LOWER BOUNDS FOR MAXIMUM DIAMETERS OF POLYTOPES*

Ilan ADLER

University of California, Berkeley, Calif. U.S.A.

Received 17 May 1972 Revised manuscript received 24 April 1974

The maximum diameter over all d-dimensional polytopes with n facets, $\Delta(d,n)$, represents the number of iterations required to solve the "worst" linear program using the ideal vertex-following algorithm. Hence $\Delta(d,n)$ measures, in a sense, the theoretical efficiency of such algorithms.

The main result of the paper is that $\Delta(d,n) \ge [(n-d)-(n-d)/[5d/4]] + 1$ for $n \ge d+1$, and that these bounds are sharp for all known values of $\Delta(d,n)$.

0. Introduction

The diameter of a given polytope P is defined as the smallest integer k such that any two vertices of P can be joined by a path (of adjacent vertices) of length less than or equal to k. Let us denote by $\Delta(d, n)$ the maximum diameter of all d-dimensional polytopes with n facets.

The main result of this paper is the presentation of improved lower bounds for $\Delta(d, n)$.

The investigation of maximum diameters of polytopes is closely related to the study of efficiency of "vertex following" algorithms of linear programming, which start with a vertex and proceeds along successive adjacent vertices, according to some specified rule, until an optimal vertex is reached. Since, the maximum diameter of d-dimensional polytopes with n facets represents, in a sense, the number of iterations required to solve the "worst" linear program with n - m equations in n

^{*} This research has been supported by the National Science Foundation under Grant GP-30961X with the University of California.

nonnegative variables using the "best" vertex following algorithm. The main tools which are used to establish the new lower bounds for $\Delta(d, n)$ is the construction of product and summation of simple polytopes, those constructions are introduced in Section 2 together with some preliminary theorems. Then in Section 3 we present and prove the main result of the paper, namely that

$$\Delta(d,n) \ge \left\lceil (n-d) - \frac{(n-d)}{\left\lceil 5d/4 \right\rceil} \right\rceil + 1 \qquad (n \ge d+1),$$

and that these bounds are sharp for all the known values of $\Delta(d, n)$. It is also shown that these new bounds are slightly better than previously known lower bounds which were presented by Klee [4] and Klee and Walkup [5].

1. Notations and definitions

A convex polytope (or simply a polytope) is a bounded nonempty intersection of a finite number of closed half spaces in a finite-dimensional real vector space. The faces of a polytope P are the intersections of P with its various supporting hyperplanes. Zero-, one- and (d-1)-dimensional faces of a d-dimensional polytope P are called, respectively, the vertices, edges and facets of P. Two faces are said to be incident if one contains the other. A d-dimensional polytope is simple if each of its vertices is incident to exactly d edges.

Since it was shown by Klee and Walkup [5] that $\Delta(d, n)$ can be determined by considering only *simple* polytopes, we shall restrict our attention to simple polytopes and shall denote by $\mathcal{P}(d, n)$ the set of all d-dimensional simple polytopes with n facets.

As usual, [x] denotes the largest integer less than or equal to x.

2. Product and sum of polytopes

2.1. Product of polytopes

Let $P_i \in \mathcal{P}(d_i, n_i)$ (i = 1,2). We define the product $P_1 \otimes P_2$ of P_1

and P_2 by

$$P_1 \otimes P_2 = \{(x_1, x_2): x_i \in P_i; i = 1, 2\}$$

Theorem 2.1.

$$P_1 \otimes P_2 \in \mathcal{P}(d_1 + d_2, n_1 + n_2).$$

Proof. The proof follows directly from the definition.

2.2. Sum of simple polytopes

The following construction was suggested by Barnett [3], and its combinatorial equivalent independently by Adler [1]. The following discussion follows the one given in [3].

Let $P_i \in \mathcal{P}(d, n_i)$, i = 1, 2.

- (1) Choose arbitrarily two vertices v_1 and v_2 from P_1 and P_2 , respectively.
- (2) Truncate vertices v_i producing polytopes P_i^1 with simplical facets F_i (i = 1, 2) which were created by the truncation.
- (3) Take a hyperplane H passing through v_1 and apply a projective transformation τ_1 which sends H to infinity. In $\tau_1(P_1^1)$, all facets meeting $\tau_1(F_1)$ will be parallel. Apply the same kind of transformation τ_2 to P_2^1 .
- (4) Apply an affine transformation α_1 to $\tau_1(P_1^1)$ which will produce a polytope $P_1^2 = \alpha_1[\tau_1(P_1^1)]$ in which one facet meeting $\alpha_1[\tau_1(F_1)]$ is perpendicular to it. Note that all facets meeting $\alpha_1[\tau_1(F_1)]$ will be perpendicular to it. Apply the same kind of affine transformation α_2 to $\tau_2(P_2^1)$ to produce $P_2^2 = \alpha_2[\tau_2(P_2^1)]$.
- (5) Apply an affine transformation α_3 to P_1^2 which will take $\alpha_1[\tau_1(F_1)]$ onto $\alpha_2[\tau_2(F_2)]$ and leaves the faces meeting $\alpha_1[\tau_1(F_1)]$ perpendicular to it.
- (6) Place P_2^2 and $\alpha_3(P_1^2)$ so that $\alpha_3[\alpha_1(\tau_1(F_1))]$ and $\alpha_2[\tau_2(F_2)]$ coincide and so that the interior of P_2^2 misses the interior of $\alpha_3(P_1^2)$.

