DISTRIBUTION OF THE TIME OF THE FIRST k-RECORD

Ilan Adler and Sheldon M. Ross*
Department of Industrial Engineering and Operations Research University of California
Berkeley, California 94720

We compute the first two moments and give a recursive formula for the generating function of the first k-record index for a sequence of independent and identically distributed random variables that take on a finite set of possible values. When the random variables have an infinite support, we bound the distribution of the index of the first k-record and show that its mean is infinite.

1. INTRODUCTION AND SUMMARY

Let X_{1}, X_{2}, \ldots be independent and identically distributed finite-valued random variables with probability mass function

$$
p_{i}=P\{X=i\}, \quad i=1, \ldots, m .
$$

For a fixed positive integer $k, k>1$, the random variable

$$
T=\min \left\{n: X_{n} \leq X_{i} \text { for exactly } k \text { of the values } i, i=1, \ldots, n\right\}
$$

is called the first k-record index. In Section 2 we determine its first two moments and give a recursive formula for its probability generating function, and in Section 3 we present an upper bound on $P\{T>n\}$.

2. EXACT RESULTS

Lemma 1: Let Y_{1}, Y_{2}, \ldots be independent Bernoulli random variables with

$$
P\left\{Y_{i}=0\right\}=\lambda=1-P\left\{Y_{i}=1\right\} .
$$

*Research supported by NSF grant DMI-9610046 with the University of California.

Define

$$
N(j)=\min \left\{n: Y_{1}+\cdots+Y_{n}=j\right\}
$$

and set $M(j)=N(j)-j$. Then, for $k \leq j$,

$$
E\left[s^{M(j)} \mid Y_{k}=1\right]=\left(\frac{1-\lambda}{1-\lambda s}\right)^{j-1}
$$

Proof: The preceding follows upon noting that,' given $Y_{k}=1, N(j)-1$ is distributed as a negative binomial random variable with parameters $j-1$ and $1-\lambda$.

Theorem 1: Let $\lambda_{i}=p_{i} / \sum_{j=i}^{m} p_{j}, i=1, \ldots$, m. Starting with $P_{m \prime}(s)=s^{k}$, the probability generating function $P_{1}(s)=E\left[s^{T}\right]$ can be recursively computed. from

$$
P_{i}(s)=\lambda_{i} s^{k}+\left(1-\lambda_{i} s\right) P_{i+1}\left(\frac{s\left(1-\lambda_{i}\right)}{1-\lambda_{i} s}\right), \quad i=1, \ldots, m-1 .
$$

Proof: Suppose that the observed random variables have probability mass function

$$
P\{X=j\}=\frac{p_{j}}{p_{i}+\cdots+p_{m}}, \quad j=i, \ldots, m .
$$

Let T_{i} denote the first k-record index, and let $P_{i}(s)=E\left[s^{T_{i}}\right]$. Also, let I_{i} be the indicator for the event that the k-record value is not equal to i, and note that this event will occur if and only if the k th observed random variable is not equal to i. Hence, if $I_{i}=0$, then $T_{i}=k$. Also, if $I_{i}=1$, then $T_{i}=T_{i+1}+N_{i}$, where T_{i+1} is the number of variables greater than i that we need to observe to obtain a k-record and N_{i} is the number of values equal to i that are observed in that time. Now, it is easy to see that, conditional on $I_{i}=1$ and $T_{i+1}=j, N_{i}$ is distributed as the conditional distribution of $M(j)$ given that $Y_{k}=1$, where these latter variables are as defined in Lemma 1 . Thus, we see that

$$
\begin{aligned}
P_{i}(s) & =\lambda_{i} s^{k}+\left(1-\lambda_{i}\right) E\left[s^{T_{i+1}+N_{i}}\right] \\
& =\lambda_{i} s^{k}+\left(1-\lambda_{i}\right) E\left[s^{T_{i+1}} E\left[s^{\left.N_{i} \mid T_{i+1}\right]}\right]\right. \\
& =\lambda_{i} s^{k}+\left(1-\lambda_{i}\right) E\left[s^{T_{i+1}}\left(\frac{1-\lambda_{i}}{1-\lambda_{i} s}\right)^{T_{i+1}-1}\right] \\
& =\lambda_{i} s^{k}+\left(1-\lambda_{i} s\right) E\left[\left(\frac{s\left(1-\lambda_{i}\right)}{1-\lambda_{i} s}\right)^{T_{i+1}}\right] \\
& =\lambda_{i} s^{k}+\left(1-\lambda_{i} s\right) P_{i+1}\left(\frac{s\left(1-\lambda_{i}\right)}{1-\lambda_{i} s}\right)
\end{aligned}
$$

and the proof is complete.

