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ADVANTAGEOUS PROPERTIES OF DUAL
TRANSHIPMENT POLYHEDRA*

I. ADLER AND S. COSARES

Abstract. The dual linear programs for the transhipment problem over a directed graph, G N, E }, are
shown to have polyhedra with properties that make them well suited to vertex visiting solution techniques, like
the simplex method. In particular, nondegenerate cases are shown to have feasible regions with considerably
fewer extreme points than the feasible sets for primal problems. The adjacency structure of feasible bases is also
shown to be quite favorable. In fact, the Hirsch Conjecture is valid when the network is complete. A dual-based
simplex method for cases of the transhipment problem, which include the shortest paths problem, is presented
that finds an optimal solution in no more than Min (I El INI + 1, INI IN- 11/2) pivots.

Key words, linear programming, network flows, hirsch conjecture
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1. Introduction. Consider a directed graph, G, having a node set,

N:(O, 1,...,m)

and an edge set, E ek i, j) edge k is directedfrom to j, k 1, n ). Let the
vector b e m represent a demand for flow at nodes 1, , m. When bi < 0, we say that
there is a supply at node i. Let cij represent the cost of sending one unit of flow across
edge i, j). The transhipment problem is defined as the task of finding an assignment of
flow to the edges that satisfies the demand at each node at minimum total cost.

A commonly used linear programming (LP) formulation for the transhipment
problem is:

TP: Min cijxij
(i,j)E

subject to: xa- xk= b j= l, ,rn
i:(i,j) E k:(j,k) E

Its dual LP, (DTP), is formulated as follows:

DTP: Max biYi
i=1

subject to: y- yi<= cij

y0=0.

(i,j)eE

A constraint for node 0 is not included in the primal formulation since it would be
redundant. For consistency, we set the (dummy) dual variable Y0 equal to O. Let A e
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158 I. ADLER AND S. COSARES

N,, x n be the node-arc incidence matrix for G, without node 0. In particular,

if ek is directed out of node

aik + if ek is directed into node

0 otherwise.

i=l,...,m, k=l,...,n

The feasible region for TP can be represented by the system, Ax b, x > 0, where
A has row rank rn and in each column there is no more than one + and no more
than one 1.

In [Tard85 ], an algorithm is presented which solves the transhipment problem in
O(n-m log rn) arithmetic operations, thus resolving the long standing question ofwhether
there exists an algorithm solving the problem in a number of steps that is bounded by a
polynomial in n and rn and is independent of the values of bi and cj, (i.e., a strongly
polynomial algorithm). The method can be described as a primal-based algorithm since
the iterates generated by it satisfy the constraints ofTP. A dual framework to the algorithm
has been developed in [Fuji85 and improved upon in [GaTa86 giving an O(m4 log m)
algorithm that solves the problem by way of the dual. This represents a significant theo-
retical improvement over the primal algorithm since n is of order m2 in dense networks.

A Simplex method for the Transhipment problem is described in [Cunn76 ]. Here,
the method for avoiding cycling under degeneracy by visiting only stronglyfeasible bases
is introduced. (See [Cunn79] for a description of its theoretical underpinnings.) In
[Or185 ], the author shows that, in contrast to more general cases, the simplex method
using Dantzig’s pivot rule solves instances of TP having upper bounds on the variables
in no more than O[(u)mn 2 log n)] pivots, when solving the problem by way of the
primal formulation, (where u represents the largest upper bound on a variable). For the
dual formulation ofthe problem, Orlin ([Or184]) presents a Simplex method that requires
no more than O(m log n) pivots, giving a strongly polynomial vertex visiting algorithm.

In an attempt to explain why the dual formulation appears to be better suited to
vertex visiting methods, like the simplex method, considerable attention has been paid
to linear programs for the dual of the transportation and assignment problems (DTAP).
These problems arise from a transhipment problem over a bipartite graph with node sets
N1 and N2 and edge set { (i, j) N1, j e. N2 }. (In the assignment problem, Nll
IN21.) It had been shown that the polyhedra associated with DTAPs have considerably
fewer vertices than those of the associated primal problems ([BaRu84]). The polyhedra
have also been shown to satisfy the Hirsch Conjecture ([Ba184]). Coupled with these
findings was the development of dual based methods for the problems having rather
good performance guarantees. Goldfarb ([Gold85 ]) and Balinski ([Ba186 ]) give simplex
algorithms solving the assignment problem that require no more than O(INll ) opera-
tions. Similar techniques have been used to solve special cases of the Transportation
problem in O(IN, 12]N21 + INulIN212) time ([KLS87]).

