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The maximum diameter over all d-dimensional polytopes with n facets, A(d,n), re-
presents the number of iterations required to solve the “worst” linear program using the
ideal vertex-following algorithm. Hence A(d,n) measures, in a sense, the theoretical

efficiency of such algorithms.
The main result of the paper is that A(dn) = [(n — d) — (n - d)/[5d/4]] + 1 for
n 2 d + 1, and that these bounds are sharp for all known values of A(d,n).

0. Introduction

The diameter of a given polytope P is defined as the smallest integer k
such that any two vertices of P can be joined by a path (of adjacent
vertices) of length less than or equal to k. Let us denote by A(d, n) the
maximum diameter of all d-dimensional polytopes with n facets.

The main result of this paper is the presentation of improved lower
bounds for A(d, n).

The investigation of maximum diameters of polytopes is closely
related to the study of efficiency of “vertex following” algorithms of linear
programming, which start with a vertex and proceeds along successive
adjacent vertices, according to some specified rule, until an optimal
vertex is reached. Since, the maximum diameter of d-dimensional
polytopes with n facets represents, in a sense, the number of iterations
required to solve the “worst” linear program with n — m equations in n
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nonnegative variables using the “best” vertex following algorithm. The
main tools which are used to establish the new lower bounds for A(d, n)
is the construction of product and summation of simple polytopes, those
constructions are introduced in Section 2 together with some preliminary
theorems. Then in Section 3 we present and prove the main result of the
paper, namely that

(["5‘1—/4‘;)] 1  (m=d+ 1),

and that these bounds are sharp for all the known values of A(d, n). It is
also shown that these new bounds are slightly better than previously
known lower bounds which were presented by Klee [4] and Klee and
Walkup [5].

Ad,n) = [(n —d)—

1. Notations and definitions

A convex polytope (or simply a polytope) is a bounded nonempty
intersection of a finite number of closed half spaces in a finite-dimen-
sional real vector space. The faces of a polytope P are the intersections
of P with its various supporting hyperplanes. Zero-, one- and (d — 1)-
dimensional faces of a d-dimensional polytope P are called, respectively,
the vertices, edges and facets of P. Two faces are said to be incident if one
contains the other. A d-dimensional polytope is simple if each of its
vertices is incident to exactly d edges.

Since it was shown by Klee and Walkup [5] that A(d,n) can be
determined by considering only simple polytopes, we shall restrict our
attention to simple polytopes and shall denote by 2(d, n) the set of all
d-dimensional simple polytopes with n facets.

As usual, [x] denotes the largest integer less than or equal to x.

2. Product and sum of polytopes

2.1. Product of polytopes

Let P,e ?(d, n) (i = 1,2). We define the product P, ® P, of P,
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and P, by
Py ®P, = {(xy,x;3): x;eP;;i=1,2}
Theorem 2.1.
P, ® P,eP(d, + d;,n, + n,).
Proof. The proof follows directly from the definition.
2.2. Sum of simple polytopes

The following construction was suggested by Barnett [3], and its
combinatorial equivalent independently by Adler [1]. The following
discussion follows the one given in [3].

Let P,eZ(d,n), i =1,2.

(1) Choose arbitrarily two vertices v, and v, from P, and P,, res-
pectively.

(2) Truncate vertices v; producing polytopes P} with simplical facets
F; (i = 1, 2) which were created by the truncation.

(3) Take a hyperplane H passing through v, and apply a projective
transformation t; which sends H to infinity. In 7,(P}), all facets meeting
7,(F) will be parallel. Apply the same kind of transformation 7, to P..

(4) Apply an affine transformation «, to t,(P}) which will produce a
polytope P? = o,[7,(P})] in which one facet meeting o,[v,(F,)] is
perpendicular to it. Note that all facets meeting «,[t,(F,)] will be
perpendicular to it. Apply the same kind of affine transformation «, to
1,(P}) to produce P} = a,[1,(P})].

(5) Apply an affine transformation «5 to P? which will take «, [1,(F,)]
onto a,[1,(F,)] and leaves the faces meeting «,[t,(F,)] perpendicular
to it.

(6) Place P} and a3(P?) so that a3[a,(t,(F,))] and a,[7,(F,)] coincide
and so that the interior of P misses the interior of a;(P2).

