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This paper describes the implementation of power series dual affine scaling variants of Karmarkar's 
algorithm for linear programming. Based on a continuous version of Karmarkar's algorithm, two 
variants resulting from first and second order approximations of the continuous trajectory are 
implemented and tested. Linear programs are expressed in an inequality form, which allows for 
the inexact computation of the algorithm's direction of improvement, resulting in a significant 
computational advantage. Implementation issues particular to this family of algorithms, such as 
treatment of dense columns, are discussed. The code is tested on several standard linear program- 
ming problems and compares favorably with the simplex code MINOS 4.O. 
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I. Introduction 

We descr ibe  in this p a p e r  a family  o f  in te r io r  po in t  p o w e r  series affine scal ing 

a lgor i thms based  on the l inear  p r o g r a m m i n g  a lgor i thm p resen ted  by  K a r m a r k a r  

(1984). Two a lgor i thms f rom this family ,  co r r e spond ing  to first and  second  o rde r  

p o w e r  series app rox ima t ions ,  were i m p l e m e n t e d  in FORTRAN over  the pe r iod  

N o v e m b e r  1985 to M a r c h  1986. Both are tes ted  on several  pub l i c ly  ava i lab le  l inear  

p r o g r a m m i n g  test p r o b l e m s  (Gay ,  1985, 1986). We also test one of  the  a lgor i thms 

on r a n d o m l y  genera ted  m u l t i - c o m m o d i t y  ne twork  flow p r o b l e m s  (Ali  and  

Kenn ing ton ,  1977) and  on t imber  harves t  schedul ing  p rob lems  ( Johnson ,  1986). 

Several  au tho r s  (see, e.g., Aronson  et al., 1985; Lustig,  1985; Toml in ,  1985; Tone,  

1986) have c o m p a r e d  imp lemen ta t ions  o f  in ter ior  po in t  a lgor i thms with  s implex  

m e t h o d  codes ,  but  have been  unab le  to ob ta in  compet i t ive  so lu t ion  t imes.  An  

i m p l e m e n t a t i o n  of  a p ro jec t ed  N e w t o n ' s  ba r r i e r  m e t h o d  r epor t ed  by  Gi l l  et al. 

(1986) presents  the first extensive c o m p u t a t i o n a l  ev idence  ind ica t ing  tha t  an in ter ior  

po in t  a lgor i thm can be c o m p a r a b l e  in speed  with the s implex  me thod .  

In  our  compu ta t i ona l  exper iments ,  so lu t ion  t imes  for  the in te r io r  po in t  

imp lemen ta t i ons  are, in most  cases, less than  those  requ i red  by  MINOS 4.0 (Mur t agh  

and  Saunders ,  1977). Fu r the rmore ,  we are typ ica l ly  able  to achieve 8 digi t  accuracy  

* Current addressi AT&T Bell Laboratories, Murray Hill, NJ 07974, USA. 
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in the optimal objective function value without experiencing the numerical difficulties 
reported in previous implementations. 

MINOS is a FORTRAN code intended primarily for the solution of constrained 
nonlinear programming problems, but includes an advanced implementation of the 
simplex method. An updated version, MINOS 5.0 (Murtagh and Saunders, 1983), 
features a scaling option and an improved set of routines for computing and updating 
sparse LU factors. This latest version of MINOS was not available at the University 
of  California, Berkeley, where the computational tests described in this paper were 
carried out. We believe that for the purposes of this study, MINOS 4.O constitutes a 
reasonable benchmark simplex implementation. Furthermore, as evidenced by the 
results reported in Gill et al. (1986) we do not expect MINOS 5.O to perform sig- 
nificantly faster for the test problems considered here. 

The plan of the paper is as follows. In Section 2, we describe our Algorithm I, 
a basic interior point method, commonly referred to as the affine scaling algorithm. 
When Algorithm I takes infinitesimal steps at each iteration, the resulting continuous 
trajectory is described by a system of differential equations. In Section 3, we discuss 
the family of algorihms constructed by truncating the Taylor expansion representing 
the solution of this system of differential equations. A first order approximation to 
the Taylor expansion results in Algorithm I. We also implement Algorithm II, which 
is obtained by truncating the Taylor expansion to a second order polynomial. We 
show in Section 4 how an initial interior solution can be obtained and in Section 
5 how the algorithms can be applied to general linear programming problems. In 
Section 6, we describe the stopping criterion used in the computational experiments. 
Section 7 discusses some implementation issues, including symbolic and numerical 
factorizations, using an approximate scaling matrix, reducing fill-in during Gaussian 
elimination and using the conjugate gradient algorithm with preconditioning to 
solve problems with dense columns. In Section 8, we report the computational 
results of running the algorithms on three sets of test problems. The first set is a 
family of publicly available linear programs from a variety of sources. The others 
are, respectively, randomly generated multi-commodity network flow problems and 
timber harvest scheduling problems. We compare these results to those of the simplex 
code MINOS 4.O and for the case of the multi-commodity network flow problems to 
MCNFSS, a specialized simplex based code for multi-commodity network flow 
(Kennington, 1979). Conclusions are presented and future research is outlined in 
Section 9. 

2. Description of the algorithm 

Consider the linear programming problem: 

P: maximize cTx 

subject to Ax <~ b, 

(2.1) 

(2.2) 
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where c and x are n-vectors, b an m-vector and A is a full rank m x n matrix, where 
m ~> n and c # 0. In assumptions relaxed later, we require P to have an interior 
feasible solution x °. 

Rather than expressing P in the standard equality form, we prefer the inequality 
formulation (2.1) and (2.2). As discussed later in this section, there are some 
computational  advantages in the selection of search directions under this formula- 
tion. In Section 5, we show how to apply this approach to linear programs in 
standard form. 

The algorithm described below is a variation of Karmarkar ' s  original projective 
algorithm (Karmarkar,  1984), substituting an affine transformation for the projective 
transformation, and the objective function for the potential function. Recently, it 
came to our attention that this algorithm was first proposed independently by Dikin 
(1967). Similar algorithms have been discussed by Barnes (1986) and Vanderbei, 
Meketon and Freedman (1986). They, however, express the linear programming 

problem in (standard) equality form. Following the taxonomy referred to in Hooker  
(1986), the algorithms presented in this paper  can be classified as dual  affine scaling 

algorithms. However, these algorithms are equivalent to their primal counterparts 
applied to problems in inequality form. 

Starting at x °, the algorithm generates a sequence of feasible interior points 
{x ~, x 2, . . . ,  x k . . . .  } with monotonically increasing objective values, i.e., 

b - A x  k > 0 (2.3) 

and 

CTX k+l > CTX k, (2.4) 

terminating when a stopping criterion to be discussed later is satisfied. Introducing 
slack variables to the formulation of P, we have: 

P: maximize cVx (2.5) 

subject to A x  + v = b, (2.6) 

v/> 0, (2.7) 

where v is the m-vector of slack variables. 
Affine variants of Karmarkar ' s  algorithm consist of a scaling operation applied 

to P, followed by a search procedure that determines the next iterate. At each 
iteration k, with v k and x k as the current iterates, a linear transformation is applied 
to the solution space, 

= D S ' v ,  (2.8) 

where 

D~ = d i a g ( v ~ , . . . ,  v~). (2.9) 

The slack variables are scaled so that x k is equidistant to all hyperplanes generating 
the closed half-spaces whose intersection forms the transformed feasible polyhedral 
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set, 

{x c ~ I D ~ A x  <~ D~lb} .  (2.10) 

Rewriting equations (2.1) and (2.2) in terms of the scaled slack variables, we have 

P: maximize cXx 

subject to A x  + D ~  = b, 

v~>0. 

The set of  feasible solutions for P is denoted by 

X = {x c R " l A x < ~ b } ,  

and the set of feasible scaled slacks in P is 

9 =  { ~ c ~ m [ 3 x  c X, a x + D ~ =  b}. 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

As observed in Gonzaga (1988), under the full-rank assumption for A, there is a 
one to one relationship between X and V, with 

and 

~(x)  = D~l (b  - ax)  (2.16) 

x(~)  = ( A T D ~ 2 A ) - I A T D ~ I ( D ~ ' b  - ~). (2.17) 

There is also a corresponding one to one relationship linking feasible directions hx 
in X and he in V,, with 

he = - D ~ l A h x  (2.18) 

and 

hx = - (ATDU2A)- 'ATD~1he .  (2.19) 

Observe from (2.18) that a feasible direction in 1 ~ lies on the range space of D-~IA. 

As in other presentations of affine variants of Karmarkar's algorithm, the search 
direction selected at each iteration is the projected objective function gradient with 
respect to the scaled variables. Since only the slack variables are changed by the 
affine transformation, using (2.11) and (2.17), we can compute the gradient of the 
objective function with respect to ~, 

Vec(x(~)) = (V ex( ~) )TVxc(x) = - D ~ I A ( A  T D U2A )- 'c.  (2.20) 

The gradient with respect to the scaled slacks lies on the range space of  D ~ A ,  

making a projection unnecessary. Consequently, the search direction in V is 

h e = - D ~ ' A ( A T D ~ 2 A )  lc, (2.21) 

and from (2.19) the corresponding feasible direction in X can be computed, 

hx = (ATDU2A)-%.  (2.22) 
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Applying the inverse affine transformation to h~, we obtain the corresponding 
feasible direction for the unscaled slacks, 

h~=-A(ATD~2A)  Ic. (2.23) 

Under the assumption that c ~ 0, unboundedness is detected if h~ >~ 0. Otherwise, 

the next iterate is computed by taking the maximum feasible step in the direction 
h~, and retracting back to an interior point according to a safety factor 3,, 0 < 3' < 1, 
i.e. 

X k+l ~- X k -~- ah~, (2.24) 

where 

c~ = 31 x min{-v~/(h~),  [ (hv)~ < 0, i = 1 . . . .  , m}. (2.25) 

The above formulation allows for inexact projections without loss of feasibility. 
Even if hx is not computed exactly in (2.22), a pair of feasible search direction can 
still be obtained by computing 

h~ = -Ahx.  (2.26) 

Given an interior feasible solution x °, a stopping criterion and a safety factor 3,, 
Pseudo-code 2.1 describes Algorithm I as outlined in this section. As in subsequent 
instances in this paper, algorithms are expressed in an Algol-like algorithmic notation 
described by Tarjan (1983). 

Pseudo-code 2.1. Algorithm I: 

procedure Algorithm I (A, b, c, x °, stopping criterion, 3,) 
1 k:=0;  
2 do stopping criterion not satisfied 
3 vk:=b--Axk;  

4 D~ := diag(vlk, • • •, Vm),k. 
5 hx := (ATD~2A)-1c; 

6 hv := -Ahx;  
7 if hv I> 0 ~ return fi; 
8 a:=3,xmin{-vk/(h~)i l (h~)i<O, i = 1 , . . . ,  m}; 
9 xk+l:=xk+ahx; 

10 k : = k + l ;  
11 od 
end Algorithm I. 