In the following sections, we analyze more general cases ofthe transhipment problem
and show that the dual formulation has advantages over the primal for these problems
as well. In 2, we list some special properties of TP and DTP. We present a discussion
about what happens when the node-arc incidence matrix A is a Leontief Matrix. An
interesting case is the one in which A represents a complete directed graph, where between
every pair of nodes and j there exists a symmetric pair of edges i, j) and (j, i). In 3,
we show that the dual LPs for this case have considerably fewer basic feasible solutions
than those of the primal, regardless of the values of b and c. In 4, we comment on the
adjacency structure of the feasible bases of DTP. We show that the distance between any
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DUAL TRANSHIPMENT POLYHEDRA 159

two extreme points is relatively small. In fact, the Hirsch Conjecture is shown to be valid
for instances of DTP occurring over a complete directed graph. In 5, we exploit these
results to give a simplex method for cases of DTP which include the dual to the shortest
paths problem, which require no more than

Min (I El- IN-I + 1, INI IN- 11/2)

pivots.
2. Preliminaries. Let A,; denote the jth column of A. For a set S c { 1...n },

A,s is defined as the submatrix ofA consisting only of those columns with an index in
S. A basis is defined as a set of m linearly independent columns ofA. If A,s is a basis,
it is said to be feasible for TP if the unique (basic) solution to the system, A,sxs b, is
such that Xs > O. This occurs if A b is nonnegative. The basis A** is said to be feasible
for DTP if the unique solution, Ys, to yA,s Cs, is such that

yA.j <= cj, for all j S.

We say that the basis is nondegenerate if this set of inequalities holds strictly. If the
basis is nondegenerate, the solution corresponds to a nondegenerate vertex of the poly-
hedron represented by the constraints of the problem. In such a case, no other basis
could determine the solution Ys.

For the remainder of our discussion, we will assume that the vector c is such that
there exists at least one dual feasible basis, i.e., that the network is connected and there
are no directed cycles of negative total cost (so the optimal objective function value for
TP is finite).

It is well known that a set of columns in A are linearly independent if the set of
edges in the network associated with them do not form any cycles. So every collection
of edges forming a spanning tree of the network corresponds to a basis. We will say a
spanning tree is primalfeasible or dual feasible, if it corresponds to a feasible basis for
TP or DTP, respectively.

If T is a spanning tree, the subtree of T rooted at node i, Ti, has node set

NT- j NI the unique path in Tfrom 0 to j contains node }.

A directed edge (i, j) in T is downward if the path from 0 to j in T contains node and
upward if it does not. A tree consisting solely of downward edges is called a branching
rooted out of node 0. For a partition of the nodes into sets C and C, where node 0 is in
C, we define the edges that are directed from a node in C to a node in C to be theforward
edges of the cut, { C, C }, and the edges directed from C to C to be the backward edges
of the cut C, C}.

When the matrix A has no more than one positive element in any column it is
called a Pre-LeontiefMatrix. The system Ax b, x >= 0 is called a Pre-LeontiefSubstitution
System if, in addition, b is positive. When there is at least one solution to the system,
we say that the system is a LeontiefSubstitution System (LSS) andA is a LeontiefMatrix.

The properties of LSS’s and their bases are discussed in great detail in [Dant55]
and [Vein68 ]. LSS’s have many characteristics not found in general LP’s, which makes
them worthy of special consideration.

We say that column j is in substitution class i, when the positive element of A.j is
in the ith row, and in substitution class O, if A. =< 0. The feasible bases for an LSS are
such that there is exactly one member from each of Substitution Classes 1, m. In
addition, every feasible basis ofan LSS has a nonnegative inverse, so if there is a solution
for some b > 0, then there is a solution for any b >= 0.
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160 I. ADLER AND S. COSARES

We find the following property particularly useful.
PROPOSITION 1. IrA is a LeontiefMatrix, then yTA <= c, has a finite "maximal

solution," y*, for all c for which the system is feasible. That is, every solution to the
system, , is such that <= y*. Furthermore, the system yTA >= c, has afinite "minimal
solution" for all cfor which it is feasible.