The polytope produced by this process will be called the sum of P,
and P, and be denoted by P, @ P,. Note that P, @ P, depends on the
choice of v; and v, together with the choice of the several transformation
mentioned above. For simplicity, we omit this dependence from the
notation.

Note that all the facets of P; (after the transformation) which do not
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contain v; (i = 1, 2)are facets of P, @ P, and that the d facets of P, which
intersect at v, together with the d facets of P, which intersect at v, form
(after the transformations) the remaining d facets of P, @ P,.

Theorem 2.2.
P, ® P,e®d,n, + n, —d).

Proof. The proof follows immediately from the definition and the
comment following it.

3. Lower bounds for maximum diameters of polytopes

Let P be a polytope and let v, 7 be vertices of P. A path of length k from
vto ¥ in P is a sequence of vertices v = vy, ..., v, = U such that v;, v;4,
are neighbors (i = 0,...,k — 1). The distance pp(v,?) between v and
 in P is the length of the shortest path joining v and 7 in P. The diameter
S(P) of P is defined by

6(P) = max {pp(v,?): v,0€ P}.

Let us define A(d, n) as the maximum of §(P), where P ranges over all
d-dimensional polytopes with n facets.

We shall use the following two theorems in the construction of the
lower bounds for A(d, n).

Theorem 3.1. Let P,e #(d;, n;), i = 1,2. Then
(i) o(P, ® P,) = 6(P;) + &(P,).
(@ii) Ifd, = d,, then one can sum P, and P, such that

6(P,) + 6(Py) — 1 < §(P, ® P,) < 8(P,) + &(P,).
Proof. (i) Let (v,,v,), (7,,7,) be vertices of P, ® P,, where v;, v; are

vertices of P; (i = 1,2). Let v; = v?,..., 0% = 7; be the shortest path
from v; to 3;in P; (i = 1,2). Then

(vls UZ) = (U?, 02)9 ey (v’{ls 02)

= (v, v(z)), ey Dy, Uéz) = (0,,0,)
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is a path of length k, + k, joining (v,, v,) to (9,,7,) in P, ® P,. Hence,

Pp,ep, (1, 02), (01, 03)) < pp,(v1,0) + pp,(v2, V2).

Furthermore, if (u,,u,), (u,,%,) is a pair of adjacent vertices in
P, ® P,,whereu;, u;€ P;(i = 1,2),then either u, = u, and u, is adjacent
tou, in P,, or u, = u, and u, is adjacent to u, in P,. Thus

Pe,ep,((01,02), 01, 0;)) 2 pp,(vy,0y) + pp,(v2, D3).
The last two inequalities imply that

PP,®P2((01, v3), (01,0;)) = PP,(Ul: D) + PPZ(Uz, D,).

So 6(Py ® P3) = &(Py) + &(P»).

(i1) Let v;, v; € P; such that pp (v;, 9;) = 8(P;), i = 1,2. Now let us sum
P, and P, taking v, and v, as the two vertices which are eliminated in the
summation construction.

Since p(v;, 7;) = d(P;), it is obvious that if v; is adjacent to v; in P;, then
pr v, v;) is equal to either 6(P;) or to 6(P;) — 1,i = 1, 2. But every vertex
in P, which is a neighbor of v, has exactly one adjacent vertex in P,
which is a neighbor of v, and no other vertex of P, has adjacent vertex
in P,. Hence,

O(Py) + 6(Py) — 1 < 3(Py @ P,) < 8(Py) + &(Py).
Theorem 3.2. (i) A(d, + d,,n, + n,) = A(dy, n,) + A(d,, n,) and in par-
ticular, Ad + 1,n + 2) 2 A(d,n) + 1.
(i) Ad,n, + n, — d) = Ad, n,) + A, n,) — 1.

Proof. (i) Let P;e 2(d;, n;), where &(P;) = A(d;, n;). By Theorem 2.1,
P, ® P,e?d, + d,,n; + n,); hence by Theorem 3.1,

Ad, + dy,ny + n3) 2 6(P, ® P;3) = 6(P,) + 6(P,)
= A(d,, ny) + A(d,, ny).