3. A family of interior-point algorithms using power series approximations 

Consider the continuous trajectory generated by Algorithm I when infinitesimal 
steps are taken at each iteration (Bayer and Lagarias, 1989). Let us denote the path 



3 0 2  L Adler et al. / An implementation of Karmarkar's algorithm 

of interior feasible solutions for P by (~(~-), ~(z)), where the real parameter ~- is the 
continuous counterpart to the iteration counter. For any value of z, the corresponding 
search directions h~(,) and h~(~) can be computed by expressions (2.22) and (2.23). 
Alternatively, the search directions can be described by an equivalent system of 
linear equations, 

T - 2  - A  D~(~)h~(~) = c, (3.1) 

Ah~(~) + h~(~) = 0. (3.2) 

By taking infinitesimal steps, the resulting continuous trajectory is such that 

d-~ (r) = h~(~) and (r) = h~(~). (3.3) 

Given the system of linear equations (3.1) and (3.2), we replace the search directions 
by the corresponding derivatives with respect to the trajectory parameter, resulting 
in the system of nonlinear, first order differential equations 

dfi 
- A  T D ~?')-~z (7) = c, (3.4) 

d~ d~ 
A ~ (z) +U~ (~) = 0, (3.5) 

with the boundary conditions 

£ ( 0 ) = x  ° and ~5(0)=v °, (3.6) 

where the initial solution (x °, v °) is given and satisfies A x ° +  v ° = b, v°> 0. 
By following the trajectory satisfying (3.4)-(3.6), we can, theoretically, obtain the 

optimal solution to P (Adler and Monteiro, 1988). In practice, we build an iterative 
procedure where, after replacing the current iterate for the initial solution in the 
boundary condition, an approximate solution to (3.4)-(3.6) is computed, using a 
truncated Taylor power series expansion. The next iterate is determined through a 
search on the approximate trajectory. 

As discussed later in this section, the search procedure requires a suitable 
reparametrization of the continuous trajectory, 

z = p ( t ) ,  (3.7) 

where p (t) is a monotonically increasing, infinitely differentiable real function such 
that 

x ( t ) = ~ ( p ( t ) )  and v ( t ) = ~ ( p ( t ) ) .  (3.8) 

Reparametrizing (3.4)-(3.6), we have 

T 2 dv dp 
- A  D~(,)-dr (t)  =-d-; (t)c, (3.9) 

dx dv 
A ~t-t (t) + ~ t  (~') = 0, (3.10) 
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and the boundary conditions 

x ( 0 ) = x  ° and v ( 0 ) = v  °. (3.11) 

Since we cannot compute an exact solution to (3.9)-(3.11), we use approximate 
solutions to the system of differential equations as the backbone of a family of 
iterative algorithms. At each iteration k, the algorithm restarts the trajectory with 
an initial solution (x(0), v(0)) -- (x k-l, vk-1). A new iterate is generated by moving 

on the approximate trajectory without violating nonnegativity of the slack variables. 
The approximate solutions can be computed by means of a truncated Taylor 
expansion of order r (Karmarkar et al., 1989), such that for t > 0, 

i i r t dx 
x(t) ~ ~(t) = x(0) + 2 ~ ~tTt / (0) (3.12) 

i = l  

and 

r ti div 0 
v(t)~-~2(t)=v(O)+ E ~-~t~( )" (3.13) 

i = l  

From (3.9) and (3.10), we can compute derivatives of all orders for x(t) and v(t). 
Consider the functions 

F(t)=-D~],) and G(t)=D~(o, (3.14) 

which satisfy 

F(t)G(t) = -I.  (3.15) 

Applying Leibniz's differentiation theorem to the product F(t)G(t), we have 

i! di-JF diG 0 for i>~1. (3.16) 
(i_7)!j! ~ ( t )  dt--7 = j=O 

From (3.16), the derivatives of F(t) can be computed recursively by 

deE -2 dig i-1 i! d i -JF  d i g  
~~(t)=Dv(t)-~ti( t)-D~t) ~ . ~ ( t ) - ~ - 7 ( t  ) fori>~l.  (3.17) 

j=l( i- j )! j l  

Taking derivatives of both sides of (3.9), and rewriting the left-hand side of the 
equation in terms of F( t ) ,  we have 

d ~ t ~ i  F 
-ATZ~( t )e=di~( t )  c - ~ 7  for i ~ l .  (3.18) 

By combining (3.17) with (3.18), and annexing the appropriate derivative of (3.10), 
we have a system of linear equations that recursively computes the derivatives of 
x(t) and v(t) evaluated at t = 0 ,  

ATF'~ -2  div d i i-I i! d i -JF  dJv 
- ~  ,-, ~(o) - ~  (0) = ~ (0)c + ATD~o) Y~ _7)~ J' ~ (0) d-~ (0), (3.19) 

j = l ( i  • • 

dix d~v 
A~--~ (0) + ~ -  7 (0) =0.  (3.20) 



304 L Adler et al. / An implementation o f  Karmarkar  ' s algorithm 

In an implementab le  re formula t ion  of  (3.19) and (3.20), we el iminate  the b inomial  

terms by  defining 

1 d iF  (3.21) v, ?-? (o), 

1 dip (0), (3.22) 
Pi = i~ dt --7 

1 div 
, ld~X(o)  and  z~ = - - - -  (O). (3.23) 

zx= i~ dt--7 i! dd  

Solving (3.19) and (3.20), we have 

i--1 
z~ = pi(ATD;~o)A)-'c + (ATD;~o)A)-IATD~o) ~ Fi_jz j (3.24) 

j = l  

and 

' - A z ~ x .  (3.25) Z v ~  

The app rox ima te  t rajectory based on a power  series of  order  r is rewrit ten as 

£ ( t ) = x ( O ) + ~  t z x  and g ( t ) = v ( O ) +  ~ ' i i i t zv. (3.26) 
i = l  i=1 

At i teration k, the next  i terate is computed  as 

xk+l ~- X(O/) and  v k + l  = ~ ( ~ ) ,  

with 

(3.27) 

= y x s u p { t l 0 ~  t ~  < 1, t~i(t)/>0, i =  1 , . . . ,  m}, (3.28) 

where 0 < 7 < 1. 
By selecting a suitable reparamet r iza t ion  p (t) ,  the line search on g(t)  that  computes  

cr in (3.28) can be l imited to the interval 0 ~  < t ~  < 1. Since £(t )  and 15(t) depend  solely 
on derivatives of  p(t )  evaluated at t = 0 ,  the desired reparamet r iza t ion  is fully 
character ized by constants  p , , . . . ,  Pr- Values for  Pi are compu ted  by selecting a row 
index l, and forcing 

and 

~5~(1) = 0 (3.29) 

d / x l  ^ .  
dt  i ( u ) = 0  f o r i = 2 , . . . , r .  (3.30) 

Consider  the search directions 

h 1 = (ATD;~o)A) 'c (3.31) 
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and 

hl~ = - A h ~ .  (3.32) 

From (3.24) and (3.25), we have 

1 1 1 1 z x = p l h x  and z~=plh~.  (3.33) 

Once again, under the assumptions that A is a full rank and e ¢ 0, unboundedness 
is detected if h~ i> 0. Otherwise, we determine the row index ! by performing a ratio 
test between v(0) and search direction h i ,  i.e., 

l = argmin{-v(O)/(hlv)i I (h~)~ < 0}. (3.34) 
l ~ i < ~ m  

This operation corresponds to searching along the first order approximation of 
trajectory v(t).  From the conditions imposed on the reparametrization by (3.30), 
the truncated Taylor expansion in (3.26) is such that 

15,(1) = v(O)+pmhl,, (3.35) 

and from (3.29) and (3.33), we compute 

p~ = -v,(O)/  ( h ~)~. (3.36) 

Iteratively, for i = 2 , . . . ,  r, we compute p~ and z~. Based on (3.24), 

i 1 i 
Z~ = pihx + h~ (3.37) 

where 

i - I  
hi T --2 1 T - 1  = (A D,(o)A) A D~(o)~. Fi_jz~. (3.38) 

j=l 

To satisfy (3.30), we have 

i 1 Pi = - (h:,)t/(h x)t. (3.39) 

Pseudo-code 3.1 formalizes the algorithm based on a truncated power series of  
order r. The computational  experiments reported in Section 8 include Algorithm 
II,  which is the second order version of this algorithm. In a practical implementaion,  
the additional computational effort, when compared to Algorithm I, is dominated 
by the solution of systems of symmetric linear equations to compute hl  for i = 
2 . . . .  , r. As in Algorithm I, if )?(t) is not obtained exactly, a pair of  feasible 
trajectories can still immediately be available. By computing 

i = _ A x i x  for i = l , . ,  r, zv . ,  (3.40) 

we guarantee that (Y(t), v(t))  is a pair of  feasible trajectories for 0 4  t ~  a, where 
0 <~ c~ <~ 1 is the maximum feasible step. 
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Pseudo-code 3.1. Power Series Algorithm: 

procedure PowerSeries (A, b, c, x °, stopping criterion, 3/, r) 

1 k : = 0 ;  

2 do stopping criterion not satisfied 

3 x(0) := xk; 
4 v(0) := b -  Ax(0); 

5 Dr(o) := d i a g (v l (0 ) , . . . ,  v,,(0)); 
6 h~:=(ATD~o~A)-Ic; hvl"-.- -Ahx;l 

1>_ 7 i f  h o ~ 0 ~ r e t u r n  fi; 
• h 1 8 l :=argmm~i~m{-v(O)/(  ~)il (h~)~ < 0}; 

9 pl := -v,(O)/(hl~)~; 
1 1 1 .  1 10 z~ := plh~; z~ .= plh~; 

- 2  1 .  
11 F~ := D ~ ( o ) Z ~ ,  

12 for i = 2 , . . . , r ~  
13 h~ := (ATD;~o)A) IATD;(Io)2~_11 Fi-jzYv; 

i 1 14 p, := - (h~)l/(h~,)t; 
i .__ 1 i i i 15 z~ . -  pihx + h~; z~ := -Az~;  

16 F~ := Dv(o)Zv - 

17 rof;  
18 ; ( t ) :=  x(O)ArET=l tizix'~ v(t) "b- v(O)-~-ET~l tiz'~; 
19 a:=yxsup{t lO<~t<~l,  ~ ( t ) > ~ O , i = l , . . . , m } ;  
20 x k+l := ~(a ) ;  
21 k : = k + l ;  

22 od 
end PowerSeries. 

4.  In i t ia l  s o l u t i o n  

Algorithm I and the truncated power series algorithms require that an initial interior 
solution x ° be provided. Since such solution does not necessarily exist for a generic 

linear program, and a starting solution close to the faces of the feasible polyhedral 
set can imply in very slow convergence (Megiddo and Shub, 1986), we propose a 
Phase I /Phase  I I  scheme, where we first solve an artificial problem with a single 
artificial variable having a large cost coefficient assigned to it. 

Firstly, we compute a tentative solution for P, 

x ° =  (llbll2/IAc[[2)c. (4.1) 

For the computational experiments reported in Section 8, we compute the initial 

value for the artificial variable as 

o - 2 x m i n { ( b - A x ° ) i l i =  1 , . . . ,  m}. (4.2) X a 
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Although it did not occur in any of the test problems reported in this paper,  the 
computat ion in (4.2) can be such that x ° =0 .  Consequently, for application to 

generic linear programs, we recommend an alternative computation of the initial 
value of the artificial variable, 

x ° = 2 x II b - Ax°ll2. (4.3) 

The n + 1-vector (x °, x °) is an interior solution of the Phase I linear programming 
problem 

Pa: maximize cTx  -- M x a  (4.4) 

subject to A x  - e x ,  <~ b, (4.5) 

where 

e = (1, 1 . . . .  ,1) r. (4.6) 

The large artificial cost coefficient is computed as a function of the problem data, 

T 0 0 
M = tx x c x / x a ,  (4.7) 

where tz is a large constant. 
Initially, the algorithm is applied to Pa with a modified stopping criterion. In this 

Phase I stage, the algorithm either identifies an interior feasible solution, or, if no 
such solution exists, finds a solution that satisfies the stopping criterion for problem 
P. With er defined as the feasibility tolerance, the modified stopping criterion for 
Phase I is formulated as follows: 

(i) I f  x]  < 0 at iteration k, then x k is an interior feasible solution for problem P. 
(ii) I f  the algorithm satisfies the regular stopping criterion and x k >  er, P is 

declared infeasible. 