Corollary 1: With $\alpha_{i}=1-\lambda_{i}$,

$$
E[T]=k+(k-1) \sum_{i=1}^{m-1} \lambda_{i}
$$

and

$$
\begin{aligned}
E[T(T-1)]=k(k-1)[& {\left[\lambda_{1}+\frac{\lambda_{2}}{\alpha_{1}}+\frac{\lambda_{3}}{\alpha_{1} \alpha_{2}}+\cdots\right.} \\
& \left.+\frac{\lambda_{m-1}}{\alpha_{1} \cdots \alpha_{m-2}}+\frac{1}{\alpha_{1} \cdots \alpha_{m-1}}\right]
\end{aligned}
$$

Proof: Using the notation of Theorem 1, we have shown that

$$
P_{i}(s)=\lambda_{i} s^{k}+\left(1-\lambda_{i} s\right) P_{i+1}\left(h_{i}(s)\right),
$$

where

$$
h_{i}(s)=\frac{s\left(1-\lambda_{i}\right)}{1-\lambda_{i} s} .
$$

Differentiation yields that

$$
P_{i}^{\prime}(s)=k s^{k-1} \lambda_{i}+\left(1-\lambda_{i} s\right) h_{i}^{\prime}(s) P_{i+1}\left(h_{i}(s)\right)-\lambda_{i} P_{i+1}\left(h_{i}(s)\right) .
$$

With $\mu_{i}=E\left[T_{i}\right]$, we obtain, upon evaluating the preceding at $s=1$ and using that $h_{i}(1)=1$ and $h_{i}^{\prime}(1)=1 /\left(1-\lambda_{i}\right)$, that

$$
\mu_{i}=(k-1) \lambda_{i}+\mu_{i+1} .
$$

Starting with $\mu_{m}=k$, the preceding gives that

$$
\mu_{i}=k+(k-1) \sum_{j=i}^{m-1} \lambda_{j}, \quad i=1, \ldots, m,
$$

and the first part of the theorem is established because $T=T_{1}$.
Differentiating a second time gives

$$
\begin{aligned}
P_{i}^{\prime \prime}(1)= & k(k-1) \lambda_{i}+\left(1-\lambda_{i}\right)\left[\left(h_{i}^{\prime}(1)\right)^{2} P_{i+1}^{\prime \prime}(1)+P_{i+1}^{\prime}(1) h_{i}^{\prime \prime}(1)\right] \\
& -\lambda_{i} h_{i}^{\prime}(1) P_{i+1}^{\prime}(1)-\lambda_{i} P_{i+1}^{\prime}(1) h_{i}^{\prime}(1) .
\end{aligned}
$$

Letting

$$
\omega_{i}=P_{i}^{\prime \prime}(1)=E\left[T_{i}\left(T_{i}-1\right)\right],
$$

we obtain, because $h_{i}^{\prime \prime}(1)=2 \lambda_{i} /\left(1-\lambda_{i}\right)^{2}$, that

$$
\omega_{i}=k(k-1) \lambda_{i}+\frac{1}{1-\lambda_{i}} \omega_{i+1} .
$$

Starting with $\omega_{m}=k(k-1)$, it easily follows that

$$
\omega_{1}=k(k-1)\left[\lambda_{1}+\frac{\lambda_{2}}{\alpha_{1}}+\frac{\lambda_{3}}{\alpha_{1} \alpha_{2}}+\cdots+\frac{\lambda_{m-1}}{\alpha_{1} \cdots \alpha_{m-2}}+\frac{1}{\alpha_{1} \cdots \alpha_{1 n-1}}\right]
$$

where $\alpha_{i}=1-\lambda_{i}$, and the result is proven.
Corollary 2: If $p_{i}=P\{X=i\}>0$ for all $i>0$, then

$$
E[T]=\infty
$$

Proof: If X is a random variable with probability mass function $p_{i}, i>0$, set

$$
\lambda_{i}=P\{X=i \mid X \geq i\}
$$

Therefore,

$$
\prod_{i=1}^{n}\left(1-\lambda_{i}\right)=P\{X>n\}
$$

implying that

$$
\prod_{i=1}^{\infty}\left(1-\lambda_{i}\right)=0
$$

However, this implies that

$$
\sum_{i=1}^{\infty} \lambda_{i}=\infty .
$$

Now, a simple coupling argument shows that if we have a sequence of independent observations that take on the values $1, \ldots, m-1, m$ with probabilities $p_{1}, \ldots, p_{m-1}, \sum_{j=m}^{\infty} p_{j}$ then the expected time until a k-record occurs is shorter for this sequence than it is for the sequence $X_{j}, j \geq 1$. Hence, from Theorem 1, we obtain that, for all m,

$$
E[T] \geq k+(k-1) \sum_{i=1}^{m-1} \lambda_{i}
$$

and the result follows by letting $m \rightarrow \infty$.