A proofofthis result can be found in CoVe72 ], where polyhedral sets with minimal
(maximal) solutions are characterized.

IfTP is feasible when b > 0, then A is a Leontief Matrix with a column ofbelonging
to substitution class if the associated edge is directed into node i. So the feasible bases
for TP with b > 0 correspond to spanning trees with each node (except node 0) having
in-degree one, which is a branching rooted out of node 0. If TP is feasible when b < 0,
then the system, (-A)x -b, x >= 0 is an LSS, with substitution classes corresponding
to the out-edges of nodes 1, ..., m, so feasible bases correspond to branchings rooted
into node 0. Consequently, if the network contains at least one branching rooted out of
(into) node 0, then, by Proposition 1, the system in DTP contains a maximal (minimal)
solution.

3. The number of feasible bases of TP, DTP. In common worst-case analyses of
vertex visiting algorithms, a relatively small number of feasible bases for a class of LP
problems would indicate that the problems in the class are likely to be solved more
quickly by the simplex method than more general problems.

Since the bases for transhipment problems must correspond to spanning trees in
the network, we are able to provide the following bounds on the number offeasible bases
for TP and its dual.

LEMMA 1. The number offeasible bases for any nondegenerate instance of TP
arisingfrom a directed complete graph with INI nodes is exactly IN] INI-2.

Proof. From Cayley’s Theorem, we know that an undirected complete graph with
IN[ nodes contains IN[ Iul- spanning trees. Given one such tree, we find an associated
feasible basis for TP as follows. If node and node j are linked in the tree, and is in the
path from node 0 to node j, we choose for the basis the column ofA corresponding to
edge (i, j) if kNT bk >= 0 or edge (j, i) if EkNT. bk <= O.

When b > O, for instance, all edges in the tree are directed downward, which is a
branching rooted out of node O. If TP has degenerate bases, the sum of the demands at
a subtree of some tree is equal to O. We could associate more than one feasible basis with
such a tree. 73

The number of spanning trees in the network which are dual feasible, it turns out,
is considerably smaller than that of the primal, in fact, the following holds.

LEMMA 2. The number offeasible bases for a nondegenerate, feasible instance of
DTP arisingfrom a directed complete graph with NI nodes can be as small as NI.

Proof. Since the graph is complete, it is guaranteed to contain a branching rooted
into node 0 and a branching rooted out ofnode 0. So there are feasible bases corresponding
to a minimal solution, y, and a maximal solution, 37. The polytope for DTP is contained
within the region, z y -< z -< 37}. Any bounded, nondegenerate, m-dimensional poly-
hedron, such as this one, must contain at least m + IN] affinely independent extreme
points.

The tightness of the bound follows from the case of DTP where

j= i/ or(i,j)=(m,O)
ij

M otherwise i,j=0,...,m
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DUAL TRANSHIPMENT POLYHEDRA 161

where M is a number larger than m. Notice that, by summing the constraints asso-
ciated with the set of edges, { (i, + ), (i + 1, + 2), (j- 1, j)}, and the set,
{ (j, j + ), ,(m, 0), (i 1, i) }, we obtain implicit constraints

-m + (j- i- 1) <= (yj- yt) <j-

for every pair ofnodes, andj, where <j. This implies that all but the m + constraints
associated with edges, (0, ), 1, 2), (m, 0) are redundant. The m + basic feasible
solutions for this case of DTP are enumerated as follows:

i<Ky= =l,..-,m K=l,...,m+l. 73
-m+i-K i>=K

The number of feasible bases for DTP is different for differing values of the vector
c. This is in contrast to the dual of transportation and assignment problems, (DTAPs).
In [BaRu84 ], the authors show that the feasible bases of any nondegenerate instance
over a complete bipartite graph, B { N, Nz, (N N) }, are in one-to-one correspon-
dence with a set of signature vectors, s 7] IN, satisfying S > O, and i=llNll Si__ INI[ +
Nzl 1. So the number of feasible bases is INI IINII+ INe[_ 2).

THZOZM 1. The tightest upper bound on the number offeasible bases for a non-
degenerate, feasible instance of DTP arisingfrom a directed complete graph with NI
nodes is 21111 )).

