b l e c h a l l e n g e to l inea r p r o g r a m m i n g codes . T a b l e 8.3.1 p re sen t s the bas ic

s tat is t ics o f this f a m i l y o f test p r o b l e m s .

F r o m T a b l e 8.3.1, we obse rve tha t t he test p r o b l e m s h a v e s ign i f i can t ly m o r e

va r i ab les t h a n cons t ra in t s . This cha rac t e r i s t i c is a c c e n t u a t e d wi th p r o b l e m size. In

this s i tua t ion , m o s t a d v a n c e d s i m p l e x i m p l e m e n t a t i o n s p r o v i d e a c h o i c e o f p r i c ing

s t ra tegies . I n pa r t i cu l a r , MINOS a l lows fo r part ia l pricing, a s c h e m e in w h i c h the

c o l u m n s o f t he coef f ic ien t m a t r i x a re p a r t i t i o n e d in to e q u a l segments . I n e a c h pricing

o p e r a t i o n , t he sea rch fo r t he i n c o m i n g b a s i c va r i ab l e is l i m i t e d to one segment . This

r e d u c e s the w o r k r e q u i r e d fo r e a c h o p e r a t i o n , but , o f course , has no p r e d i c t a b l e

L Adler et al. / An implementation of Karmarkar 's algorithm 327

cPu Time

(seconds)

1900 -

1800

1700

1600-

1500-

1400-

1300-

1200-

1100-

1000

9OO

8OO

7OO

6OO

5OO

4OO

3OO

20O

100

0

MINOS

/
/ /

/
s

/
t

/
/

]

A Algorithm I .-"*//~x

t ~lr~ - ~ I t 0¢ *" //// x~ x i II ' '" MCNF85

5 10 15 20

Number of Nonzero Elements (thousands)

Fig. 3. MINOS 4.0, MCNF85 and Algorithm I (ceu times, iBM 3o9o)--Multicommodity flows (minimum
degree ordering heuristic in Algorithm I).

Table 8.3.1

Timber harvest scheduling test problems statistics

Problem LP Rows LP Columns nonz(A)

FPKOIO 55 744 6021
FPK040 58 973 8168
FPK050 64 1502 12765
FPK080 76 2486 21617
FPKIO0 87 3357 30104
FPK150 109 4993 43774
FPK200 130 6667 59057
FPK300 177 9805 86573
FPK400 220 12570 109697
FPK500 266 16958 149553
FPK600 316 19991 176346

328 L Adler et al. / An implementation of Karmarkar' s algorithm

effect on the total number of iterations. For this class of test problems, the manipula-
tion of the PARTIAL PRICE parameter, which sets the number o f segments in the
partition, can impact the performance o f M~Nos enormously. Consequently, we
compare MINOS with Algorithm I using the fol lowing pricing strategies:

• Totalpricing strategy: Each pricing operation examines the total set o f variables.
• Default pricing strategy: Sets the PARTIAL PRICE parameter to half o f the ratio

o f number of columns to number of rows.
• Improved pricing strategy: Sets the PARTIAL PRICE parameter to eight times the

ratio of number of columns to number of rows. We arrived at this stragegy after
extensive testing with some of the test problems.

Tables 8.3.2-8.3.8 display the results o f running the test problems with Algorithm
I and MINOS under the three pricing strategies. Figure 4 illustrates graphically the

Table 8.3.2

Algorithm 1 test statistics--Timber harvest scheduling problems (minimum
degree ordering heuristic)

Problem Phase I iter. Total iter. Time (sec.)

FPKOIO 4 38 0.85
FPK040 4 40 1.10
FPK050 4 41 1.64
FPK080 5 49 2.95
FPKIO0 5 49 4.27
FPK150 5 49 6.47
FPK200 5 56 9.60
FPK300 6 52 14.99
FPK400 5 43 24.81
FPKSO0 6 67 34.11
FPK600 6 71 43.80

Table 8.3.3

MINOS 4.0 test statistics (total pricing)--Timber harvest scheduling problems

Problem Partial Phase I Total Time
pricing iter. iter. (sec.)