(iii) I f  the algorithm satisfies the regular stopping criterion and k X~ < el, either 
unboundedness is detected or an optimal solution is found. In this case, P has no 
interior feasible solution. 

I f  Phase I terminates according to condition (i), the algorithm is applied to 
problem P starting with the last iterate of  Phase I and using the regular stopping 
criterion. 

5. Application to the general linear programming problem 

It is not common practice to formulate a linear programming problem as in (2.1) 
and (2.2). Instead, a standard form is usually preferred, 

LPP: minimize bTy  

subject to A Ty  = C, 

y>~0, 

(5.1) 

(5.2) 

(5.3) 
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where A is an m x n matrix, c an n-vector and b and y m-vectors. The dual linear 
programming problem of  (5.1)-(5.3), however, has the desired form: 

LPD: maximize cTx (5.4) 

subject to Ax<~ b, (5.5) 

where x is an n-vector. Note that LPD is identical to P, as defined in (2.1) and 
(2.2). At iteration k, with current solutions x k and v k, a tentative dual solution is 
defined as 

yk = D~2A(ATD~2A)- l c ,  (5.6) 

where 

Dv = d i ag (v~ , . . . ,  v,k,). (5.7) 

This computation of the tentative dual solution, similar to the one suggested by 
Todd and Burrell (1986), can be performed by scaling the first order search direction 
in each iteration of the algorithm. From (2.23), for iteration k, 

y k =  D~2h~. (5.8) 

The tentative dual solution minimizes the deviation from complementary slackness 
with respect to the current iterate x k, relaxing the nonnegativity constraints (5.3) 
(Chandru and Kochar, 1986). Formally, consider the problem 

minimize ~ (v~yj)  2 (5.9) 
j--1 

subject to aXy  = c. (5.10) 

The tentative dual solution in (5.6) is the solution to the Karush-Kuhn-Tucker  
stationary conditions of minimization problem given by (5.9) and (5.10). Under 
nondegeneracy, given a sequence of feasible primal solutions converging to an 
optimal solution, the corresponding sequence of tentative dual estimates also 
converges to the optimal dual solution. 

6. Stopping criterion 

In the computational experiments reported in this study, both Algorithms I and II 
are terminated whenever the relative improvement to the objective function is small, 

i.e., 

]cT x k -- cTxk-I[/max{1,  IcTxk-'I} < e, (6.1) 

where e is a given small positive tolerance. 
The tentative dual solution yk, computed in (5.6), can be used to build an 

alternative stopping criterion. If yk and v k satisfy 

A Ty k = C, (6.2) 
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yk  >~ O, (6.3) 

y~v~=O,  j =  1 , 2 , . . . ,  m, (6.4) 

then, by duality theory of linear programming, yk is optimal for LPP and x k is 
optimal for LPD. Since (6.2) is automatically satisfied, a stopping criterion, replacing 
(6.1), such that the algorithm terminates whenever 

yff~>-elllykl[2, j = l , 2  . . . .  , m, (6.5) 

and 

ly~v~l ~ ~211y~ll211v~ll2, j = 1, 2 , . . . ,  m, (6.6) 

for given small positive tolerances el and e2. The relations in (6.5) and (6.6) serve 
as a verification that x k and yk are indeed approximate optimal solutions for LPD 
and LPP, respectively. 

Unboundedness of LPD is, theoretically, detected by the algorithm whenever 
h~/> 0, i.e., the ratio tests in (2.25) and (3.34), involving the first order search direction 
fail. In practice, an additional test is required, LPD is declared unbounded whenever 
the objective function value exceeds a supplied bound. 

7. Implementation issues 

In this section, we briefly discuss some important characteristics of this implementa- 
tion. A detailed description of the data structures and programming techniques 
used in the implementation of Algorithms I and II is the subject of Adler et al. (1989). 

7.1. Computing search directions 

As in other variants of Karmarkar's algorithm, the main computational requirement 
of the algorithms described in this paper consists of the solution of a sequence of 
sparse symmetric positive definite systems of linear equations determining the search 
directions for each iteration. In Algorithm I, for each iteration k, a linear trajectory 
is determined by the feasible direction computed in 

with 

where 

Bkhx = c, (7.1.1) 

Bk = ATDv2A,  (7.1.2) 

D~ = diag(vlk, . . . ,  vk). (7.1.3) 

Under the full-rank assumption for A, the system of linear equations in (7.1.1) 
is symmetric and positive definite. Such systems of linear equations are usually 
solved by means of the L U  factorization, 

Bk = LU, (7.1.4) 
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where L is an m x m unit lower triangular matrix (a matrix that has exclusively 
ones in its main diagonal), and U is an m x m upper-triangular matrix. In the case 
of positive definite matrices, this L U  factorization always exists and is unique. 
Furthermore, if the system is also symmetric, the factor L can be trivially obtained 
from U with 

L = D u  1U T, (7.1.5) 

where D u is a diagonal matrix with elements drawn from the diagonal of U. 
Rewriting (7.1.1), we have 

( L U ) h x  = e. (7.1.6) 

Direction hx in (7.1.6) can be determined by solving two triangular systems of linear 
equations, performing a forward substitution 

L z  = c, (7.1.7) 

followed by a back substitution 

Uhx= z. (7.1.8) 

In each iteration of the higher order algorithms described in Section 3, the additional 
directions in (3.37) and (3.38) also involve the solution of linear systems identical 
to (7.1.1), except for different right-hand sides. Solving these additional systems of 
linear equations involve only the back and forward substitution operations, using 
the same L U  factors. Furthermore, during the execution of the algorithm only D~ 
changes in (7.1.2), while A remains unaltered. Therefore, the nonzero structure of 
A T D ~ 2 A  is static throughout the entire solution procedure. An efficient implementa- 
tion of the Gaussian elimination procedure can take advantage of this property by 
performing, in the beginning of the algorithm, a single symbolic factorization step, 
i.e., operations that depend solely on the nonzero structure of the system matrix. 
For example, at this stage of the algorithm, we determine the nonzero structure of 
L U  factors and build a list of the numerical operations performed during the 
Gaussian elimination procedure. At each iteration k of the algorithm, the actual 
numerical values of Bk are computed and incorporated in the symbolic information. 
Next, the numerical factorizat ion is executed, by traversing the list of operations, 
yielding the L U  factors. 

7.2. Using an approximate scaling matrix  

Based on the theoretical approach suggested by Karmarkar (1984), a significant 
reduction in the computational effort can be achieved by using an approximate 
scaling matrix when computing the numerical values for matrix Bk at each iteration. 
The matrix for the system of linear equations in (7.1.1) is replaced by 

Bk = ATD~2A,  (7.2.1) 
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where /)k is an approximate scaling matrix, computed by selectively updating the 
scaling matrix used in the preceding iteration. The approximate scaling matrix at 
each iteration k is computed as follows: 

/~k(i,i)=l'/)k~ 1(i,i), i f l D v ( i , i ) - - f f ) k _ l ( i , i ) l / l L ) k _ l ( i , i ) ] < 6  , 
(7.2.2) 

(D~(i, i), if IDa(i, i) - 19k-1(i, i)[/ll)k--l(i, i)[ ~> 6, 

for a given 6 > 0. After computing the current approximate scaling matrix according 
to (7.2.2), we define 

a = / ~ k  2 --  /~k2_1 , (7.2.3) 

Then, we have the update expression 

Bk = hk-~ + ATAA. (7.2.4) 

This enables us to update the linear system matrix by rescaling only a reduced set 
of columns of A T . 

7.3. Ordering for sparsity 

When a sparse matrix is factored, fill-in usually occurs. The triangular factors contain 
nonzero elements in positions where Bk has zeros. Fill-in degrades the performance 
of the sparse Gaussian elimination used to compute the L U  factorization, also 
affecting the back and forward substitution operations. It is possible to reduce fill-in 
by performing a permutation of columns and rows in Bk. 

If P is a permutation matrix, then (7.1.1) and 

(PBkpT)phx = Pc (7.3.1) 

are equivalent systems. Furthermore, there exists a permutation matrix 15 such that 
the fill-in generated in the triangular factors is minimized. Unfortunately, finding 
this permutation matrix is an NP-complete problem (Yannakakis, 1981). However, 
the minimum degree and minimum localfill-in ordering heuristics (Rose, 1972) have 
been shown to perform well in practice (Duff, Erisman and Reid, 1986). We use 
either the minimum degree heuristic as implemented in subroutine MD of the Yale 
Sparse Matrix Package (Eisenstat et al., 1982), or the minimum local fill-in 
implementation in de Carvalho (1987). 

7.4. Treating dense columns in the coefficient matrix 

In the presence of a few dense columns in A T, ATD~2A will be impracticably dense, 
regardless of the permutation matrix. Consequently, we face prohibitively high 
computational effort and storage requirements during Gaussian elimination. To 
remedy this situation, we make use of a hybrid scheme in which we first perform 
an incomplete factorization of ATD~2A. Next, we use the incomplete Cholesky 
factors as preconditioners for a conjugate gradient method to solve the system of 
linear equations defined in (7.1.1). 
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Let (N, _K/~) be a partition of the column indices of A T, such that the columns of 
A~ have density smaller than a given parameter A. At iteration k, the incomplete 
Cholesky factors Lk a n d / ~  are such that 

A T  Dv2AN = I-~kl-~ T.  (7.4.1) 

Using the conjugate gradient algorithm, we solve the system of linear equations 

Qu =f, (7.4.2) 

where 

and 

Q = £~(ATD~ZA)(£~)  -1, (7.4.3) 

f =  £~1c. (7.4.4) 

The search direction hx is computed by performing a back substitution operation, 
solving 

u = f~hx. (7.4.5) 

Given a termination tolerance ecg > 0, the conjugate gradient algorithm is outlined 
in Pseudo-code 7.4.1. 

Pseudo-code 7.4.1. Conjugate Gradient Algorithm: 

procedure ConjugateGradient (Q,f, ecg) 

1 Uo := f;  
2 r0:= Q u o - f ;  
3 po := -ro; 
4 i:=0; 
5 do  - ,  

6 qi := Qpi; 
7 cei := I[rll~/pTq,; 
8 Ui+ 1 := Ui+O~ipi, 

9 ri+l := Qui+~ - f ;  
10 fli:-----Ilri+all2/llrill2; 

11 P i+ l  := --ri+l+~iPi; 
12 i:= i+1; 
13 od 
end ConjugateGradient. 

8. Test problems 

In this section, we report the computational results of running our implementations 
of Algorithms I and II on a set of linear programming test problems (Gay, 1985, 
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1986) available through NETLIB (Dongarra and Grosse, 1987). NETLIB is a system 
designed to provide efficient distribution of public domain software to the scientific 
community through computer  networks, e.g. Arpanet, UNIX UUCP network, CSNET, 
Telenet and mTNET. We also report the results of running Algorithm I on linear 
programs generated by two models. The first set is composed of randomly generated 
mult i-commodity network flow problems generated with MNETGN (Ali and 

Kennington, 1977). The other is a collection of timber harvest scheduling problems 
generated by EORPLAN (Johnson, 1986), a linear programming based system used 
for long-range planning by the US Forest Service. 