Proof. Consider the following dual formulation of an instance of the assignment
problem, where N N { 0, m

/" Max eru erv
subject to: u-vi<-_ci i6Nl, jeN2, i4:j

u-vi<=O irN, jrN2, i=j

Vo O.

Independent of the values in c, the polytope associated with/) has no more than (2ram)
2(INI- 1)
Inl- vertices. One of the faces of the polytope,

F= {(u,v)luj-vj=O,j=O, ,m},
is equivalent to the nondegenerate, feasibility set of DTP, thus the number of feasible
bases for DTP is bound as stated.

The upper bound is tight when co i( INI -j), since a one-to-one correspondence
can be drawn between the feasible bases for this case and a set of degree vectors, d
;m +1 satisfying di > 0, and 7’= 0 di NI 1. There are Iul- such vectors.

Let d (do, "’, din) be some such degree vector. Notice that at least one element
from this vector must be equal to 0. So let d { ds, dr}, where S { k ld > 0 } and
T= {kla= o}.

Consider the following subset of the constraints from the instance of DTP:

y-yi<=i(INl-j) iS, jeT

yo=0.

Notice that this set ofconstraints resembles that ofthe dual formulation ofsome instance
of the Transportation problem (DTAP), which is known to be nondegenerate since it is
equivalent to a cross-free case, as described in [BaRu84 ]. Notice also that ds constitutes
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162 I. ADLER AND S. COSARES

a valid signature vector for this DTAP. Let z Zs, zr) be the unique basic solution
associated with this signature.

Ifz also satisfies the remaining inequalities from the instance ofDTP, we can conclude
that it is a basic feasible solution to the instance at hand. If the constraints are satisfied
with strictness, then z is a unique, nondegenerate solution corresponding with d.

The constraints that are binding at z correspond to edges that comprise a tree span-
ning nodes 0, m. Since a tree is a connected subgraph, we know that the following
is true.

For any j T there exists an [ S such that

zj- zi =/"(IN] -j),

zk- z; =</’(IN[ k) for all other k T

implying that, zk zj <= [(j k). Since 0 =</’, j, k < [N[, we can conclude that z
zj <j([N[ k).j, k T.

Also, for any e S there exists a e T such that

zj- zi i([U[ -f),

zj zh <-- h IN] f for all other h e S

so, zi- zh <= (h i)( NI -f). Since 0 _-< f, i, h < NI, we see that

zi-zh<h([N[ -i). i,heS.

And, for any pair h S, k T there exist/" S and f e T such that

z z/- =/"( IN[ k), z] zh h ([ N[ -)
where

z z{ <-_ i( U[ f
so, z- z <-_ {(k-A h(IN] -A < k(]N] h).

Therefore, the all of the constraints of this instance of DTP are satisfied; and z is
2(IN[-1)) nondegenerate, basic feasible solutions. Klone of( IN[

COROLLARY. The number ofd-dimensional faces in the polytope for DTP arising

from a directed complete graph with IN[ nodes, when feasible and nondegenerate, is no
more than

(2(]NI-llN]-)-d)(]l N[-1).d
Proof. The number of bounded faces of the polytope for an instance of DTAP has

been established in [BaRu84 ]. This bound holds for DTP since its entire feasible region
is on face F of the DTAP, /, described above. When co i(m + j), all of the
vertices, hence all of the bounded faces of the polytope of/ lie on F, so the bound
is tight.

We wish to point out that the face, F, described in the proof, is the optimal face for
problem/, whenever cis such that DTP is feasible. (Notice that the value ofthe objective
function must be less than zero whenever u < vj. for some j.) Therefore, a (Phase I)
feasible starting basis for DTP can be found by way of an efficient strongly polynomial
simplex method by solving/ using either the method of [Ba186] or [Gold85 ].

4. The "distance" between feasible bases of DTP. Two feasible bases, B and
are adjacent if they have rn columns ofA in common. To travel from feasible basis
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DUAL TRANSHIPMENT POLYHEDRA 163

B to an adjacent basis requires a pivot. To describe a pivot for DTP, consider the for-
mulation with the addition of slack variables:

DTP: Max biYi
i=1

subject to yj- Yi-t- zij cij i,j)E

y0 0 Zij O.

If (i, j) is in the tree T associated with feasible basis B then zij 0. Increasing some
from 0 corresponds to dropping (i, j) from T, which cuts the nodes into sets, C and C
(where node 0 belongs to C).