If welet P, € 2(1,2) (i.e., P, is constituted from two adjacent vertices)
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then, since A(l,2) =1,
Ald + 1,n + 2) 2 Ad,n) + 1.
(i) Let P, e 2(d, n;), where 8(P;) = A(d, n;) (i = 1,2). By Theorem 2.2,

P, ® P,eP(d,n, + n, — d); hence by Theorem 3.1 (summing P; and
P, as specified in this theorem),

A(d,nl +n2—d)Z(S(Plc'BPz)Za(Pl)'f'5(P2)—l
= AWd,n,) + Ald, n,) — 1.

We are ready now to introduce the lower bounds for A(d, n).

Theorem 3.3.
(n—d)]
Proof. Let
_ (n = d]
Z(d,n) = I:(n —d) - [54/4] + 1.

It was shown by Klee and Walkup [5] that A(d, n) = Z(d, n) ford < 2.
Assume that A(d — 1,n) = Z(d — 1,n) for some d — 1 =2 and all
n = d. By Theorem 3.2 and the induction assumption,

Adn)ZAd-1,n—2)+122Zd—1,n—2)+1

n—d-1)
B [‘" R 1)/4]] t2

Suppose d # 0 (mod 4), (i, d/4 is not an integer), then

Z(d—l,n—2)+1=|:(n—d)—(€5d;/‘zl)—:—ll]+1.

Thus, since n —d = 1,

Zd—1,n—2)+1=2Zd,n forn—d<=<[5d/4].




L. Adler, Lower bounds for maximum diameters of polytopes 17
Therefore,
Ald,n) = Z(d,n) forn — d < [5d/4] (and d # 0 (mod 4)).

If d = 0(mod 4), then

Z(d—l,n—2)+l=[(n—d)—([n$d—/4%]+l

and similarly to the previous case,

Ad,n) 2 Z(d,n) forn-d< [5d/4] — 1
(and d = 0 (mod 4)).

Furthermore, since d = 0 (mod 4), by Theorem 3.2 and because
A(4,9) = 5 (see Adler and Dantzig [2]),

5d d d d 5d 5d
Z)=4A(24%.9)4 =2 _ 22\
A<d,d+ 4) A(4 2 9) 7049 =2 Z<d,d+ 4)

Hence,
Ad,n) 2 Z(d,n) forn —d< [5d/4]

(regardless of whether d = 0 (mod 4) or d # 0 (mod 4).

Assume now that A(d, n) = Z(d, n)forn < no (for some n, > d + [5d/4]).
Let (no —d)=5» mod([5d/4]) (ie, (ng —d) — b = k[5d/4] for some
integer k, where 0 < b < [5d/4]).

By Theorem 3.2 and the induction assumption,

Adino + 1) = Ad,no — b) + Ad,b + 1 + d) — |
2 Z(d,ng — by + ZWd,b+ 1 + d) — |

_ (no — b — d
‘D“‘b‘”'_Tﬁﬂ_J+l

+[(b+1+d—d)—\(b+[15;4‘;—d)]+1—1
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= [k[SdM] — k[[:d‘%]] + [(b +1) - %Z%])] + 1

~ (et 1-4d
_[(n0+1—d) e J+1

= Z(d, no + l)

Hence, A(d, n) =2 Z(d, n) for all d and n for which A(d, n) is defined.

Remarks
(1) The previous known lower bounds for A(d, n) (Klee [4]) were
d— D[n/d] —d + 2.

It is easily seen that the new bounds presented in Theorem 4.1 are
slightly better since

(d—l)[g]—d+23[(n—d)—%1]+l

n—d
S':(n—d)—rs—g/“—]]'f'l.

In fact, Klee and Walkup [5] showed that A(4,9) = 5 while the old
lower bound for A(4, d)is (4 — 1)[9/4] — 4 + 2 = 4. Based on this value
for A(4,9), Klee and Walkup [5] introduce a table of lower bounds for
A(d,n)ford < 12 and n < 24 + 2d. It can be checked that the new lower
bounds given in Theorem 4.1 are slightly better then those given in this
table.

(2) The new lower bounds for A(d, n) are sharp for all known values of
A(d,n)(i.e,ford = 1,2,3and for allnand d such thatn — d < 5, see [5]).

(3) Purely combinatorial proofs and discussion for the bounds
established in Theorem 3.3 are given via the construction of Abstract
Polytopes in [1] and [2].
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