8.1. The NETLIB test problems 

This collection of linear programs consists of problems contributed by a variety of  
sources. It includes linear programming test problems from the Systems Optimization 
Laboratory at Stanford University, staircase linear programs generated by Ho and 
Loute (1981), and many real world problems. We considered in our tests all of  the 
available problems that do not have a BOUNDS section in their MPS representation, 
since the current version of our code cannot handle bounded variables implicitly. 

Table 8.1.1 presents the statistics for 31 test problems obtained from NETLIB, 

ordered by increasing number  of nonzero elements in the coefficient matrix A, after 
adding slack variables. The dimensions of the problems include null or fixed 
variables, sometimes removed by a preprocessor before applying a linear program- 

ming algorithm. The number  of  rows does not include the objective function. In 
column 4, the number of  nonzero elements of  A is displayed. Column 5 gives the 
number  of  nonzero elements of  the lower triangular portion of the permuted ( p A ) T p A  

matrix, using the minimum degree ordering heuristic. Column 6 gives the nonzero 
elements in the Cholesky factor. The fill-in is the difference between columns 6 and 

5. The entries in columns 5 and 6 for problem Israel are those used by the algorithm, 
i.e., after 6 dense columns of A T are dropped. 

All test runs, with the exception of those of Algorithm II,  were carried out on 
the IBM 3090 at U.C.-Berkeley under VM/SP CMS. Algorithm II  test runs were con- 
ducted on the IBM 30Sl-K at U.C.-Berkeley, also under VM/SP CMS. FORTRAN programs 
were compiled using the FORTVS compiler with compiler options OPT(3), NOSYM and 
NOSDUMP. The reported c e u  times were computed with utility routine DATETM, 
taking into account preprocessing (e.g. input matrix cleanup, ordering and symbolic 

factorization) and all operations until termination. However, they exclude the effort 
required to translate the linear programs from MPS format. 

Execution times for Algorithm I and Algorithm II  are compared to those of the 
simplex code MINOS 4.0. The reported cPu times for MINOS are those of  subroutine 
DRIVER, which also excludes the time to read and translate the MPS input file. The 
results of  solving the NETLIB test problems by MINOS 4.0 are displayed in Table 8.1.2. 
In running MINOS, we use default parameters except for LOG FREQ = 200 and 
ITERATIONS = 7 5 0 0 .  The problem size parameters,  ROWS, COLUMNS and ELEMENTS, 
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Table 8.1.1 
NETLIB test problem statistics 

Problem Rows Columns nonz(A) nonz((PA)TPA) 1 nonz(L) 

Afiro 27 51 102 90 107 
ADLitt~ 56 138 424 377 404 
Scagr7 129 185 465 606 734 
Sc205 205 317 665 654 1182 
Share2b 96 162 777 871 1026 
Sharelb 117 253 1179 967 1425 
Scorpion 388 466 1534 1915 2324 
Seagr25 471 671 1725 2370 2948 
ScTapl 300 660 1872 1686 2667 
Brandy 220 303 2202 2190 2850 
Scsdl 77 760 2388 1133 1392 
Israel 174 316 2443 3545 3707 
BandM 305 472 2494 2929 4114 
Scfxml 330 600 2732 3143 4963 
E226 223 472 2768 2683 3416 
Se~8 490 1275 3288 1953 5134 
Beaconfd 173 295 3408 1720 1727 
Scsd6 147 1350 4316 2099 2545 
Sh~O4s 402 1506 4400 2827 3134 
Scfxm2 660 1200 5469 6306 9791 
Sh~041 402 2166 6380 4147 4384 
Sh~O8s 778 2467 7194 3552 4112 
ScTap2 1090 2500 7334 6595 14870 
Scfxm3 990 1800 8206 9469 14619 
Sh~12s 1151 2869 8284 4233 5063 
Scsd8 397 2750 8584 4280 5879 
ScTap3 1480 3340 9534 8866 19469 
CzProb 929 3340 10043 6265 6655 
25FV472 821 1876 10705 10919 33498 
Sh~081 778 4363 12882 6772 7128 
Sh~12l 1151 5533 16276 8959 9501 

1 Using the minimum degree ordering heuristic. 
2 25FV47 is also known as BP822. 

w e r e  set to t he  exac t  n u m b e r  o f  rows ,  c o l u m n s  a n d  n o n z e r o  e l e m e n t s  o f  the  coef f ic ien t  

mat r ix .  In  this  f a sh ion ,  MINOS selects  the  v a l u e  fo r  the  all  i m p o r t a n t  PARTlAL PRICE 

p a r a m e t e r  a c c o r d i n g  to its bu i l t - in  de f au l t  s t ra tegy.  U s i n g  the  de f au l t  p a r a m e t e r s ,  

~ 1 N o s  4.o a c h i e v e d  7 d ig i t  a c c u r a c y  on  all  p r o b l e m s ,  i f  c o m p a r e d  to the  o p t i m a l  

o b j e c t i v e  v a l u e s  r e p o r t e d  in G a y  (1986). 

S ince  the  ~ETLIB test  p r o b l e m s  are  no t  in t he  f o r m  d e s c r i b e d  by  (2.1) and  (2.2), 

A l g o r i t h m s  I a n d  I I  so lve  the  c o r r e s p o n d i n g  d u a l  l i n e a r  p r o g r a m m i n g  p r o b l e m s .  A 

p r i m a l  o p t i m a l  so lu t i on  is o b t a i n e d  f r o m  (5.6),  i n v o l v i n g  the  last  s ca l ing  m a t r i x  D~ 

a n d  the  last  s ea rch  d i r e c t i o n  fo r  the  d u a l  s lacks.  By con t ras t ,  w i n o s  so lves  the  test  

p r o b l e m s  in its o r ig ina l  fo rm.  T a b l e s  8.1.3 a n d  8.1.4 s u m m a r i z e  c o m p u t a t i o n a l  resul ts  

fo r  A l g o r i t h m  I on  the  set o f  test  p r o b l e m s ,  us ing ,  r e spec t ive ly ,  the  m i n i m u m  deg ree  
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Table 8.1.2 

MINOS 4.0 test statistics (IBM 3090)--NETLIB test problems 

315 

Problem Phase I lter. Total iter. Time (sec.) Objective value 

Afiro 2 6 0.01 -4.6475319 e +02 
ADLittle 28 119 0.23 2.2549495 e +05 
Seagr7 38 81 0.29 -2.3313897 e +06 
Sc205 30 111 0.45 -5.2201997 e +01 
Share2 b 83 119 0.26 -4.1573247 e +02 
Sharelb 238 391 1.27 -7.6589255 e +04 
Scorpion 146 215 1.06 1.8781247 e +03 
Scagr25 228 614 4.54 -1.4753432 e +07 
ScTapl 184 305 1.98 1.4122500 e +03 
Brandy 185 313 1.34 1.5185099 e +03 
Scsdl 97 261 1.02 8.6666659 e +00 
Israel 72 281 1.54 -8.9664483 e +05 
BandM 207 472 2.54 -1.5862800 e +02 
Scfxml 238 437 2.04 1.8416758 e +04 
E226 69 568 3.68 -1.8638928 e +01 
Scrs8 135 523 5.64 9.0429701 e +02 
Beaconfd 9 41 0.18 3.3592486 e +04 
Scsd6 189 576 2.69 5.0500000 e +01 
ShipO4s 309 395 3.54 1.7987147 e +06 
Scfxm2 432 792 8.18 3.6660260 e +04 
Ship041 441 593 7.18 1.7933246 e +06 
ShipO8s 470 657 9.16 1.9200982 e +06 
ScTap2 667 1121 22.02 1.7248071 e +03 
Scfxm3 646 1196 19.31 5.4901252 e +04 
Ship12s 561 718 12.78 1.4892361 e +06 
Scsd8 585 1590 14.53 9.0499997 e +02 
ScTap3 696 1273 32.87 1.4240000 e +03 
CzProb 1035 1955 39.08 2.1851968 e +06 
25FV47 1262 7157 217.67 5.5018494 e +03 
Ship081 594 958 14.72 1.9090552 e +06 
Ship121 782 1268 26.10 1.4701879 e +06 

a n d  the  m i n i m u m  loca l  f i l l- in o r d e r i n g  heu r i s t i c s .  T a b l e  8.1.5 p r e s e n t s  resu l t s  f o r  

A l g o r i t h m  II ,  w h i c h  uses  t h e  m i n i m u m  d e g r e e  o r d e r i n g  heur i s t i c .  

B o t h  A l g o r i t h m s  I a n d  II  w e r e  t e s t e d  w i t h  t he  f o l l o w i n g  p a r a m e t e r  se t t ings .  T h e  

sa fe ty  f a c t o r  p a r a m e t e r  w a s  set  to 3' = 0.99 fo r  t he  first  10 i t e r a t i o n s  a n d  y- - -0 .95  

t h e r e a f t e r .  B o t h  a l g o r i t h m s  w e r e  t e r m i n a t e d  w h e n  t h e  r e l a t ive  i m p r o v e m e n t  in  t h e  

o b j e c t i v e  f u n c t i o n  fell  b e l o w  e = 10 -8. In  P h a s e  I, t h e  v a l u e  o f  t he  ar t i f ic ia l  v a r i a b l e  

cos t  d e f i n e d  in  (4.7) w a s  d e t e r m i n e d  by  t h e  c o n s t a n t / x  = 105. T h e  d i a g o n a l  u p d a t e  

t o l e r a n c e  w a s  set  to  6 = 0.1 a n d  the  c o l u m n  d e n s i t y  p a r a m e t e r  fo r  b u i l d i n g  t h e  

i n c o m p l e t e  C h o l e s k y  f a c t o r i z a t i o n  in  t he  c o n j u g a t e  g r a d i e n t  a l g o r i t h m  w a s  set  to  

h = 0 . 3 .  

T a b l e  8.1.6 c o m p a r e s  e x e c u t i o n  t imes  fo r  t h e  t h r e e  a l g o r i t h m s ,  c v u  t i m e s  d i s p l a y e d  

f o r  MINOS a n d  A l g o r i t h m  I w e r e  m e a s u r e d  o n  t h e  IBM 3090, w h i l e  t h o s e  f o r  A l g o r i t h m  
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Table 8.1.3 

Algorithm 1 test statistics (~BM 3090)--NETLIB test problems (minimum degree ordering heuristic) 

Problem Phase Iiter. Total iter. Time (sec.) Objective value 

Afiro 1 20 0.04 -4.6475315 e +02 
ADLittle 1 24 0.12 2.2549496 e +05 
Scagr7 3 25 0.17 -2.3313898 e +06 
Sc205 4 29 0.28 -5.2202061 e +01 
Share2b 4 28 0.29 -4.1573224 e +02 
Sharelb 7 39 0.58 -7.6589319 e +04 
Scorpion 5 25 0.51 1.8781248 e +03 
Scagr25 3 28 0.69 - 1.4753433 e +07 
ScTapl 6 34 0.85 1.4122488 e +03 
BrandY 38 38 1.52 1.5185099 e +03 
Scsdl 2 19 0.41 8.6666666 e +00 
Israel ~ 8 38 4.00 -8.9664483 e +05 
BandM 7 33 1.54 -1.5862802 e +02 
Scfxml 33 33 1.97 1.8416759 e +04 
E226 40 40 1.56 -1.8751929 e +01 
Scrs8 39 39 2.30 9.0429695 e +02 
Beaconfd 23 23 0.69 3.3592486 e +04 
Scsd6 2 22 0.83 5.0500000 e +01 
ShipO4s 5 31 1.26 1.7987145 e +06 
Scfxm2 38 38 4.38 3.6660261 e +04 
Ship04l 5 31 2.31 1.7933245 e +06 
ShipOSs 5 34 1.58 1.9200982 e +06 
ScTap2 7 33 6.71 1.7248068 e +03 
Scfxm3 37 37 6.66 5.4901254 e +04 
Ship12s 4 35 1.91 1.4892361 e +06 
Scsd8 2 24 1.68 9.0500000 e +02 
ScTap3 7 36 9.44 1.4240000 e +03 
CzProb 3 46 9.76 2.1851927 e +06 
25FV47 44 55 46.17 5.5018494 e +03 
Ship081 5 34 4.00 1.9090552 e +06 
Shipl21 5 34 4.89 1.4701879 e +06 

The conjugate gradient algorithm was triggered when running this test problem. 