The polytope produced by this process will be called the sum of P_1 and P_2 and be denoted by $P_1 \oplus P_2$. Note that $P_1 \oplus P_2$ depends on the choice of v_1 and v_2 together with the choice of the several transformation mentioned above. For simplicity, we omit this dependence from the notation.

Note that all the facets of P_i (after the transformation) which do not

contain v_i (i = 1, 2) are facets of $P_1 \oplus P_2$ and that the d facets of P_1 which intersect at v_1 together with the d facets of P_2 which intersect at v_2 form (after the transformations) the remaining d facets of $P_1 \oplus P_2$.

Theorem 2.2.

$$P_1 \oplus P_2 \in \mathcal{P}(d, n_1 + n_2 - d).$$

Proof. The proof follows immediately from the definition and the comment following it.

3. Lower bounds for maximum diameters of polytopes

Let P be a polytope and let v, \bar{v} be vertices of P. A path of length k from v to \bar{v} in P is a sequence of vertices $v = v_0, \ldots, v_k = \bar{v}$ such that v_i, v_{i+1} are neighbors $(i = 0, \ldots, k-1)$. The distance $\rho_P(v, \bar{v})$ between v and \bar{v} in P is the length of the shortest path joining v and \bar{v} in P. The diameter $\delta(P)$ of P is defined by

$$\delta(P) = \max \{ \rho_P(v, \overline{v}) \colon v, \overline{v} \in P \}.$$

Let us define $\Delta(d, n)$ as the maximum of $\delta(P)$, where P ranges over all d-dimensional polytopes with n facets.

We shall use the following two theorems in the construction of the lower bounds for $\Delta(d, n)$.

Theorem 3.1. Let $P_i \in \mathcal{P}(d_i, n_i)$, i = 1, 2. Then

- (i) $\delta(P_1 \otimes P_2) = \delta(P_1) + \delta(P_2)$.
- (ii) If $d_1 = d_2$, then one can sum P_1 and P_2 such that

$$\delta(P_1) + \delta(P_2) - 1 \le \delta(P_1 \oplus P_2) \le \delta(P_1) + \delta(P_2).$$

Proof. (i) Let (v_1, v_2) , $(\overline{v}_1, \overline{v}_2)$ be vertices of $P_1 \otimes P_2$, where v_i, \overline{v}_i are vertices of P_i (i = 1, 2). Let $v_i = v_i^0, \ldots, v_i^{k_i} = \overline{v}_i$ be the shortest path from v_i to \overline{v}_i in P_i (i = 1, 2). Then

$$(v_1, v_2) = (v_1^0, v_2), \dots, (v_1^{k_1}, v_2)$$

= $(\bar{v}_1, v_2^0), \dots, (\bar{v}_1, v_2^{k_2}) = (\bar{v}_1, \bar{v}_2)$

is a path of length $k_1 + k_2$ joining (v_1, v_2) to (\bar{v}_1, \bar{v}_2) in $P_1 \otimes P_2$. Hence,

$$\rho_{P_1 \otimes P_2}((v_1, v_2), (\bar{v}_1, \bar{v}_2)) \leq \rho_{P_1}(v_1, \bar{v}_1) + \rho_{P_2}(v_2, \bar{v}_2).$$

Furthermore, if (u_1, u_2) , (\bar{u}_1, \bar{u}_2) is a pair of adjacent vertices in $P_1 \otimes P_2$, where $u_i, \bar{u}_i \in P_i$ (i = 1, 2), then either $u_1 = \bar{u}_1$ and u_2 is adjacent to \bar{u}_2 in P_2 , or $u_2 = \bar{u}_2$ and u_1 is adjacent to \bar{u}_1 in P_1 . Thus

$$\rho_{P_1 \otimes P_2}((v_1, v_2), (\bar{v}_1, \bar{v}_2)) \ge \rho_{P_1}(v_1, \bar{v}_1) + \rho_{P_2}(v_2, \bar{v}_2).$$

The last two inequalities imply that

$$\rho_{P_1\otimes P_2}((v_1,v_2),(\bar{v}_1,\bar{v}_2))=\rho_{P_1}(v_1,\bar{v}_1)+\rho_{P_2}(v_2,\bar{v}_2).$$

So
$$\delta(P_1 \otimes P_2) = \delta(P_1) + \delta(P_2)$$
.