If (i, j) is an upward edge, then C is the set of nodes in the subtree of T rooted at
node i. To maintain feasibility, any increase in zij of A must be accompanied by an
increase of A in each of Yk, k C. This results in a 4( Eke b) change in the objective
function value.

Thus, the (possibly negative) reduced cost of dropping (i,j) from the tree is equal
to the total demand for flow at the subtree rooted at node i.

As y, k C increases, the slack in the constraints associated with the forward edges
of { C, C} decreases. If no forward edge exists, then A can be made arbitrarily large,
without violating any constraints. Otherwise, A is limited by the slack in the constraints
associated with these edges. When a constraint becomes binding, we obtain a new solution,
33. The now binding constraint is called the entering constraint, giving a new basis/ and
dual feasible tree ?.

If there is degeneracy, there may be more than one candidate for the entering con-
straint during a pivot. It is also possible that some candidate entering constraint is already
binding, so a pivot may occur without changes in the values of y and z.

If (i, j) is a downward edge, a pivot can be similarly described. The reduced cost of
dropping i, j) from the tree is equal to the total supply at the nodes in the subtree rooted
at node j. In a nondegenerate pivot, the entering edge is backward in the cut { C, C}.
Under degeneracy, however, there may exist candidate entering edges which are forward.

The distance between two feasible bases is defined to be the smallest number of
pivots necessary to get from one to the other. If the distance between every pair of bases
for an LP is relatively small, then there is reason to believe that the LP is fairly well
suited to some vertex visiting method.

Suppose some instance of TP is feasible for b > 0. Then, as we have seen, there is
a dual feasible basis B*, which determines a maximal solution to DTP, y*, and has an
associated tree T*, which is a branching rooted out of node 0.

For some dual feasible basis, B, with associated tree, T, and solution, yk, let

S { 0 } U { { 1, m } there exists a pathfrom 0 to inT fq T* }.

Note that S implies that y Yi*.
LEMMA 3. If(i, j) T and S then y. y.
Proof. Since (i, j) e T and S, y y cij y yi*. Since y* is a feasible

solution, y. y[ <-co. So, y >= yj.*. But since y* is maximal, y y*. []

LEMMA 4. If j) T* and y y*. then yi y[
Proof. Since (i j) eT* and y.=y.*j,Y*-Yi*=c0 y-y? Since y

is a feasible solution, y- y <-cir. So, y >= y?. But since y? is maximal, y
Yi.
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164 I. ADLER AND S. COSARES

THEOREM 2. Suppose B* is a feasible basis for DTP arisingfrom a network with
NI nodes and EI edges. IfB* corresponds to a branching rooted out ofnode O, then

the distance between B* and any otherfeasible basis, say B, is bounded by

Proof. We construct a sequence of pivots that starts with B and terminates with
B* which is no longer than the bound stated.

Suppose k pivots have been performed, giving dual feasible solution yk and dual
feasible tree, Tk. While Tk4 T*, choose as the next edge to drop from Tk any edge
(i, j) such that exactly one of or j is a member of Sk.

An edge (p, q) is chosen from the set of candidate entering edges, which is forward
in the cut { C, t }, giving a new tree, Tk + 1, and a new feasible solution, yk+ . (We know
that forward (p, q) exists, else the branching T* doesn’t exist.)

There are three possible occurrences, shown in the following cases.
Case 1. p Sk. Then, Sk+ S. While this event does not contribute to the

progress toward B*, we will make assurances that (i, j) is not an entering edge in any
subsequent pivots. (Notice that (i, j) could never enter again if it is an upward edge,
since the only entering edges are either directed away from S + or are disjoint from it.)

Case 2. prS’ and (p,q) rT*. Then with respect to T /, qrSk/, so
IS+ >__ ISl / .

Case 3. p S and (p, q) T*. In this case, (p, q) may have been an edge in a
previous tree, so we would rather not allow this edge to enter. We choose to select a
different entering edge that satisfies either Case or Case 2. We will show, with respect
to the new solution y+, that such an edge exists.

From Lemma 3 we know that since (p, q) is a candidate entering edge, yq+ must
be equal to its terminal value y, which implies that the solution y+ is degenerate,
(i.e., there is more than one basis corresponding to y/ and (p, q) is not the only
allowable downward entering edge for the pivot). An alternative entering edge can be
found as follows:

Set h q.
Let (g, h) be the unique edge in T* directed into node h. By Lemma 4, yg+
y. Ifg C, then (g, h) is an acceptable entering edge. Otherwise, set h equal to g
and repeat.