I I  a re  f r o m  t h e  IBM 3081-K. F o r  t he  sake  o f  c o n s i s t e n c y ,  w h e n  c o m p u t i n g  the  cPU 

t i m e  ra t io  b e t w e e n  MINOS a n d  A l g o r i t h m  II ,  t he  e x e c u t i o n  t i m e s  f o r  MINOS are 

t h o s e  o f  t he  I~M 308a-K. F igu re s  I a n d  2 i l l u s t r a t e  g r a p h i c a l l y  the  p e r f o r m a n c e s  o f  

MINOS a n d  A l g o r i t h m  I. 

Tab le  8.1.7 f o c u s e s  on  five s u b g r o u p s  o f  p r o b l e m s ,  w h e r e  e a c h  s u b g r o u p  is m a d e  

u p  o f  p r o b l e m s  h a v i n g  the  s a m e  s t ruc tu re ,  o r  g e n e r a t e d  by  the  s a m e  m o d e l .  In  this  

t ab le ,  r a t ios  o f  MINOS i t e r a t i o n s  to  A l g o r i t h m  I i t e r a t i ons ,  MINOS CPU t ime  p e r  

i t e r a t i o n  to  A l g o r i t h m  I cPV t i m e  p e r  i t e r a t i o n  a n d  MINOS to ta l  Cpu  t i m e  to  A l g o r i t h m  

I to ta l  c P u  t i m e  are  g iven .  

T a b l e  8.1.8 p r e s e n t s  d e t a i l e d  resu l t s  r e l a t e d  to  t h e  g e n e r a t i o n  o f  p r i m a l  s o l u t i o n s  

in  A l g o r i t h m  1. Let  t be  t he  n u m b e r  o f  i t e ra t e s  g e n e r a t e d  by  the  a l g o r i t h m .  The  
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Table 8.1.4 

Algorithm I test statistics (1BM 3090)--NETLIB test problems (min imum local fill-in ordering heuristic) 

Problem Phase I i ter .  Total iter. Time (sec.) Objective value 

Afiro 1 20 0.05 -4.6475315 e +02 
ADLittle 1 24 0.13 2.2549496 e +05 
Scagr7 3 24 0.18 -2.3313898 e +06 
Sc205 4 28 0.26 -5.2202061 e +01 
Share2b 4 29 0.32 -4.1573224 e +02 
Sharelb 7 38 0.47 -7.6589319 e +04 
Scorpion 5 24 0.49 1.8781248 e +03 
Scagr25 3 29 0.70 -1.4753433 e +07 
ScTapl 6 33 0.80 1.4122488 e +03 
Brandy 38 38 1.49 1.5185099 e +03 
Scsdl 2 19 0.44 8.6666666 e +00 
Israel ~ 8 37 4.01 -8.9664483 e +05 
BandM 7 30 1.26 - 1.5862802 e +02 
Scfxml 33 33 1.66 1.8416759 e +04 
E226 34 34 1.58 -1.8751929 e +01 
Scrs8 39 39 2.28 9.0429695 e +02 
BeaconJd 23 23 0.62 3.3592486 e +04 
Scsd6 2 22 0.84 5.0500000 e +01 
ShipO4s 5 30 1.01 1.7987145 e +06 
Scfxm2 38 39 3.83 3.6660261 e +04 
Ship041 5 28 1.39 1.7933245 e +06 
ShipO8s 5 32 1.35 1.9200982 e +06 
ScTap2 7 34 5.52 1.7248068 e +03 
Scfxm3 37 40 5.87 5.4901254 e +04 
Ship12s 4 35 1.75 1.4892361 e +06 
Scsd8 2 23 1.82 9.0500000 e +02 
ScTap3 7 36 7.78 1.4240000 e +03 
CzProb 3 52 3.64 2.1851927 e +06 
25FV47 44 54 31.70 5.5018494 e +03 
Ship081 5 31 2.44 1.9090552 e +06 
Ship121 5 32 3.43 1.4701879 e +06 

1 The conjugate gradient algorithm was triggered when running this test problem. 

n o r m a l i z e d  d u a l i t y  g a p  

Ib Ty ' -  c T x'l/Lb' yt I (8 .1 .1 )  

i s  g i v e n  i n  c o l u m n  2. C o l u m n  3 p r e s e n t s  t h e  m a x i m u m  n o r m a l i z e d  p r i m a l  i n f e a s i b i l i t y  

m a x { I A ~ y  t -  e, i l l lc l l=li= 1, 2 , . . . ,  n} .  ( 8 . 1 . 2 )  

C o l u m n  4 g i v e s  t h e  m i n i m u m  n o r m a l i z e d  p r i m a l  e n t r y ,  

m i n { y l / l l y ' l l z l i  = 1, 2 , . . . ,  m }  (8 .1 .3 )  

a n d  c o l u m n  5 t h e  m a x i m u m  n o r m a l i z e d  c o m p l e m e n t a r i t y  v i o l a t i o n  

max{lylv',[/lly'[[2llv'll21i= 1, 2 , . . . ,  m } .  ( 8 . 1 . 4 )  
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Table 8.1.5 

Algorithm II test statistics (IBM 3081-K)---NETLIa test problems (minimum degree ordering heuristic) ~ 

Problem Phase Iiter. Total iter. Time (sec.) Objective value 

Afiro 1 15 0.08 -4.6475315 e +02 
ADLittle 1 18 0.27 2.2549496 e +05 
Scagr7 3 19 0.43 -2.3313898 e +06 
Sc205 3 20 0.66 -5.2202061 e +01 
Share2b 4 21 0.69 -4.1573224 e +02 
Sharelb 5 33 1.47 -7.6589319 e +04 
Scorpion 4 19 1.22 1.8781248 e +03 
Scagr25 3 21 1.7l -1.4753433 e +07 
ScTapl 5 23 2.00 1.4122488 e +03 
BrandY 24 24 2.79 1.5185099 e +03 
Scsdl 2 16 1.10 8.6666666 e +00 
Israel 6 29 8.22 -8.9664483 e +05 
BandM 4 24 3.46 -1.5862802 e +02 
Scfxml 30 30 4.94 1.8416759 e +04 
E226 30 30 3.54 -1.8751929 e +01 
Scrs8 29 29 5.07 9.0429695 e +02 
Beaconfd 17 17 1.51 3.3592486 e +04 
Scsd6 2 18 2.13 5.0500000 e +01 
ShipO4s 4 22 2.85 1.7987145 e +06 
Scfxm2 29 29 9.28 3.6660261 e +04 
Ship04l 4 21 4.71 1.7933245 e +06 
ShipOSs 4 21 3.30 1.9200982 e +06 
ScTap2 5 25 13.55 1.7248068 e +03 
Scfxm3 30 30 14.25 5.4901254 e +04 
Shipl2s 3 23 4.17 1.4892361 e +06 
Scsd8 2 18 4.22 9.0500000 e +02 
ScTap3 6 27 19.59 1.4240000 e +03 
CzProb 3 35 14.33 2.1851927 e +06 
Ship081 4 23 8.12 1.9090552 e +06 
Shipl21 4 23 10.07 1.4701879 e +06 

1 Problem 25FV47 was not solved with Algorithm II, as its current implementation does not incorporate 
a dense window data structure (Adler et al., 1989) necessary to solve this problem under a 4 Mbytes 
memory limit. 

F r o m  t h e  r e s u l t s  a b o v e ,  we  m a k e  t h e  f o l l o w i n g  o b s e r v a t i o n s :  

• I t e r a t i o n s  fo r  A l g o r i t h m  I v a r y  f r o m  19 to 55 ( see  T a b l e s  8.1.3 a n d  8.1.4),  

g r o w i n g  s l o w l y  w i t h  p r o b l e m  size.  

• A l g o r i t h m  I is, in  g e n e r a l ,  f a s t e r  t h a n  MINOS, w i t h  a s p e e d - u p  o f  u p  to 10.7 

( s ee  T a b l e  8.1.6 a n d  F i g u r e s  1 a n d  2). T h e  to t a l  p r o b l e m  se t  e x e c u t i o n  t i m e  w a s  

5.14 t i m e s  f a s t e r .  MINOS, w a s  f a s t e r  o n  5 s m a l l  p r o b l e m s ,  all  h a v i n g  less  t h a n  225 

r o w s  a n d  3500  n o n z e r o  m a t r i x  e l e m e n t s .  

• I f  t h e  t e s t  p r o b l e m s  a re  c a t e g o r i z e d  i n to  t h r e e  g r o u p s  a c c o r d i n g  to  n u m b e r  o f  

n o n z e r o  e l e m e n t s :  " s m a l l "  (Afiro-ShipO4s), " m e d i u m "  (Scfxrn2-Shipl2s) a n d  

" l a r g e "  (ScsdS-Ship121), A l g o r i t h m  I is, f o r  e a c h  c o r r e s p o n d i n g  c a t e g o r y ,  o n  t he  
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Table 8.1.6 

Comparison of run times 0BM 3090)--NETLIB test problems (minimum local fill-in ordering heuristic) 

Problem MINOS Alg. I Alg. II MINOs/Alg. I MINOS/AIg. II 
time time time I time ratio time ratio 1 
(sec.) (sec.) (see.) 

Afiro 0.01 0.05 0.08 0.2 0.5 
ADLittle 0.23 0.13 0.27 1.8 1.7 
Scagr7 0.29 0.18 0.43 1.6 1.2 
Sc205 0.45 0.26 0.66 1.7 1.6 
Share2b 0.26 0.32 0.69 0.8 0.9 
Sharelb 1.27 0.47 1.47 2.7 1.8 
Seorpion 1.06 0.49 1.22 2.2 2.1 
Scagr25 4.54 0.70 0.71 6.5 6.1 
ScTapl 1.98 0.80 2.00 2.5 1.7 
Brandy 1.34 1.49 2.79 0.9 1.1 
Sesdl 1.02 0.44 1.10 2.3 2.2 
Israel 1.54 4.01 8.22 0.4 0.4 
BandM 2.54 1.26 3.46 2.0 1.9 
Scfxml 2.04 1.66 4.94 1.2 1.0 
E226 3.68 1.58 3.54 2.3 1.7 
Scrs8 5.64 2.28 5.07 2.5 1.9 
Beaeonfd 0.18 0.62 1.51 0.3 0.3 
Scsd6 2.69 0.84 2.13 3.2 3.9 
ShipO4s 3.54 1.01 2.85 3.5 2.1 
Scfxm2 8.18 3.83 9,28 2.1 1.8 
Ship041 7.18 1.39 4.71 5.2 2.5 
ShipOSs 9.16 1.35 3.30 6.8 4.6 
SeTap2 22.02 5.52 13.52 4.0 2.8 
Scfxm3 19.31 5.87 14.25 3.3 2.5 
Ship12s 12.78 1.75 4.17 7.3 5.6 
Scsd8 14.53 1.82 4.22 8.0 7.7 
SeTap3 32.87 7.78 18.95 4.2 3.0 
CzProb 39.08 3.64 14.33 10.7 4.3 
25FV47 217.67 31.70 NA 6.9 NA 
Ship081 14.72 2.44 8.12 6.0 4.0 
Ship121 26,10 3.43 10.07 7.6 5.5 

1 IBM 3081-K CPU times and minimum degree ordering heuristic in Algorithm II. 

a v e r a g e  1.8, 4.0 a n d  6.8 t i m e s  f a s t e r  t h a n  MINOS. O n e  m a y  i n f e r  a g r o w t h  in  t h e  

r e l a t i v e  s p e e d  o f  A l g o r i t h m  I w i t h  r e s p e c t  to  MINOS, as  p r o b l e m  s izes  i n c r e a s e .  