FPK010 1 449 534 3.52
FPK040 1 579 736 5.63
FPK050 1 688 878 9.87
FPK080 1 1318 1574 28.81
FPKIO0 1 1521 1827 43.18
FPK150 1 2350 2768 93.77
FPK200 1 2867 3446 154.78
FPK300 1 4570 5407 351.82
FPK400 1 5375 7300 600.75
FPK500 1 7322 10156 1112.68
FPK600 1 3488 12009 1582.80

L Adler et a l . / A n implementation of Karmarkar's algorithm

Table 8.3.4

MINOS (total pricing)/Algorithm I performance ratios--Timber harvest scheduling problems
(minimum degree ordering heuristic in Algorithm I)

329

Problem Partial MINOS/AIg. I MINOS/Alg. I MINOS/AIg. I
pricing iter. ratio time/iter, ratio time ratio

FPK010 1 14.05 0.2947 4.14
FPK040 1 18.40 0.2782 5.12
FPK050 1 21.41 0.2810 6.02
FPK080 1 32.12 0.3040 9.77
FPKIO0 1 37.29 0.2712 10.11
FPK150 1 56.49 0.2566 14.49
FPK200 1 61.54 0.2620 16.12
FPK300 1 103.98 0.2257 23.47
FPK400 1 169.77 0.1426 24.21
FPK500 1 151.58 0.2152 32.62
FPK600 1 169.14 0.2137 36.14

Table 8.3.5

MINOS 4.0 test statistics (default pricing)--Timber harvest scheduling problems

Problem Partial Phase I Total Time
pricing iter. iter. (sec.)

FPKOIO 1 449 534 3.52
FPK040 1 579 736 5.63
FPK050 11 724 902 2.74
FPK080 16 973 1259 4.48
FPKIO0 19 1460 1832 7.39
FPK150 22 1860 2352 11.37
FPK200 25 2707 3369 17.94
FPK300 27 3244 4370 29.74
FPK400 28 4536 6035 49.13
FPK500 31 6934 9732 93.89
FPK600 31 3421 11364 123.62

computational performance of the algorithms. All runs were carried out on an IBM
3090 with same characteristics as in tests reported in Section 8.1. We use minimum
degree ordering heuristic in Algorithm I.

We close this section with a few observations on the results o f the runs with the
timber harvest scheduling problems.

• The theoretical worst case analysis o f Karmarkar's algorithm (Karmarkar, 1984)
suggests that the number of iterations should grow linearly with the largest dimension
of the coefficient matrix. This behavior is not confirmed for the variants of the
algorithm described here. In this set of test problems, with number of columns
ranging from 744 to 19991, the number o f iterations until convergence grows
sublinearly, varying from 38 to 71, consistent with our earlier observation that the
number of iterations grows slowly with problem size.

330 I. Adler et al. / An implementation o f Karmarkar' s algorithm

Table 8.3.6

MINOS (default pricing)/Algorithm I performance ratios--Timber harvest scheduling problems
(minimum degree ordering heurstic in Algorithm I)

Problem Partial MINOS/AIg. I MINos/AIg. I MINOS/Alg. I
pricing iter. ratio time/iter, ratio time ratio

FPK010 1 14.05 0.2947 4.14
FPK040 1 18.40 0.2782 5.12
FPK050 11 22.00 0.0759 1.67
FPK080 16 25.69 0.0591 1.52
FPKIO0 19 37.39 0.0463 1.73
FPK150 22 48.00 0.0366 1.76
FPK200 25 60.16 0.0311 1.87
FPK300 27 84.04 0.0236 1.98
FPK400 28 140.35 0.0141 1.98
FPK500 31 145.25 0.0190 2.75
FPK600 31 160.06 0.0176 2.82

Table 8.3.7

MINOS 4.0 test statistics (improved pricing)--Timber harvest scheduling problems

Problem Partial Phase I Total Time
pricing iter. iter. (sec.)

FPKOIO 104 48 1738 2.54
FPK040 128 137 812 1.52
FPK050 160 79 478 1.04
FPK080 184 113 333 1.13
FPKIO0 360 77 379 1.89
FPKISO 480 105 542 2.96
FPK200 480 174 558 3.96
FPK300 440 455 924 6.61
FPK400 440 461 1049 8.41
FPKSO0 480 387 843 9.30
FPK600 480 729 1329 13.26

• This collection of test problems present an unusua l behavior when solved with

MINOS. Decreasing the n u m b e r of co lumns considered in each pricing operat ion

reduced not only the computa t ion effort in each simplex operat ion, but also the

total n u m b e r of iterations. The n u m b e r of pivots associated with solut ion paths

followed by different versions of the simplex method may vary greatly. In this sense,

inter ior po in t methods display a more robust behavior. This recommends caut ion

in carrying out computa t iona l experiments involving the simplex method, as varying

a single parameter among different runs of MINOS, the execut ion t ime for the two

largest test problems is reduced by a factor of over 100.