Suppose, initially, that TO has no edges in common with T*. By construction, edges
belonging to T* are never to be dropped. Since there are no more than EI NI /

edges not belonging to T*, and no edge can be dropped more than once, the distance
between B and B* is bounded by EI NI / 1.

For the case when the graph is dense, we should notice that if Sl s, then the
number of valid next edges is bounded by [NI s. It is impossible for all of the
valid next edges to be dropped, without an occurrence of Case 2, (otherwise there would
be no edges in T* joining S to t, which is impossible since T* is a spanning tree).

So, if Sl 1, (i.e., SO 0 }), there can be no more than NI consecutive
occurrences of Case 1. Hence, the total number of pivots, K, guaranteeing that Sl
IN[ is bounded by NI- /

We point out that if/ is a dual feasible branching rooted into node 0, it corresponds
to the minimal solution of the system, yrA <= c. Since the feasible bases of the sys-
tem, yrA -<- c are in one-to-one correspondence with the feasible bases of the system,
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DUAL TRANSHIPMENT POLYHEDRA 165

yT(--A) <= c, could be found by a similar sequence of pivots as is used to find the basis
for the maximal solution of yT(-A) <= c.

Also, for many transhipment problems, the choice of root node 0 is arbitrary. By
renumbering the nodes, we see that the basis for a dual feasible branching rooted out of
or into some node r, if one exists, is never more than min (1 El ]NI + 1, (lvl)) pivots
away from the other dual feasible bases.

COROLLARY. Ifsomefeasible basis of DTP, say B, has k columns ofA in common
with the basis for a dual feasible branching, then the distance between the two bases is
bounded by min

Proof. Even if So { 0 }, there cannot be more than NI k valid next edges,
since edges that are in T* are never dropped. So the total number of pivots necessary to
guarantee that S/I NI, is bounded by

[N[-k-l+[N[-k-2+"’+l=(
Nondegenerate polytopes ofdimension d, being determined by k linear inequalities,

are said to satisfy the Hirsch Conjecture if the distance between any pair of feasible bases
is bounded by k- d. Cases of TP and DTP known to have polytopes satisfying the
Hirsch Conjecture include the assignment problem ([Ba174]), special cases of the trans-
portation problem ([BaRu74 ]), DTAPs over complete bipartite graphs ([ Ba184 ]), the
shortest path problem ([ Saig69 ]), and more generally, TPs that are also LSSs ([Grin71 ).
The above results allow us to extend this list to include some other cases of DTP.

THEOREM 3. The polytope for DTP arising from a directed complete graph with
IN] nodes satisfies the Hirsch conjecture. That is, the distance between any twofeasible
bases is bounded by (IN[ )2o

Proof. Let B and B2 be dual feasible bases. Since the graph is complete, TP is
feasible when b > 0 and when b < 0, so DTP has feasible bases corresponding to branchings
rooted out of and into node 0. By Theorem 2, the distance between B and any of these
bases is bounded by (ll).

Let e be an edge incident to node 0 in the tree, T2, associated with B2. If e is directed
into (out of) node 0 then, by Lemma 3, T2 shares edge e with some dual feasible branching,
/, rooted into (out of) node 0. By the Corollary of Theorem 2, the distance between B2

and/ is bounded by (]N[2-- 1). So the distance between B and B2 is bounded by (I1) +
(IU12"- 1) (IN[ 1) 2. [S]

5. The Simplex method for special cases ofDTP. Having established that the feasible
bases for the instance ofDTP with n edges and m + nodes are no more than m 2 pivots
away from each other, we now attempt to determine just how well a simplex method is
expected to perform on particular instances of the problem. Ideally, there would be a
simple rule for choosing the entering and leaving variables for the pivots, which would
follow the sequence ofbases ofminimum length, while improving the objective function
at each step. For general LPs, there is no guarantee that such rules exist. (For DTP
however, there is a rule which follows a sequence to an optimal basis containing no more
than O(m log m) pivots [Or184].)