• I n  T a b l e  8.1.7, w h e r e  p r o b l e m s  w i t h  s i m i l a r  s t r u c t u r e  a r e  g r o u p e d  t o g e t h e r ,  o n e  

c a n  o b s e r v e  t h a t  MINOS'S d i s a d v a n t a g e  in  n u m b e r  o f  i t e r a t i o n s  g r o w s  w i t h  p r o b l e m  

size,  w h i l e  i ts a d v a n t a g e  in  t i m e  p e r  i t e r a t i o n  s e e m s  to  l eve l  off f o r  t h e  l a r g e r  

p r o b l e m s .  T h i s  is so,  b e c a u s e  MINOS r e f a c t o r s  t h e  b a s i s  a f t e r  a f ixed  n u m b e r  o f  

i t e r a t i o n s .  R e f a c t o r i z a t i o n  r e q u i r e s  w o r k  t h a t  is in  t h e  s a m e  o r d e r  o f  o n e  i t e r a t i o n  

o f  A l g o r i t h m  I, d o m i n a t i n g  t h e  w o r k  c a r r i e d  o u t  in  t h e  i n t e r m e d i a t e  i t e r a t i o n s .  A l s o ,  

as  t h e  p r o b l e m  size i n c r e a s e s ,  t h e  o v e r h e a d  i n c u r r e d  b y  A l g o r i t h m  I in  t h e  p r e p r o c e s s -  

i ng  is a b s o r b e d  a n d  t h e r e f o r e  o n e  s h o u l d  e x p e c t  t h e  r a t i o  o f  w o r k  p e r  i t e r a t i o n  
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Fig. 1. MINOS 4.0 and Algorithm I (cPu times, I B M  3090)--NETLIB test problems (minimum local fill-in 
ordering heuristic in Algorithm I). (Test problem 25FV47 is not included in this graph.) 

between the two algorithms to be at worst proportional to the inverse of the 

refactorization frequency. Thus, relative to simplex based codes, Algorithm I 
becomes increasingly faster as the problems get larger. 

• The optimal objective values reported in Table 8.1.3 are accurate within 6 and 

8 digits if compared to the values reported in (Gay, 1985, 1986). The primal solution 

computed at termination was accurate in most cases with the exception of problems 

C z P r o b  and 2 5 F V 4 7  (see Table 8.1.8). The primal-dual relation presented for 

problem I s rae l  are based on an implementation using direct factorization to compute 

the search directions at each iteration. 
• All of  the above considerations made for Algorithm I are valid for Algorithm 

IL Furthermore, Algorithm II requires on average 26% less iterations to converge 

to 8 digit accuracy than Algorithm I. However, this does not translate into any 

significant gain in solution time, since the extra work per iteration in the current 

implementation offsets the savings in the number of iterations. We believe that by 
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Fig. 2. MINOS 4.o/Algorithm I (cPu time ratio, IBM 3090)--NETLIB test problems (minimum local fill-in 
ordering heuristic in Algorithm I). 

refining the extra computation, further reduction in work per iteration in Algorithm 

II is possible, leading to a faster implementation. 
• The conjugate gradient algorithm, with column density parameter A = 0.3, was 

important for solving test problem Israel .  Factorization times for that problem were 

reduced significantly, when compared with an earlier version of  Algorithm I, where 

the conjugate gradient routine was not implemented. Even though dropping a few 

dense columns did not significantly affect convergence of the dual solution, it did 

not generate a direction precise enough for computing an accurate primal solution 

at termination. This, however, can be accomplished by means of a more exact 
solution to the system defining the last direction. Actually, by using an exact 

factorization in the last iteration the accuracy of the primal solution for problem 

I s rae l  was similar to those reported for the other problems. 

• Comparing Table 8.1.3 and Table 8.1.4 we observe a clear advantage in using 

the minimum local fill-in ordering heuristic. While the ordering algorithm for this 
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Table 8.1.7 

Iteration, time per iteration and total time ratios for NETLIB subgroups (IBM 3090) (minimum local fill-in 
ordering heuristic) 

Problem R o w s  Columns MINOS/Alg. I MINOS/AIg. I MINOS/AIg. I 
iter. ratio time/iter, ratio time ratio 

Scsdl 77 760 13.7 0.169 2.32 
Scsd6 147 1350 26.2 0.122 3.20 
Scsd8 397 2750 69. l 0.115 7.98 

Scfxml 330 600 13.2 0.093 1.23 
Scfxm2 660 1200 20.3 0.105 2.14 
Scfxm3 990 1800 29.9 0.110 3.29 

ScTapl 300 660 9.2 0.268 2.47 
ScTap2 1090 2500 33.0 0.121 3.99 
ScTap3 1480 3340 35.4 0.119 4.22 

ShipO4s 402 1506 10.3 0.340 3.50 
ShipOSs 778 2467 20.5 0.330 6.79 
Ship12s 1151 2869 20.5 0.356 7.30 

Ship041 402 2166 21.2 0.244 5.17 
Ship081 778 4363 30.9 0.195 6.03 
Shipl21 1151 5533 39.6 0.192 7.61 

heur is t ic  usua l ly  involves  longer  p rocess ing  t imes,  the reduc t ion  in fill-in results in 

a fas ter  G a u s s i a n  e l imina t ion  p rocedure .  Since the same order ing  is used in every 

i te ra t ion  o f  the l inear  p r o g r a m m i n g  a lgor i thm,  the  total  savings more  than  offsets 

the extra  p rocess ing  in the o rder ing  p rocedure .  The sum of  the so lu t ion  t imes 

( inc luding  reorder ing)  for  all test  p rob l ems  was r educed  f rom 119.10 seconds  to 

89.11 seconds  with min ima l  local  fill-in, co r r e spond ing  to a 25% reduct ion .  Solut ion 

t imes for  A lgo r i t hm I with min ima l  local  fill-in were fas ter  on 21 o f  the 31 test 

p rob l ems  and  on 11 o f  the  12 p rob l ems  having  more  than  5000 nonze ro  e lements  

(see de Carva lho ,  1987). 

8.2. Multi-commodity network f low problems 

In this sect ion,  we r epor t  on 11 m u l t i - c o m m o d i t y  ne twork  flow p rob lems  genera ted  

with MNETGN (Ali and  Kenn ing ton ,  1977), a r a n d o m  m u l t i - c o m m o d i t y  ne twork  

flow p r o b l e m  genera tor .  MNETGN genera tes  a r a n d o m  ne twork  s t ructure  based  on 

the n u m b e r  o f  arcs and  nodes  supp l i ed  by  the user. A dd i t i ona l  user  specif icat ions 

inc lude  the n u m b e r  o f  commodi t i e s  and  the ranges o f  arc  costs and  capaci t ies .  Table  

8.2.1 d i sp lays  the bas ic  da ta  for  this set o f  test p rob lems .  We genera ted  mult i -  

c o m m o d i t y  ne twork  flow p r o b l e m  by varying the n u m b e r  o f  nodes  and  commodi t i es  

and  keeping  the same re la t ive  number  o f  arcs. The test p rob lems  were  solved with 

Algor i thm I, M~NOS and  MCNF85 (Kenn ing ton ,  1979), a special  pu rpose  s implex 

code  for  m u l t i - c o m m o d i t y  ne twork  flow prob lems .  A lgor i thm I used  the min imum 

degree  o rder ing  heur is t ic  and  the same p a r a m e t e r  se lect ion desc r ibed  in Sect ion 
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Table 8.1.8 

Primal dual relations-Algorithm I (I~M 3090)--NETLIB test problems 
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Problem Relative Max. normal. Min. normal. Max. normal. 
duality gap primal infeas, primal entry complem, viol. 

Afiro 3.56 e -09 1.58 e -15 -5.76 e -24  7.99 e -12 
ADLittle 3.69 e -09 1.05 e -11 -9.67 e -22  3.06 e -12 
Scagr7 3.16 e -09 2,31 e -10  -4.02 e -20  6.27 e -13 
Sc205 2.41 e -09 2,23 e -13 -2.61 e -02 2.73 e -13 
Share 2b 6.83 e -11 2.09 e -12 -1.06 e -16 1.84 e -12 
Sharelb 3.33 e -09 3.26 e -09 -1.73 e -21 8.31 e -15 
Scorpion 2.84 e -09 5.27 e -12  -6.07 e -13 1.14 e -12 
Scagr25 1.06 e -08 1.32 e -10  -9.73 e -23 4.50 e -13 
ScTapl 2.25 e -09 1.41 e -13 -2.96 e -21 9.40 e -14  
Brandy 1.34 e -09 4.00 e -06  -6.91 e -04  5.43 e -14  
Scsdl 3.31 e -09 4.90 e -13 -1.05 e -14  1.17 e -11 
Israel 1.22 e -09  5.46 e -12 -5.38 e -24  1.11 e -15 
BandM 1.06 e -08 2.12 e -09 -1.28 e -16  1.76 e -13 
Scfxml 1.20 e -07 7.29 e -07 -8.78 e -19 5.03 e -13 
E226 4.10 e -09 3.36 e -07 -5.94 e -05 1.51 e -13 
Scrs8 1.70 e -09  7.28 e -06 -1.67 e -09 3.55 e -15 
Beaconfd 1.44 e -09 1.42 e -06 -6.48 e -06 9.23 e -12 
Scsd6 9.81 e -10  4.30 e -10 -1.61 e -16 7.15 e -13 
ShipO4s 8.34 e -09 2.41 e -09 -4.95 e -14 1.45 e -11 
Scfxm2 1.54 e -08 5.99 e -10  -1.78 e -19 2.19 e -13 
Ship041 2.15 e -09 2.25 e -11 -1.75 e -16  3.01 e -12  
ShipO8s 1.56 e -09 1.09 e -11 -4.24 e -18 1.40 e -12  
ScTap2 1.06 e -08 9.57 e -15 -6.09 e -20  2.00 e -13 
Scfxm3 9.29 e -09 4.11 e -10  -5.37 e -20  8.30 e -14  
Shipl2s 8.16 e -09 1.78 e -09 -1.74 e -15 2.96 e -12  
Scsd8 4.26 e -09 1.35 e -14  -4.67 e -21 6.15 e -13 
ScTap3 1.73 e -09  1.08 e -14  -1.01 e -20 4.23 e -14  
CzProb 1.60 e -09 1.11 e -05 -1,02 e -19 1.19 e -14  
25FV47 1.22 e -08 5.43 e -03 -3.17 e -06 7.54 e - 15 
Ship081 4.11 e -10  1.02 e -09 -3.05 e -18 4.29 e -13 
Ship121 1.27 e -09 9.38 e -10 -2.19 e -17 2.83 e -13 

8.1. Al l  r u n s  w e r e  c a r r i e d  o u t  o n  a n  IBM 3090. T a b l e s  8 . 2 . 2 - 8 . 2 . 4  a n d  F i g u r e  3 p r e s e n t  

t h e  s t a t i s t i c s  f o r  t h e s e  r u n s .  