• Our implementa t ion of Algori thm I is faster than the most straightforward

version of MINOS by a wide margin (see Table 8.3.3 and Figure 4) and is up to 2.8

331

C P U T i m e

(seconds)

Problem Partial MINOS/Alg. I MINOS/AIg. I MINOS/AIg. I

Pricing iter ratio t ime/ i te r ratio time ratio

FPKOIO 104 45.74 0.0653 2.99
FPK040 128 20.30 0.0681 1.38
FPK050 160 11,66 0.0544 0.63

FPK080 184 6,80 0.0564 0.38
FPKIO0 360 7,73 0.0572 0.44

FPK150 480 11.06 0.0414 0.46

FPK200 480 9.96 0.0414 0.41
FPK300 440 17.77 0.0248 0.44

FPK400 440 24.40 0.0139 0.34

FPK500 480 12.58 0.0217 0.27
FPK600 480 18.72 0.0162 0.30

MINOS (Total Pricing)

MINOS (Default Pricing)

.~. ~ Algorithm I ~ - . ~ . . - : - . - . ~ M X N O S ~,,,,,o,.,,,r~ci,,g)
50 100 150 200 250

1600 -

1500 -

1400 -

1300 -

1200 -

1100

1000

900-

800 -

700 -

600 -

50O -

4 0 0 -

300 -

200 -

1 0 0 -

0 -

0

L Adler et a l . / A n implementation o f Karmarkar's algorithm

Table 8.3.8

MINOS (improved pr ic ing) /Algor i thm I performance ra t ios- -Timber harvest scheduling prob-
lems (minimum degree ordering heuristic in Algorithm I)

Number of Nonzero Elements (thousands)

Fig. 4. MINOS 4.0 and Algorithm I (cPu times, 1BM 3090)--Timber harvest problems (minimum degree
ordering heuristic in Algorithm I).

332 L Adler et al. / An implementation of Karmarkar's algorithm

times faster for runs using the default pricing strategy. However, MINOS runs up to
3 times faster when using the improved pricing strategy in a pricing strategy obtained
after extensive experimentation.

• The objective values for the solutions obtained with our implementation of
Algorithm I achieved 8 digits accuracy when compared to the values obtained by
MINOS. Also a feasible primal solution was recovered at the end of the algorithm
with the same degree of accuracy.

8.4. Interpretation of computational experiments

We make the following interpretation of the results of the computational experi-

ments.
• Our implementation of Algorithm I attained 7 and 8 digit accuracy in the

objective functional for most test problems without numerical difficulties. The data
structures and programming techniques that led to these results are described in
Adler et al. (1989).

• The selection of an initial interior solution as described in Section 6 plays a
significant role in the fast convergence observed in all test problems. In this pro-
cedure, we attempt to start the algorithm far from faces of the feasible polyhedral
set, avoiding the difficulties described by Megiddo and Shub (1986).

• Recovering a dual solution (primal solution in the format of the test problems)
is an intricate proposition. Convergence of the dual solution estimates in (5.6) is
guaranteed under nondegeneracy only, and examples can be built where it converges
to an infeasible solution. However, our test results display good behavior for the
dual solutions.

• The stopping criterion described in Section 6 resulted in the correct solution
within the desired accuracy. An alternative criterion that checks dual complemen-
tarity properties could have been used without loss in efficiency.

• Using ,~ = 0,1 in updating the ATDS2A matrix, Algorithm I obtained savings
of over 10% in execution times, when compared to full updating, without degradation
of the method's numerical stability.

• Algorithm I is sensitive to the density of the ATDS2A matrix, hence, besides
being sparse, the A T matrix should have a small number of dense columns. Maintain-
ing this matrix sparse is essential to the algorithm.

9. Conclusion and extensions

The computational results presented in this paper illustrate the potential of interior
point methods for linear programming. While the implementation described here
was developed in a short period of time, it still outperforms MINOS 4.O on the majority
of problems tested.