Let us divert our attention to a special case of the transhipment problem called the
shortest (0 to all i) paths problem (SP), which is formulated as follows:

SP: Min crx DSP: Max ery
subject to Ax subject to A ry <_ c

x>=0
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166 I. ADLER AND S. COSARES

This problem has been shown to be easily solved by variants of Dijkstra’s method
Dijk59 ). Until the time ofthis writing, the best simplex method requires O(mZn log m)

pivots for the primal formulation and O(m log m) pivots for the dual formulation,
([ Or185 ]). For this and other cases of TP and DTP we are able to prove the following
theorem.

THEOREM 4. When b > O, as in,for example, the shortest paths problem, an optimal
solution to DTP (DSP) can befound by the simplex method, startingfrom anyfeasible
basis, after no more than min (I El INI + 1, (11)) pivots, by using Dantzig’s Pivot-
ing Rule.

Proof. When b > 0, feasible bases corresponding to the maximal solution, y*, are
optimal. Starting from feasible basis, B, with corresponding tree, T, the result holds if
Dantzig’s rule chooses to drop an edge that is a valid next edge as is defined in the proof
of Theorem 2. This would have to be the edge with the largest reduced cost. Recall that
it will be acceptable to terminate with any dual feasible basis that corresponds to a
branching rooted out of node 0.

As we have seen, the reduced cost of dropping an upward tree edge, (i, j), is equal
to the total flow demanded from the subtree rooted at i, which is positive when b > 0.
(When all bk 1, the reduced cost is precisely the number of nodes in the subtree at
node i.)

Let S {0} tO {ie {1, m}l. The path from 0 to in T consists of down-
ward edges. }

Suppose that the edge (i, j) e T has the largest reduced cost. Edge i, j) must be an
upward edge, where nodej belongs to S, otherwise the path in T from node 0 to j would
have to contain some other upward edge, (g, h). In that case, both ofnodes andj would
be in the subtree of T, rooted at g, contradicting that (i, j) has the largest reduced cost.

Since all of the dropped edges are upward, we can always choose an entering edge
that is forward if a branching exists. This edge satisfies either Case or Case 2 as in the
proof of Theorem 2, so i, j) is a valid next edge. The Simplex method terminates when
there are no more upward tree edges, so the terminal basis corresponds to a dual feasible
branching, which is optimal. [::]

When b >= 0, feasible bases corresponding to the maximal solution, y*, are also
optimal. In this case, however, it is possible that some edge with the largest reduced cost
is not a valid next edge. By modifying the rule so that the edge with the largest reduced
cost, which also has one of its nodes belonging to the set S, is chosen, we could solve
this case of TP with the same performance bound as above.

Notice that cases of DTP where b -< 0 can be solved analogously. These cases can
be posed as minimization problems where the next edge chosen is the one with the
smallest reduced cost.

6. Remarks. The number ofbasic feasible solutions and the distance between them
has been used as a yardstick on how well or how poorly we could expect a vertex visiting
method to perform on a given problem. Since, when using a simplex method, each pivot
must result in an improvement to the value of the objective function, (improvements of
0 are acceptable), other interesting measures for the suitability of an LP to the method
can be introduced. They include the longest and shortest monotonic distance between
feasible bases. This is, respectively, the length of the longest and shortest sequence of
pivots between two feasible bases, when we insist on the monotonicity of some linear
function. The simplex method could do no better than travel to the optimal basis along
the shortest monotonic path and no worse than travel along the longest path, so these
measures would be quite useful in the attempt to provide tighter bounds on the expected
performance of a simplex method for these problems.
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DUAL TRANSHIPMENT POLYHEDRA 167

Similar measures have yet to be developed for judging the relative suitability of a
particular LP to interior point methods. These are algorithms for which the iterates move
within the interior ofthe feasible region, hence allowing for the possibility of shortcutting
what would otherwise be long sequences of pivots. The addition of such measures make
way for a better informed decision about which solution technique to use and whether
to solve the primal or dual formulation of the problem at hand. It would be interesting
to determine whether these measures, once developed, would also show a preference to
solving the transhipment problem via DTP rather than TP.

We have noted that some of the results reported above can be attributed to the fact
that the constraint matrix for the transhipment problem is pre-Leontief. Since this is also
true for generalized transhipment problems, where the flow across each edge is scaled by
some positive constant, we expect to find favorable results here as well. Preliminary
investigations have shown that this is indeed the case.

Acknowledgment. The support of the United States Office of Naval Research is
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