W e  l is t  b e l o w  a f e w  o b s e r v a t i o n s  o n  t h e  t e s t  r e s u l t s  r e p o r t e d  o n  t h i s  s e c t i o n .  

• M u l t i c o m m o d i t y  n e t w o r k s  p r o v i d e  a n  i m p o r t a n t  c l a s s  o f  t e s t  p r o b l e m s  o n  w h i c h  

a g e n e r a l  p u r p o s e  s i m p l e x  m e t h o d  p e r f o r m s  p o o r l y  ( s e e  T a b l e  8.2.3 a n d  F i g u r e  3) .  

T h e  b e h a v i o r  o f  o u r  i m p l e m e n t a t i o n  o f  A l g o r i t h m  I c o n f i r m s  o u r  e a r l i e r  o b s e r v a t i o n  

t h a t  t h e  r e l a t i v e  s p e e d - u p  in  r e l a t i o n  t o  t h e  s i m p l e x  m e t h o d  g r o w s  w i t h  s ize .  A 

s i m i l a r  l e v e l i n g  off o f  t h e  t i m e  p e r  i t e r a t i o n  r a t i o s  b e t w e e n  t h e  t w o  s i m p l e x  b a s e d  

c o d e s  a n d  A l g o r i t h m  I is o b s e r v e d  (see T a b l e s  8.2.5 a n d  8.2.6) .  T h e  o n l y  e x c e p t i o n  

w a s  f o r  t h e  MCNF85 to  A l g o r i t h m  I r a t i o  o n  t h e  5 - c o m m o d i t y  p r o b l e m s .  T h e  t r e n d  

in  t h e  d a t a  s u g g e s t s  t h a t  l e v e l i n g  off s h o u l d  o n l y  o c c u r  f o r  l a r g e r  n e t w o r k s ,  i.e. 
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Table 8.2.1 

Multi-commodity network flow test problems statistics 

Problem Nodes Commodities LP rows LP columns nonz(A) 

MUL031 300 1 1406 2606 5212 
MUL041 400 1 1888 2488 6976 
MUL051 500 1 2360 4360 8720 
MUL061 600 1 2853 5253 10506 

MUL043 400 3 2008 4027 9670 
MUL053 500 3 2489 4949 11876 
MUL063 600 3 2981 5882 14126 

MUL035 300 5 208l 4436 11196 
MUL045 400 5 2793 5948 15068 
MUL055 500 5 3477 7637 19182 
MUL065 600 5 4135 8800 22140 

Table 8.2.2 

Algorithm I test statistics (IBM 3o9o)--Multicommodity networks (minimum 
degree ordering heuristic in Algorithm I) 

Problem Phase Iiter. Total iter. Time (sec.) 

MUL031 3 33 6.51 
MUL041 2 28 ll.79 
MUL05I 2 33 23.07 
MUL06I 2 31 30.96 

MUL043 2 27 24.27 
MUL053 2 30 47.84 
MUL063 2 28 58.57 

MUL035 2 30 55.81 
MUL045 2 30 104.34 
MUL055 2 36 204.71 
MUL065 2 35 309.50 

networks with more than 600 nodes. As before, the number of iterations grows 
slowly, never exceeding 36. 

• It is interesting to note that despite being a general purpose implementation, 
Algorithm I performed comparably to MCNFSS. A tailored implementation of 
Algorithm I (e.g. with integer operations and specialized Gaussian elimination) 
could improve on current results. Furthermore, the trend in the data (Table 8.2.6) 
suggests that for larger problems Algorithm I could outperform M C N F 8 5 .  

• The objective values for the solutions obtained with our implementation of 
Algorithm I achieved 8 digits accuracy when compared to the values obtained by 
MINOS. Also a feasible primal solution was recovered at the end of the algorithm 
with the same degree of  accuracy. 



L Adler et al. / An implementation of Karmarkar's algorithm 

Table 8.2.3 

MINOS 4.0 test statistics (IBM 3o9o)--Multicommodity networks 

Problem Phase I iter. Total iter. Time (sec.) 

MUL031 362 940 12.73 
MUL041 457 1351 24.11 
MUL051 620 1807 40.65 
MUL061 817 2358 63.88 

MUL043 2498 5926 196.38 
MUL053 3366 8115 345.69 
MUL063 4855 12286 677.31 

MUL035 2930 6691 249.71 
MUL045 4611 12193 666.58 
MUL055 5919 15238 1045.67 
MUL065 7693 21915 1885.34 
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Table 8.2.4 

MCNF85 test 
networks 

statistics (IBM 309o)--Multicommodity 

Problem Total iter. Time (sec.) 

MUL031 931 7.42 
MUL041 1087 11.39 
MUL051 1892 24.87 
MUL061 3082 53.45 

MUL043 4983 45.23 
MUL053 5158 55.60 
MUL063 16983 243.35 

MUL035 4132 34.64 
MUL045 10558 111.30 
MUL055 8862 121.66 
MUL065 16624 260.44 

8.3. T i m b e r  harves t  s c h e d u l i n g  p r o b l e m s  

In  this section, we report  on 11 t imber  harvest  schedul ing problems generated with 

FORPLAN (Johnson,  1986). Based on  data collected for a Uni ted  States na t iona l  

forest, a series of t imber  harvest  schedul ing models  of increasing sizes were generated.  

U n d e r  the f ramework of FORPLAN, a forest is divided into m a n a g e m e n t  uni ts  called 

ana ly s i s  areas,  each compris ing  a collect ion of  acres f rom across the forest, sharing 

similar si lvicultural  and  economic  characteristics. Our  test problems were created 

by successively increasing the n u m b e r  of analysis  areas, resul t ing in  models  that  

represent  subsets of the original  forest. FORPLAN is widely used th roughout  the 

Uni ted  States na t iona l  forest system, yielding very large l inear  programs that pose 
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Table 8.2.5 

M~Nos/Algorithm I performance ratios--Multicommodity networks (minimum local fill-in ordering 
heuristic) 

Problem Nodes Commodities MINOS/Alg. I MINOS/AIg. I MINos/Alg. I 
iter. ratio time/iter, ratio time ratio 

MUL031 300 1 28.5 0.069 1.96 
MUL041 400 1 48.3 0.042 2.04 
MUL051 500 1 54.8 0.032 1.76 
MUL061 600 1 76.1 0.027 2.06 

MUL043 400 3 219.5 0.037 8.09 
MUL053 500 3 270.5 0.027 7.23 
MUL063 600 3 438.8 0.026 11.56 

MUL035 300 5 223.0 0.020 4.47 
MUL045 400 5 406.4 0.016 6.39 
MUL055 500 5 423.3 0.012 5.11 
MUL065 600 5 626.l 0.010 6.09 

Table 8.2.6 

MCNF85/Algorithm I performance ratios--Multicommodity networks (minimum local fill-in ordering 
heuristic) 

Problem Nodes Commodities MCNF85/Alg. I MCNF85/AIg. I MCNFS5/AIg. I 
iter. ratio time/iter, ratio time ratio 

MUL031 300 1 28.2 0.0404 1.14 
MUL041 400 1 38.8 0.0249 0.97 
MUL051 500 1 57.3 0.0188 1.08 
MUL061 600 1 99.4 0.0174 1.73 

MUL043 400 3 184.6 0.0101 1.86 
MUL053 500 3 171.9 0.0068 1.16 
MUL063 600 3 606.5 0.0069 4.15 

MUL035 300 5 137.7 0.0045 0.62 
MUL045 400 5 351.9 0.0030 1.07 
MUL055 500 5 246.2 0.0024 0.59 
MUL065 600 5 475.0 0.0018 0.84 

a c o n s i d e r a b l e  c h a l l e n g e  to  l inea r  p r o g r a m m i n g  codes .  T a b l e  8.3.1 p re sen t s  the  bas ic  

s tat is t ics  o f  this f a m i l y  o f  test  p r o b l e m s .  

F r o m  T a b l e  8.3.1, we  obse rve  tha t  t he  test  p r o b l e m s  h a v e  s ign i f i can t ly  m o r e  

va r i ab les  t h a n  cons t ra in t s .  This  cha rac t e r i s t i c  is a c c e n t u a t e d  wi th  p r o b l e m  size. In  

this  s i tua t ion ,  m o s t  a d v a n c e d  s i m p l e x  i m p l e m e n t a t i o n s  p r o v i d e  a c h o i c e  o f  p r i c ing  

s t ra tegies .  I n  pa r t i cu l a r ,  MINOS a l lows  fo r  part ia l  pricing, a s c h e m e  in w h i c h  the  

c o l u m n s  o f  t he  coef f ic ien t  m a t r i x  a re  p a r t i t i o n e d  in to  e q u a l  segments .  I n  e a c h  pricing 

o p e r a t i o n ,  t he  sea rch  fo r  t he  i n c o m i n g  b a s i c  va r i ab l e  is l i m i t e d  to one  segment .  This  

r e d u c e s  the  w o r k  r e q u i r e d  fo r  e a c h  o p e r a t i o n ,  but ,  o f  course ,  has  no  p r e d i c t a b l e  



L Adler et al. / An implementation of  Karmarkar 's  algorithm 327 

cPu Time 

(seconds) 

1900 - 

1800 

1700 

1600- 

1500- 

1400- 

1300- 

1200- 

1100- 

1000 

9OO 

8OO 

7OO 

6OO 

5OO 

4OO 

3OO 

20O 

100 

0 

MINOS 

/ 
/ /  

/ 
s 

/ 
t 

/ 
/ 

] 

A Algorithm I .-"*//~x 

t ~lr~ - ~ I t . .... 0¢ *" //// x~ x i II ' '" MCNF85 

5 10 15 20 

Number of Nonzero Elements (thousands) 

Fig. 3. MINOS 4.0, MCNF85 and Algorithm I ( ceu  times, iBM 3o9o)--Multicommodity flows (minimum 
degree ordering heuristic in Algorithm I). 

Table 8.3.1 

Timber harvest scheduling test problems statistics 

Problem LP Rows LP Columns nonz(A) 

FPKOIO 55 744 6021 
FPK040 58 973 8168 
FPK050 64 1502 12765 
FPK080 76 2486 21617 
FPKIO0 87 3357 30104 
FPK150 109 4993 43774 
FPK200 130 6667 59057 
FPK300 177 9805 86573 
FPK400 220 12570 109697 
FPK500 266 16958 149553 
FPK600 316 19991 176346 
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effect on the total number of  iterations. For this class of  test problems, the manipula- 
tion of  the PARTIAL PRICE parameter, which sets the number o f  segments in the 
partition, can impact the performance o f  M~Nos enormously.  Consequently, we 
compare MINOS with Algorithm I using the fol lowing pricing strategies: 

• Totalpricing strategy: Each pricing operation examines the total set o f  variables. 
• Default pricing strategy: Sets the PARTIAL PRICE parameter to half o f  the ratio 

o f  number of  columns to number of  rows. 
• Improved pricing strategy: Sets the PARTIAL PRICE parameter to eight times the 

ratio of  number of  columns to number of  rows. We arrived at this stragegy after 
extensive testing with some of  the test problems. 

Tables 8.3.2-8.3.8 display the results o f  running the test problems with Algorithm 
I and MINOS under the three pricing strategies. Figure 4 illustrates graphically the 

Table 8.3.2 

Algorithm 1 test statistics--Timber harvest scheduling problems (minimum 
degree ordering heuristic) 

Problem Phase I iter. Total iter. Time (sec.) 

