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DISTRIBUTION OF THE TIME
OF THE FIRST k-RECORD

ILAN ADLER AND SHELDON M. Ross*

Department of Industrial Engineering and Operations Research
University of California
Berkeley, California 94720

We compute the first two moments and give a recursive formula for the gen-
erating function of the first k-record index for a sequence of independent and

identically distributed random variables that take on a finite set of possible val-
ues. When the random variables have an infinite support, we bound the distri-

bution of the index of the first k-record and show that its mean is infinite.

1. INTRODUCTION AND SUMMARY

Let X, X,, ... be independent and identically distributed finite-valued random
variables with probability mass function

pi=PlX =1}, i=1,...,m.

For a fixed positive integer k, k > 1, the random variable

T =min{n: X, < X, for exactly k of the values i, i=1,...,n)

is called the first k-record index. In Section 2 we determine its first two moments

and give a recursive formula for its probability generating function, and in Sec-

tion 3 we present an upper bound on P{T > n}.

2. EXACT RESULTS

LEMMA 1: Let Y,,Y,,... be independent Bernoulli random variables with
PlY;=0)=A=1-PfY;,=1}.
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Define

N(j)=min{n: Y1+ -+ +Y,=j]
and set M(j) = N(j) —j. Then, for k < J,

: =AY
E{sMN|Y, =1]) =
[M0 )Y =1 = | ——=
Proor: The preceding follows upon noting that, given Y, = 1, N(j) — 1 is
distributed as a negative binomial random variable with parameters j — 1 and
I —A. u

THEOREM 1: Let N\; = p;/3 0L p;, i = 1,...,m. Starting with P,,(s) = s*, the
probability generating function P,(s) = E[s”] can be recursively computed
from

i=1,....m-—1.

Pi(s) = Nis* + (1 = Nis) Py, (M).

l—)\iS

PRroOF: Suppose that the observed random variables have probability mass
function

SR
Pit c +Pm

Let 7; denote the first k-record index, and let P;(s) = E[s"]. Also, let I; be the
indicator for the event that the k-record value is not equal to 7, and note that
this event will occur if and only if the kth observed random variable is not equal
to i. Hence, if I; = 0, then T; = k. Also, if I; = 1, then T; = T;, + N;, where
T:+. is the number of variables greater than J that we need to observe to obtain
a k-record and N; is the number of values equal to / that are observed in that
time. Now, it is easy to see that, conditional on I; =1 and T;,, = j, N; is dis-
tributed as the conditional distribution of M(j) given that Y, = 1, where these
latter variables are as defined in Lemma 1. Thus, we see that

PiX=j)= j=i...,m.

Pi(s) = Nis*F + (1 = N)E[sTi+1*N]
=Nsk+ (1 = \)E[sT+E[sMN|Ti411]

=X\ \ix1-1
=Nsk+ (1 - )\,-)E[ST"*'( L=\ ) }

1 —)\iS
ek g (1 — N s = N\
=NsC+ (1 )\,s)E[( =%
S(l "‘)\,)
=Nsh+ (1 - )‘is)Pi+l<T__m“>,

and the proof is complete. -
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COROLLARY 1: Witha; =1 —X\;,
E[T] =k + (k- 1)'"2—%1 N
i
and
E[T(T = 1)] = k(k - 1)[>\. P

23] a)ay

4+ .-

N 1
+ L4
(ST * T ] (S R « 77 |

Proor: Using the notation of Theorem 1, we have shown that

Pi(s) = Nisk 4+ (1 = Nis) Py (R (5)),

where
s(1=N)
h,‘ S) =
( ) 1 - )\,‘S
Differentiation yields that
Pi(s) = ks* 7N + (1 — NeS)YA[(SYPip (Ri(8)) — X Pryy (Ri(5))-

With p; = E[T;], we obtain, upon evaluating the preceding at s = 1 and using
that A;(1) = 1 and A/ (1) = 1/(1 — A;), that

= (k= DN + pisr-
Starting with p,, = k, the preceding gives that

m-—1
pi=k+ (k=1 N, i=1,...,m,

j=i

and the first part of the theorem is established because 7 = T;.
Differentiating a second time gives