I. Adler et al. / An implementation o f Karmarkar's algorithm 333

For test problems from the NETLIB collection, solution time speed-ups 6 or higher
are observed on most of mid-sized problems, and increase with problem size. Seven
and eight digit accuracy in the objective function value was achieved on all test
problems, except for problems ScTapl, CzProb and 25FV47. An optimal complemen-
tary primal-dual pair was obtained for all test problems with exception of CzProb
and 25FV47. Numerical difficulties with the LU towards the end of the algorithm
account for these inaccuracies.

Among the test problems is a set of multi-commodity network flow problems.
The interior algorithm was clearly superior to MINOS and was also competitive with
a specialized simplex algorithm, ~CNF85. For the set of timber harvest scheduling
problems, linear programs with significantly more variables than constraints, the
number of iterations required by Algorithm I grows slowly with the number of
variables. However, specialized pricing strategies make the simplex method a better
tool for solving this type of linear programming problems.

The implementations of interior point algorithms described in this paper are still
preliminary. Since many improvements are still possible this approach seems promis-
ing as a general purpose solver for large real-world linear programming problems.
Of the several extensions planned to our implementation, some are immediately
required:

• Implicit treatment of upper and lower bounds on the variables.
• Feasibility adjustment of the tentative primal solution computed at the end of

the algorithm.
Other extensions planned are:
• Preprocessor for increasing sparsity of input matrices.
• Higher order approximations to the solution of system differential equations

(3.9)-(3.11).
• Optimal basis identification for early termination.
• Bi-directional search for determining the step direction.
• Develop primal and primal-dual implementations.
• Include steps in potential function gradient direction.
• Implementations for special LP structures, e.g. network flows and GUB.
• Implementation for parallel computer architectures.

Acknowledgment

The authors acknowledge the help volunteered by several individuals in coding the
numerous modules that make up the backbone of this implementation, which started
as a joint class project for I. Adler's Fall 1985 Large-Scale Systems graduate seminar
at Berkeley. In particular, W. Bein, D. Chou, C.C. Chyu, S. Cosares, M. de Carvalho,
J. Doucet, J. Harrison, T. Kaplan, R.C. Monteiro, D. Popken, P.C. Samaratunga,
A. Svoboda and Z. Wei were involved in the programming effort. We also wish to
thank M. Khellaf and A. Sanstad for valuable discussions related to the implementa-

334 L Adler et al. / An implementation of Karmarkar' s algorithm

tion of Algorithm II. Furthermore, the authors are indebted to one of the anonymous
referees for many constructive suggestions.

This research was partially funded by the Brazilian Council for the Development
of Science and Technology- -CNPq and Management Sciences Staff, US Forest
Service--USDA.

References

I. Adler, N. Karmarkar, M.G.C. Resende and G. Veiga, "Data structures and programming techniques
for the implementation of Karmarkar's algorithm," ORSA Journal on Computing 1(2) (1989).

I. Adler and R.C. Monteiro, "Limiting behaviour of the affine-scaling continuous trajectories for linear
programming problems," Report ESRC 88-9, Engineering Systems Research Center, University of
California (Berkeley, CA, 1988).

A.I. Ali and J.L. Kennington, "MNETGN program documentation," Technical Report IEOR 77003,
Department of Industrial Engineering and Operations Research, Southern Methodist University
(Dallas, TX, 1977).

J. Aronson, R. Barr, R. Helgason, J. Kennington, A. Loh and H. Zaki, "The projective transformation
algorithm by Karmarkar: A computational experiment with assignment problems," Technical Report
85-OR-3, Department of Operations Research, Southern Methodist University (Dallas, TX, August
1985).

E.R. Barnes, "A variation on Karmarkar's algorithm for solving linear programming problems," Mathe-
matical Programming 36 (1986) 174-182.

D.A. Bayer and J.C. Lagarias, "The nonlinear geometry of linear programming: I. Affine and projective
rescaling trajectories," to appear in Transactions of the AMS (1989).

M.L. de Carvalho, "On the work needed to factor a symmetric positive definite matrix," Technical Report
ORC 87-14, Operations Research Center, University of California (Berkeley, CA, 1987).

V. Chandru and B.S. Kochar, "A class of algorithms for linear programming," Research Memorandum
85-14, School of industrial Engineering, Purdue University (West Lafayette, IN, 1986).

I.I. Dikin, "Iterative solution of problems of linear and quadratic programming," Soviet Mathematics
Doklady 8 (1967) 674-675.