FPKOIO 4 38 0.85 
FPK040 4 40 1.10 
FPK050 4 41 1.64 
FPK080 5 49 2.95 
FPKIO0 5 49 4.27 
FPK150 5 49 6.47 
FPK200 5 56 9.60 
FPK300 6 52 14.99 
FPK400 5 43 24.81 
FPKSO0 6 67 34.11 
FPK600 6 71 43.80 

Table 8.3.3 

MINOS 4.0 test statistics (total pricing)--Timber harvest scheduling problems 

Problem Partial Phase I Total Time 
pricing iter. iter. (sec.) 

FPK010 1 449 534 3.52 
FPK040 1 579 736 5.63 
FPK050 1 688 878 9.87 
FPK080 1 1318 1574 28.81 
FPKIO0 1 1521 1827 43.18 
FPK150 1 2350 2768 93.77 
FPK200 1 2867 3446 154.78 
FPK300 1 4570 5407 351.82 
FPK400 1 5375 7300 600.75 
FPK500 1 7322 10156 1112.68 
FPK600 1 3488 12009 1582.80 
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Table 8.3.4 

MINOS (total pricing)/Algorithm I performance ratios--Timber harvest scheduling problems 
(minimum degree ordering heuristic in Algorithm I) 
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Problem Partial MINOS/AIg. I MINOS/Alg. I MINOS/AIg. I 
pricing iter. ratio time/iter, ratio time ratio 

FPK010 1 14.05 0.2947 4.14 
FPK040 1 18.40 0.2782 5.12 
FPK050 1 21.41 0.2810 6.02 
FPK080 1 32.12 0.3040 9.77 
FPKIO0 1 37.29 0.2712 10.11 
FPK150 1 56.49 0.2566 14.49 
FPK200 1 61.54 0.2620 16.12 
FPK300 1 103.98 0.2257 23.47 
FPK400 1 169.77 0.1426 24.21 
FPK500 1 151.58 0.2152 32.62 
FPK600 1 169.14 0.2137 36.14 

Table 8.3.5 

MINOS 4.0 test statistics (default pricing)--Timber harvest scheduling problems 

Problem Partial Phase I Total Time 
pricing iter. iter. (sec.) 

FPKOIO 1 449 534 3.52 
FPK040 1 579 736 5.63 
FPK050 11 724 902 2.74 
FPK080 16 973 1259 4.48 
FPKIO0 19 1460 1832 7.39 
FPK150 22 1860 2352 11.37 
FPK200 25 2707 3369 17.94 
FPK300 27 3244 4370 29.74 
FPK400 28 4536 6035 49.13 
FPK500 31 6934 9732 93.89 
FPK600 31 3421 11364 123.62 

computational  performance of  the algorithms. All runs were carried out on an IBM 
3090 with same characteristics as in tests reported in Section 8.1. We use minimum 
degree ordering heuristic in Algorithm I. 

We close this section with a few observations on the results o f  the runs with the 
timber harvest scheduling problems. 

• The theoretical worst case analysis o f  Karmarkar's algorithm (Karmarkar, 1984) 
suggests that the number of  iterations should grow linearly with the largest dimension 
of  the coefficient matrix. This behavior is not confirmed for the variants of  the 
algorithm described here. In this set of  test problems, with number of  columns 
ranging from 744 to 19991, the number o f  iterations until convergence grows 
sublinearly, varying from 38 to 71, consistent with our earlier observation that the 
number of  iterations grows slowly with problem size. 



330 I. Adler et al. / An implementation o f  Karmarkar'  s algorithm 

Table 8.3.6 

MINOS (default pricing)/Algorithm I performance ratios--Timber harvest scheduling problems 
(minimum degree ordering heurstic in Algorithm I) 

Problem Partial MINOS/AIg. I MINos/AIg. I MINOS/Alg. I 
pricing iter. ratio time/iter, ratio time ratio 

FPK010 1 14.05 0.2947 4.14 
FPK040 1 18.40 0.2782 5.12 
FPK050 11 22.00 0.0759 1.67 
FPK080 16 25.69 0.0591 1.52 
FPKIO0 19 37.39 0.0463 1.73 
FPK150 22 48.00 0.0366 1.76 
FPK200 25 60.16 0.0311 1.87 
FPK300 27 84.04 0.0236 1.98 
FPK400 28 140.35 0.0141 1.98 
FPK500 31 145.25 0.0190 2.75 
FPK600 31 160.06 0.0176 2.82 

Table 8.3.7 

MINOS 4.0 test statistics (improved pricing)--Timber harvest scheduling problems 

Problem Partial Phase I Total Time 
pricing iter. iter. (sec.) 

FPKOIO 104 48 1738 2.54 
FPK040 128 137 812 1.52 
FPK050 160 79 478 1.04 
FPK080 184 113 333 1.13 
FPKIO0 360 77 379 1.89 
FPKISO 480 105 542 2.96 
FPK200 480 174 558 3.96 
FPK300 440 455 924 6.61 
FPK400 440 461 1049 8.41 
FPKSO0 480 387 843 9.30 
FPK600 480 729 1329 13.26 

• This collection of test problems present  an unusua l  behavior  when solved with 

MINOS. Decreasing the n u m b e r  of co lumns considered in each pricing operat ion 

reduced not  only the computa t ion  effort in each simplex operat ion,  but  also the 

total n u m b e r  of iterations. The n u m b e r  of  pivots associated with solut ion paths 

followed by different versions of the simplex method may vary greatly. In  this sense, 

inter ior  po in t  methods  display a more robust  behavior.  This recommends  caut ion 

in carrying out computa t iona l  experiments  involving the simplex method,  as varying 

a single parameter  among  different runs of  MINOS, the execut ion t ime for the two 

largest test problems is reduced by a factor of over 100. 

• Our  implementa t ion  of  Algori thm I is faster than  the most straightforward 

version of  MINOS by a wide margin  (see Table  8.3.3 and  Figure 4) and  is up to 2.8 
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C P U  T i m e  

(seconds) 

Problem Partial MINOS/Alg. I MINOS/AIg. I MINOS/AIg. I 

Pricing iter ratio t ime/ i te r  ratio time ratio 

FPKOIO 104 45.74 0.0653 2.99 
FPK040 128 20.30 0.0681 1.38 
FPK050 160 11,66 0.0544 0.63 

FPK080 184 6,80 0.0564 0.38 
FPKIO0 360 7,73 0.0572 0.44 

FPK150 480 11.06 0.0414 0.46 

FPK200 480 9.96 0.0414 0.41 
FPK300 440 17.77 0.0248 0.44 

FPK400 440 24.40 0.0139 0.34 

FPK500 480 12.58 0.0217 0.27 
FPK600 480 18.72 0.0162 0.30 

MINOS (Total Pricing) 

MINOS (Default Pricing) 

.~. . . . .  ~ Algorithm I ~ - . ~ . . - : - . - . ~ M X N O S  ~,,,,,o,.,,,r~ci,,g) 
50 100 150 200 250 

1600 - 

1500 - 

1400 - 

1300 - 

1200 - 

1100 

1000 

900-  

800 - 

700 - 

600 - 

50O - 

4 0 0  - 

300 - 

200 - 

1 0 0  - 

0 - 

0 

L Adler et a l . / A n  implementation o f  Karmarkar's  algorithm 

Table 8.3.8 

MINOS (improved pr ic ing) /Algor i thm I performance ra t ios- -Timber  harvest scheduling prob- 
lems (minimum degree ordering heuristic in Algorithm I) 

Number of Nonzero Elements (thousands) 

Fig. 4. MINOS 4.0 and Algorithm I (cPu  times, 1BM 3090)--Timber harvest problems (minimum degree 
ordering heuristic in Algorithm I). 
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times faster for runs using the default pricing strategy. However, MINOS runs up to 
3 times faster when using the improved pricing strategy in a pricing strategy obtained 
after extensive experimentation. 

• The objective values for the solutions obtained with our implementation of 
Algorithm I achieved 8 digits accuracy when compared to the values obtained by 
MINOS. Also a feasible primal solution was recovered at the end of the algorithm 
with the same degree of  accuracy. 

8.4. Interpretation of  computational experiments 

We make the following interpretation of the results of  the computational experi- 

ments. 
• Our implementation of  Algorithm I attained 7 and 8 digit accuracy in the 

objective functional for most test problems without numerical difficulties. The data 
structures and programming techniques that led to these results are described in 
Adler et al. (1989). 

• The selection of an initial interior solution as described in Section 6 plays a 
significant role in the fast convergence observed in all test problems. In this pro- 
cedure, we attempt to start the algorithm far from faces of the feasible polyhedral 
set, avoiding the difficulties described by Megiddo and Shub (1986). 

• Recovering a dual solution (primal solution in the format of the test problems) 
is an intricate proposition. Convergence of  the dual solution estimates in (5.6) is 
guaranteed under nondegeneracy only, and examples can be built where it converges 
to an infeasible solution. However, our test results display good behavior for the 
dual solutions. 

• The stopping criterion described in Section 6 resulted in the correct solution 
within the desired accuracy. An alternative criterion that checks dual complemen- 
tarity properties could have been used without loss in efficiency. 

• Using ,~ = 0,1 in updating the ATDS2A matrix, Algorithm I obtained savings 
of  over 10% in execution times, when compared to full updating, without degradation 
of  the method's numerical stability. 

• Algorithm I is sensitive to the density of  the ATDS2A matrix, hence, besides 
being sparse, the A T matrix should have a small number of  dense columns. Maintain- 
ing this matrix sparse is essential to the algorithm. 

9. Conclusion and extensions 

The computational results presented in this paper illustrate the potential of interior 
point methods for linear programming. While the implementation described here 
was developed in a short period of  time, it still outperforms MINOS 4.O on the majority 
of  problems tested. 
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For test problems from the NETLIB collection, solution time speed-ups 6 or higher 
are observed on most of mid-sized problems, and increase with problem size. Seven 
and eight digit accuracy in the objective function value was achieved on all test 
problems, except for problems ScTapl, CzProb and 25FV47. An optimal complemen- 
tary primal-dual pair was obtained for all test problems with exception of CzProb 
and 25FV47. Numerical difficulties with the LU towards the end of the algorithm 
account for these inaccuracies. 

Among the test problems is a set of multi-commodity network flow problems. 
The interior algorithm was clearly superior to MINOS and was also competitive with 
a specialized simplex algorithm, ~CNF85. For the set of timber harvest scheduling 
problems, linear programs with significantly more variables than constraints, the 
number of iterations required by Algorithm I grows slowly with the number of 
variables. However, specialized pricing strategies make the simplex method a better 
tool for solving this type of linear programming problems. 

The implementations of interior point algorithms described in this paper are still 
preliminary. Since many improvements are still possible this approach seems promis- 
ing as a general purpose solver for large real-world linear programming problems. 
Of the several extensions planned to our implementation, some are immediately 
required: 

• Implicit treatment of upper and lower bounds on the variables. 
• Feasibility adjustment of the tentative primal solution computed at the end of 

the algorithm. 
Other extensions planned are: 
• Preprocessor for increasing sparsity of input matrices. 
• Higher order approximations to the solution of system differential equations 

(3.9)-(3.11). 
• Optimal basis identification for early termination. 
• Bi-directional search for determining the step direction. 
• Develop primal and primal-dual implementations. 
• Include steps in potential function gradient direction. 
• Implementations for special LP structures, e.g. network flows and GUB. 
• Implementation for parallel computer architectures. 
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