(ii) Let $v_i, \bar{v}_i \in P_i$ such that $\rho_{P_i}(v_i, \bar{v}_i) = \delta(P_i)$, i = 1, 2. Now let us sum P_1 and P_2 taking v_1 and v_2 as the two vertices which are eliminated in the summation construction.

Since $\rho(v_i, \bar{v}_i) = \delta(P_i)$, it is obvious that if v_i' is adjacent to v_i in P_i , then $\rho_{P_i}(v_i', \bar{v}_i)$ is equal to either $\delta(P_i)$ or to $\delta(P_i) - 1$, i = 1, 2. But every vertex in P_1 which is a neighbor of v_1 has exactly one adjacent vertex in P_2 which is a neighbor of v_2 and no other vertex of P_1 has adjacent vertex in P_2 . Hence,

$$\delta(P_1) + \delta(P_2) - 1 \le \delta(P_1 \oplus P_2) \le \delta(P_1) + \delta(P_2).$$

Theorem 3.2. (i) $\Delta(d_1 + d_2, n_1 + n_2) \ge \Delta(d_1, n_1) + \Delta(d_2, n_2)$ and in particular, $\Delta(d+1, n+2) \ge \Delta(d, n) + 1$.

(ii)
$$\Delta(d, n_1 + n_2 - d) \ge \Delta(d, n_1) + \Delta(d, n_2) - 1$$
.

Proof. (i) Let $P_i \in \mathcal{P}(d_i, n_i)$, where $\delta(P_i) = \Delta(d_i, n_i)$. By Theorem 2.1, $P_1 \otimes P_2 \in \mathcal{P}(d_1 + d_2, n_1 + n_2)$; hence by Theorem 3.1,

$$\Delta(d_1 + d_2, n_1 + n_2) \ge \delta(P_1 \otimes P_2) = \delta(P_1) + \delta(P_2)$$

= $\Delta(d_1, n_1) + \Delta(d_2, n_2)$.

If we let $P_1 \in \mathcal{P}(1,2)$ (i.e., P_1 is constituted from two adjacent vertices)

then, since $\Delta(1,2) = 1$,

$$\Delta(d+1,n+2) \ge \Delta(d,n)+1.$$

(ii) Let $P_i \in \mathcal{P}(d, n_i)$, where $\delta(P_i) = \Delta(d, n_i)$ (i = 1,2). By Theorem 2.2, $P_1 \oplus P_2 \in \mathcal{P}(d, n_1 + n_2 - d)$; hence by Theorem 3.1 (summing P_1 and P_2 as specified in this theorem),

$$\Delta(d, n_1 + n_2 - d) \ge \delta(P_1 \oplus P_2) \ge \delta(P_1) + \delta(P_2) - 1$$

= $\Delta(d, n_1) + \Delta(d, n_2) - 1$.

We are ready now to introduce the lower bounds for $\Delta(d, n)$.

Theorem 3.3.

$$\Delta(d,n) \ge \left[(n-d) - \frac{(n-d)}{\left[5d/4\right]} \right] + 1 \quad (n \ge d+1).$$

Proof. Let

$$Z(d, n) = \left[(n - d) - \frac{(n - d)}{[5d/4]} \right] + 1.$$

It was shown by Klee and Walkup [5] that $\Delta(d, n) \ge Z(d, n)$ for $d \le 2$. Assume that $\Delta(d-1, n) \ge Z(d-1, n)$ for some $d-1 \ge 2$ and all $n \ge d$. By Theorem 3.2 and the induction assumption,

$$\Delta(d, n) \ge \Delta(d - 1, n - 2) + 1 \ge Z(d - 1, n - 2) + 1$$

$$= \left[(n - d - 1) - \frac{(n - d - 1)}{[5(d - 1)/4]} \right] + 2.$$

Suppose $d \neq 0 \pmod{4}$, (i.e., d/4 is not an integer), then

$$Z(d-1, n-2) + 1 = \left[(n-d) - \frac{(n-d)-1}{[5d/4]-1} \right] + 1.$$

Thus, since $n-d \ge 1$,

$$Z(d-1, n-2) + 1 \ge Z(d, n)$$
 for $n-d \le [5d/4]$.

Therefore,

$$\Delta(d, n) \ge Z(d, n)$$
 for $n - d \le \lfloor 5d/4 \rfloor$ (and $d \ne 0 \pmod{4}$).

