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INTRODUCTION

Given a linear program in standard form, Dantzig-Wolfe decomposition
algorithm replaces the original polytope by another one with many more
variables but fewer equations. In this note we investigate the relations
between the combinatorial structures of the two polytopes. In particular
we show that, contrary to what one intuitively expects, the diameter of
the original polytope may be smaller than the diameter of the decomposed
one. Since the diameter of a polytope gives the maximal number of itera-
tions taken by the "ideal" vertex-following algorithm, this observation
may provide a clue for the slow convergence of the decomposition algorithm

reported by some authors.

PRELIMINARY RESULTS

Given a polytope g ={x | Ax = b,x > 0} where A isan mx n

matrix, b is an m-vector and x is an n-vector. Let us partition A

40 Po
and b such that A = , b= where A is an m, X n matrix
Al bl 0 0

N . v - = . . .
and b0 is an my vector. Define 51 = {x | Alx bl,x > 0} ; to simplify

the discussion we assume that gl is bounded. Let E = (x} ey xk)
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where xl(i=l, ..., k) are all the vertices of gl and define

I t~1&
>
]
[

§={>llA01~:>\=b ,

0 , A > 0} where X is a k-vector. In

j=1 3

the following proposition we present the well known correspondence between
g and g which is the basis for the Dantzig-Wolfe decomposition algorithm

(See [1]).

Proposition 1

Let T be the linear mapping from g to g defined by T(A) = EA
Then T(z) = g (i.e. T 1is onto g). The proof of Proposition 1 can be
found in many linear programming textbooks and hence is omitted here.

The importance of Proposition 1 comes from its use in linear programming.

Given a linear program PO: min cx subject to x € X , one instead can solve

another linear program P.: min gA subject to X € Y where

1

g = cxl(i=l, .evs k) . It follows directly from Proposition 1 that if

*
A is an optimal solution of P then T(X ) is an optimal solution of

1

PO . (See [1]).

Since the simplex method, which is used to solve either problem, P0

or Pl , 1s a vertex following algorithm (i.e. the algorithm moves from

one vertex of the given polytope to another along the edges until the optimal
solution is reached) it is interesting to find out the relations between
the vertices and edges of g and g . Propositions 2, 3 and 4 shed some
light on these relationships.

Although our main interest is the relation between vertices and edges,

Proposition 2 is more general and contains some information about all faces

of X and 2 . So let us first introduce the notion of faces of a polytope.

The dimension of a given polytope g is the maximal number of affinely

<z 2
independent points contained in X . (zo, ceey 2 are affinely independent

if and only if zl - zo, ey zz - z0 are linearly independent.) Given a
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polytope g = {x l Ax = b , x > 0} let A' be a submatrix of A obtained
by omitting some columns from A . If g' = {x'" | A'x' =b , x' >0} # ¢
then g' is called a d'-dimensional face of g where d' is the dimen-
sion of g' . Zero and one dimensional faces are called vertices (or extreme
points) and edges respectively.

In the following lemma we give necessary and sufficient conditions for
a subset of g to be a face. This lemma is widely used and easy to prove,

therefore we state it without a proof.

Lemma 1

Let g be a polytope. A set F is a face of g if and only if

there exists a vector ¢ such that F = {z € g | cz = min cx}
xeX

MAIN RESULTS

Given a polytope g define Fi(g) as the set of all i~dimensional

faces of g .

Proposition 2
(i) Fe Fs(g) implies that T-l(F) € Ft(g) where t > s ,

(i11) F 1is a face of g does not necessarily imply that T(F)

ig a face of X .

Proof.

(i) By Lemma 1 there exists a vector ¢ such that
| cz = min cx} . Let cxt = gi(i=1, ..+, k) and
xeX

=1
]
-~
N
[
[

g = (gl, ey gk) then obviously, by Proposition 1,

T_l(F) = {ye g | gu = min gi} . Hence, by Lemma 1, T (F)
AeY
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is a face of z . Since F 1is of dimension s there exist

s + 1 points zo, ceey z° in F which are affinely independent,

i.e. zi - zo(i=l, ..., 8) are linearly independent or, equiva-
s s

lently, z ui(zl - zo) = 0 implies Wy o= 0(i=1l, ..., s)

1

i
where uy are real numbers.