Pr(1) =k(k = 1)\ + ( l—)\)[(h ()2Pf( (1) + Piy (A7 ()]
= Nh/ ()P, (1) = N Pl (DA (1).
Letting
= P/(1) = E[T(T; - 1)],

we obtain, because A/ (1) = 2X\;/(1 — \;)?, that
1
—k(k"‘l)k’*‘ )\ Wigy-

Starting with w,, = k(k — 1), it easily follows that
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A A A
w|=k(k—1)[)\l+—3+ 3 + -+ m—1 + 1 :|’
oy [0472 4] Q] "t Qpa oy " Qg
where o; = 1 — \;, and the result is proven. a

CorOLLARY 2: [fp;=P{X =1i}>0 foralli>0, then
E[T] = oo.
Proor: If X is a random variable with probability mass function p;, i > 0, set
N=P{X=i|X=i).

" Therefore,

f[(l——)\,-)=P{X>n],

i=1

implying that

8

(1-x)=0.
i=1

!

However, this implies that
)\; = 0o,
=1

H

Now, a simple coupling argument shows that if we have a sequence of indepen-
dent observations that take on the values 1,...,m — 1, m with probabilities
Pls- -2 Pm-1, 25=m Pj then the expected time until a k-record occurs is shorter
for this sequence than it is for the sequence X}, j = 1. Hence, from Theorem 1,
we obtain that, for all m,

m-1

E[TI=k+ (k=1) 3 \,;,

i=1
and the result follows by letting m — co. , |
Remarks:

1. It follows from Ignatov’s theorem (see Engelen, Thommassen, and Ver-
vaat {11, Ross [2], and Samuels [3]), which states that the processes of
k-record values are independent and identically distributed processes for
k=1, that P{T< oo} =1.

2. When the random variables are continuous, it is easy to check that

k—1

P[T=n}=m, - nzk,

and so E[T] = .
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3. BOUNDS ON THE DISTRIBUTION OF T

Suppose that the X are positive integer-valued random variables with mass
function p; = P{X =i}, i > 0, and again let T denote the index of the first
k-record.

THEOREM 2:
oo k—1 n
P{T>n}< Y pi (r) (pi/AN) (1 = pi/N)"".
i=1 r=0

Proor: Let S; denote the index of the kth observed value that is at least as
large as j, and let V; = Xj, be the value. Also, let ¥V = X be the k-record
value. Then, because Ignatov s theorem yields that P{V =i} = p;, we have the
following:

P{T>n}=3PIT>n|V=ilp;
=ZP,P[S,>H|‘/,=I, I{/'¢jaj=ly---’i—1’9

where the final equality uses the fact that the k-record value will equal 7 if the
kth value to be at least i is equal to / and the same cannot be said of any of
the values j, j < i. Now, knowing that ¥; # j, j=1,...,{ — 1, makes it more
likely that the data values are at least as large as /, which makes the conditional
distribution of S; stochastically smaller than it would be otherwise. Hence, from

the preceding we see that

P{T>n} <), pP(S;>n|V,=

=ZP:‘P{S,'>"]

k-1 n
=202 (r) (pi/N)' (Y = pi/A)™,
i r=0
which completes the proof. n
The following corollary is immediate.

CoRrOLLARY 3: Let B;, i = 1, be negative binomial random variables with
respective parameters (k,p;/\;), and let X be independent of the B; and such
that P{X =i} =p;, i = 0. Then,

T =, By.

When p; = 0, for i > m, the preceding corollary can be used to give bounds
on the moments of 7. For instance, it yields that

EITI <k SN,

i=1
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which can be compared to the exact résult given in Theorem 1, namely,

m—1

ElT =k S\ = 3 A
i=1

i=1
For the second moment, the bound is

m

E[T?] < 3, pi[tkNi/pi)* + k(1 = Pi/N)(Ni/pi)?)

i=1

m

=k(k+1) 2 N/pi— kN,
i=1

i=1

which can be compared to the exact expression given by Theorem 1.
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