Remarks:

1. It follows from Ignatov's theorem (see Engelen, Thommassen, and Vervaat [1], Ross [2], and Samuels [3]), which states that the processes of k-record values are independent and identically distributed processes for $k \geq 1$, that $P\{T<\infty\}=1$.
2. When the random variables are continuous, it is easy to check that

$$
P[T=n\}=\frac{k-1}{n(n-1)}, \quad n \geq k
$$

and so $E[T]=\infty$.

3. BOUNDS ON THE DISTRIBUTION OF T

Suppose that the X_{j} are positive integer-valued random variables with mass function $p_{i}=P\{X=i\}, i>0$, and again let T denote the index of the first k-record.

Theorem 2:

$$
P(T>n\} \leq \sum_{i=1}^{\infty} p_{i} \sum_{r=0}^{k-1}\binom{n}{r}\left(p_{i} / \lambda_{i}\right)^{r}\left(1-p_{i} / \lambda_{i}\right)^{n-r}
$$

Proof: Let S_{j} denote the index of the k th observed value that is at least as large as j, and let $V_{j}=X_{S_{j}}$ be the value. Also, let $V=X_{T}$ be the k-record value. Then, because lgnatov's theorem yields that $P\{V=i\}=p_{i}$, we have the following:

$$
\begin{aligned}
P(T>n\} & =\sum_{i} P\{T>n \mid V=i\} p_{i} \\
& =\sum_{i} p_{i} P\left\{S_{i}>n \mid V_{i}=i, V_{j} \neq j, j=1, \ldots, i-1\right\},
\end{aligned}
$$

where the final equality uses the fact that the k-record value will equal i if the k th value to be at least i is equal to i and the same cannot be said of any of the values $j, j<i$. Now, knowing that $V_{j} \neq j, j=1, \ldots, i-1$, makes it more likely that the data values are at least as large as i, which makes the conditional distribution of S_{i} stochastically smaller than it would be otherwise. Hence, from the preceding we see that

$$
\begin{aligned}
P(T>n\} & \leq \sum_{i} p_{i} P\left(S_{i}>n \mid V_{i}=i\right\} \\
& =\sum_{i} p_{i} P\left\{S_{i}>n\right\} \\
& =\sum_{i} p_{i} \sum_{r=0}^{k-1}\binom{n}{r}\left(p_{i} / \lambda_{i}\right)^{r}\left(1-p_{i} / \lambda_{i}\right)^{n-r},
\end{aligned}
$$

which completes the proof.
The following corollary is immediate.
Corollary 3: Let $B_{i}, i \geq 1$, be negative binomial random variables with respective parameters ($k, p_{i} / \lambda_{i}$), and let X be independent of the B_{i} and such that $P\{X=i\}=p_{i}, i \geq 0$. Then,

$$
T \leq_{s t} B_{X}
$$

When $p_{i}=0$, for $i>m$, the preceding corollary can be used to give bounds on the moments of T. For instance, it yields that

$$
E[T] \leq k \sum_{i=1}^{m} \lambda_{i}
$$

which can be compared to the exact result given in Theorem 1, namely,

$$
E[T]=k \sum_{i=1}^{m} \lambda_{i}-\sum_{i=1}^{m-1} \lambda_{i}
$$

For the second moment, the bound is

$$
\begin{aligned}
E\left[T^{2}\right] & \leq \sum_{i=1}^{m} p_{i}\left[\left(k \lambda_{i} / p_{i}\right)^{2}+k\left(1-p_{i} / \lambda_{i}\right)\left(\lambda_{i} / p_{i}\right)^{2}\right] \\
& =k(k+1) \sum_{i=1}^{m} \lambda_{i}^{2} / p_{i}-k \sum_{i=1}^{m} \lambda_{i}
\end{aligned}
$$

which can be compared to the exact expression given by Theorem 1.

References

1. Engelen, R., Thommassen, P., \& Vervaat, W. (1988). Ignatov's theorem - A new and short proof. Journal of Applied Probability 25(A): 229-236.
2. Ross, S.M. (1997). Introduction to probability models, 6th ed. New York: Academic Press.
3. Samuels, S. (1992). All at once proof of Ignatov's theorem. Contemporary Math 125: 231-237.