If $d = 0 \pmod{4}$, then

$$Z(d-1, n-2) + 1 = \left[(n-d) - \frac{(n-d)-1}{[5d/4]-2} \right] + 1$$

and similarly to the previous case,

$$\Delta(d, n) \ge Z(d, n)$$
 for $n - d \le \lfloor 5d/4 \rfloor - 1$ (and $d = 0 \pmod{4}$).

Furthermore, since $d = 0 \pmod{4}$, by Theorem 3.2 and because $\Delta(4, 9) = 5$ (see Adler and Dantzig [2]),

$$\Delta\left(d,d+\frac{5d}{4}\right) = \Delta\left(\frac{d}{4}\cdot 4,\frac{d}{4}\cdot 9\right) \ge \frac{d}{4}\Delta(4,9) = \frac{5d}{4} = Z\left(d,d+\frac{5d}{4}\right).$$

Hence,

$$\Delta(d, n) \ge Z(d, n)$$
 for $n - d \le \lceil 5d/4 \rceil$

(regardless of whether $d = 0 \pmod{4}$ or $d \neq 0 \pmod{4}$.

Assume now that $\Delta(d, n) \ge Z(d, n)$ for $n \le n_0$ (for some $n_0 \ge d + \lfloor 5d/4 \rfloor$). Let $(n_0 - d) = b \mod(\lfloor 5d/4 \rfloor)$ (i.e., $(n_0 - d) - b = k \lfloor 5d/4 \rfloor$ for some integer k, where $0 \le b < \lfloor 5d/4 \rfloor$).

By Theorem 3.2 and the induction assumption,

$$\Delta(d, n_0 + 1) \ge \Delta(d, n_0 - b) + \Delta(d, b + 1 + d) - 1$$

$$\ge Z(d, n_0 - b) + Z(d, b + 1 + d) - 1$$

$$= \left[(n_0 - b - d) - \frac{(n_0 - b - d)}{[5d/4]} \right] + 1$$

$$+ \left[(b + 1 + d - d) - \frac{(b + 1 + d - d)}{[5d/4]} \right] + 1 - 1$$

I. Adler, Lower bounds for maximum diameters of polytopes

$$= \left[k \left[\frac{5d}{4} \right] - \frac{k \left[\frac{5d}{4} \right]}{\left[\frac{5d}{4} \right]} \right] + \left[(b+1) - \frac{(b+1)}{\left[\frac{5d}{4} \right]} \right] + 1$$

$$= \left[(n_0 + 1 - d) - \frac{(n_0 + 1 - d)}{\left[\frac{5d}{4} \right]} \right] + 1$$

$$= Z(d, n_0 + 1).$$

Hence, $\Delta(d, n) \ge Z(d, n)$ for all d and n for which $\Delta(d, n)$ is defined.

Remarks

(1) The previous known lower bounds for $\Delta(d, n)$ (Klee [4]) were

$$(d-1)[n/d] - d + 2.$$

It is easily seen that the new bounds presented in Theorem 4.1 are slightly better since

$$(d-1)\left[\frac{n}{d}\right] - d + 2 \le \left[(n-d) - \frac{n-d}{d}\right] + 1$$
$$\le \left[(n-d) - \frac{n-d}{\left[5d/4\right]}\right] + 1.$$

In fact, Klee and Walkup [5] showed that $\Delta(4, 9) = 5$ while the old lower bound for $\Delta(4, d)$ is (4 - 1)[9/4] - 4 + 2 = 4. Based on this value for $\Delta(4, 9)$, Klee and Walkup [5] introduce a table of lower bounds for $\Delta(d, n)$ for $d \le 12$ and $n \le 24 + 2d$. It can be checked that the new lower bounds given in Theorem 4.1 are slightly better then those given in this table.

- (2) The new lower bounds for $\Delta(d, n)$ are sharp for all known values of $\Delta(d, n)$ (i.e., for d = 1, 2, 3 and for all n and d such that $n d \le 5$, see [5]).
- (3) Purely combinatorial proofs and discussion for the bounds established in Theorem 3.3 are given via the construction of *Abstract Polytopes* in [1] and [2].

References

- [1] I. Adler, "The Euler characteristic of abstract polytopes", Tech. Rept. No. 71-11, Department of Operations Research, Stanford University, Stanford, Calif. (1971).
- [2] I. Adler and G.B. Dantzig, "Maximum diameter of abstract polytopes", Mathematical Programming Study 1 (1974) 20-40.
- [3] D. Barnette, "A simple 4-dimensional nonfacet", Israel Journal of Mathematics 7 (1969) 16-20.
- [4] V. Klee, "Diameters of polyhedral graphs", Canadian Journal of Mathematics 16 (1964) 602-614.
- [5] V. Klee and D.W. Walkup, "The d-step conjecture for polyhedra of dimension d < 6", Acta Mathematica 117 (1967) 53-77.