For 1i=1, ..., s let At e T_l(zi) then

S . .
0= ] w@-m%-¢ Yo% implies w, = 0(i=1,

i=1 i=1

it o~

ui(k

., 8) . Hence, AO, ey A®

are affinely independent and
thus the dimension of T_l(F) is greater than or equal to s .

(ii) Consider the following example:

A 11100 b 3/2
A= ) I and b = Y-
i} A 0 by 5/2 |
1 1/

It is easy to verify that the extreme points of gl are:
(3/4,1,0,0,0); (5/4,0,0,0,1); (0,1,3/2,0,0); (0,1,0,3/2,0);
(0,0,5/2,0,1); (0,0,0,5/2,1). So Y is the set of all solutions

to the following system:
7/&Al + 5/4A2 + 5/2)\3 + Ab + S/ZA5 = 3/2

Al + AZ + A3 + Ab + AS + A6 =1

A 20651, ...y 5)
Moreover, ) = 6/7,0,0,0,0,1/7) is an extreme point of g

while T(X) = (9/14,6/7,0,5/14,1/7) is not an extreme point

of E.||
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In Proposition 2 we proved that to every vertex of z corresponds one
or more vertices of g . The effect of this fact on vertex following algo-
rithms is twofold. The greater number of vertices in i suggests that such
algorithms may take many more steps on 2 than on g + On the other hand
a great number of vertices may present shorter routes on g (since every
vertex has more neighbor vertices). In fact, it may be conjectured that if
one uses an ideal vertex-following algorithm, then given any two vertices
in g and corresponding vertices in z the algorithms would take no more
steps to connect those vertices in 2 than in g . In the following propo-
sition we disprove this conjecture. This observation may partially explain

the reported slow convergence of the Dantzig-Wolfe decomposition algorithm.

Proposition 3

Let xl . x2 € Fo(g) such that xl s x2 are joined by an edge of g .

This does not necessarily imply the existence of AT ¢ T_l(xi) , 1=1, 2

such that Al , AZ € FO(g) and A% and A2 are joined by an edge of g .

Proof

Consider the following example:

Then g is a 3-dimensional cube with 8 vertices and z is given by the

1

set of all solutions to the following system:

185
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2>\1+2)‘2+2A3+2)‘[‘+A5+A6+)‘7+A8=4/3

15)\l + 15)\2 + 12>\3 + 12)\4 + 12)\5 + 12)\6 + 9A7 + 9A8 =11

Al + AZ + A3 + AA + AS + A6 + A7 + A8 =1

A{20, d=1, ..., 8.

Take x' = (0,2/3,2/3,1,1/3,1/3) , x* = (1,2/3,2/3,0,1/3,1/3) obviously

xl and x2 are vertices of z which share a common edge. However the

two vertices of g in T-l(xl) are (0,0,1/3,0,1/3,0,1/3,0) and

(1/3,0,0,0,0,0,2/3,0) while the two vertices of ¥ in T—l(xz) are

(0,0,0,1/3,0,1/3,0,1/3) and (0,1/3,0,0,0,0,0,2/3) . Obviously no vertex
-1

of T (xl) shares a common edge with some vertex of T_l(xz) which proves

the proposition.ll

The significance of the last example becomes clearer when stated in
terms of diameters of polytopes. The diameter of a given polytope g is
defined as the smallest integer k such that any two vertices of z can
be joined by a vertex-following path of length of less than or equal to k .
In a sense, the diameter of a polytope gives the maximal number of itera-
tions taken by the "ideal" vertex-following algorithm. The following
proposition is a direct result of the example given in the proof of

Proposition 3.

Proposition 4

Given polytopes g and g as defined in this paper, the diameter of

g might be greater than or equal to the diameter of g .
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Remark:

The examples used in Propositions 2, 3 and 4 are by no means unique.
In fact we can construct classes of such examples. In particular, it is
interesting to note that these classes are constituted primarily of linear

programs with bounded variables.
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