J.J. Dongarra and E. Grosse, "Distribution of mathematical software via electronic mail," Communications
of the ACM 30 (1987) 403-414.

I.S. Duff, A.M. Erisman and J.K. Reid, Direct Methods for Sparse Matrices (Claredon Press, Oxford, 1986).
S.C. Eisenstat, M.C. Gurshy, M.H. Schultz and A.H. Sherman, "The Yale sparse matrix package, I. The

symmetric codes," International Journal of Numerical Methods in Engineering 18 (l 982) 1145-1151.
D.M. Gay, "Electronic mail distribution of linear programming test problems," Mathematical Program-

ming Society Committee on Algorithms Newsletter 13 (December 1985) 10-12.
D.M. Gay, "Electronic mail distribution of linear programming test problems," Numerical Analysis

Manuscript 86-0, AT&T Bell Laboratories (Murray Hill, N J, 1986).
P.E. Gill, W. Murray, M.A. Saunders, J.A. Tomlin and M.H. Wright, "On projected Newton barrier

methods for linear programming and an equivalence to Karmarkar's projective method," Mathematical
Programming 36 (1986) 183-209.

C. Gonzaga, "'Interior point algorithms for linear programming problems with inequality constraints,"
Report ES-140/88, COPPE-Federal University of Rio de Janeiro (Rio de Janeiro, Brazil, 1988).

J.K. Ho and E. Loute, "A set of staircase linear programming test problems," Mathematical Programming
20 (1981) 245-250.

J.H. Hooker, "Karmarkar's linear programming algorithm," Interfaces 16 (1986) 75-90.
K.N. Johnson, "FORPLAN version l: An overview," Technical Report, Land Management Planning-

System Section, USDA, Forest Service (Fort Collins, CO, 1986).
N. Karmarkar, "A new polynomial-time algorithm for linear programming," Combinatorica 4 (1984)

373-395.

L Adler et a l . / A n implementation of Karmarkar's algorithm 335

N. Karmarkar, J. Lagarias, L. Slutsman and P. Wang, "Power series variants of Karmarkar type
algorithms," Technical Report, AT&T Bell Laboratories (Murray Hill, NJ, 1989).

J. Kennington, "A primal partitioning code for solving multicommodity flow problems (version 1),"
Technical Report 79008, Department of Industrial Engineering and Operations Research, Southern
Methodist University (Dallas, TX, 1979).

I.J. Lustig, "A practical approach to Karmarkar's algorithm," Technical Report SOL 85-5, Systems
Optimization Laboratory, Stanford University (Stanford, CA, 1985).

N. Megiddo and M. Shub, "Boundary behavior of interior point algorithms for linear programming,"
IBM Research Report RJ5319, Almad6n Research Center (San Jose, CA, 1986).

B.A. Murtagh and M.A. Saunders, "MINOS user's guide," Technical Report 77-9, Systems Optimization
Laboratory, Stanford University (Stanford, CA, 1977).

B.A. Murtagh and M.A. Saunders, "MINOS 5.0 user's guide," Technical Report 83-20, Systems Optimiza-
tion Laboratory, Stanford University (Stanford, CA, 1983).

D.J. Rose, "A graph-theoretical study of the numerical solution of sparse positive definite systems of
linear equations," in: R.C. Read, ed., Graph Theory and Computing (Academic Press, New York,
1972) pp. 183-217.

R.E. Tarjan, Data Structures and Network Algorithms (Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1983).

M.J. Todd and B.P. Burrell, "An extension of Karmarkar's algorithm for linear programming using dual
variables," AIgorithmica 1 (1986) 409-424.

J.A. Tomlin, "An experimental approach to Karmarkar's projective method for linear programming,"
Manuscript, Ketron, Inc. (Mountain View, CA, 1985).

K. Tone, "An implementation of a revised Karmarkar method," Interim Report, Graduate School for
Policy Science, Saitama University (Urawa, Saitama 338, Japan, 1986).

R.J. Vanderbei, M.J. Meketon and B.A. Freedman, "A modification of Karmarkar's linear programming
algorithm," AIgorithmica 1 (1986) 395-407.

M. Yannakakis, "Computing the minimum fill-in is NP-complete," SIAM Journal on Algebraic and
Discrete Methods 2 (1981) 77-79.

