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Abstract

The coupon subset collection problem is a generalization of the classical coupon collecting
problem, in that rather than collecting individual coupons we obtain, at each time point, a
random subset of coupons. The problem of interest is to determine the expected number
of subsets needed until each coupon is contained in at least one of these subsets. We
provide bounds on this number, give efficient simulation procedures for estimating it,
and then apply our results to a reliability problem.
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1. Introduction

The coupon subset collection problem utilizes a finite number of distinct types of coupons,
which are obtained by purchasing coupon packages. The sets of distinct types of coupons
contained in different packages are independent and identically distributed. Mathematically,
letS = {1, 2, . . . , s} and letSj , j = 1, . . . , m, be subsets ofS, and suppose that each purchased
package yields the subset Sj with probability αj , so

∑m
j=1 αj = 1. Let X denote the number

of subsets chosen until every element of S is contained in at least one of these subsets. We are
interested in the mean and distribution of X.

When all subsets are of size 1 the preceding is the classical coupon collecting problem (see,
for example, [2]). A special case of the coupon subsets problem is studied in [7], where it is
assumed that the number of types in a randomly chosen subset has a hypergeometric distribution,
and, conditional on its size being t , each of the

(
s
t

)
subsets of size t are equally likely. Other

related literature, as well as historical comments, can be found in [3], [4] and [7].

2. The coupon subset problem

Proposition 1. For nonnegative random variables Xi, i = 1, . . . , s,

P

(
max
i

Xi > x

)
=

s∑
j=1

(−1)j+1
∑

i1<i2<···<ij
P(min(Xi1 , . . . , Xij ) > x), (1)
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and

E

[
max
i

Xi

]
=

s∑
j=1

(−1)j+1
∑

i1<i2<···<ij
E[min(Xi1 , Xi2 , . . . , Xij )]. (2)

Moreover, for k = 1, 2, . . . s,

E

[
max
i

Xi

]
≤

k∑
j=1

(−1)j+1
∑

i1<i2<···<ij
E[min(Xi1 , Xi2 , . . . , Xij )], (3)

if k is odd, and

E

[
max
i

Xi

]
≥

k∑
j=1

(−1)j+1
∑

i1<i2<···<ij
E[min(Xi1 , Xi2 , . . . , Xij )], (4)

if k is even.

Proof. LettingAi be the event thatXi > x, (1) is just a statement of the inclusion–exclusion
probability equality. Equation (2) follows from integrating both sides of (1) from 0 to ∞. The
inequalities follow upon integration of the inclusion–exclusion probability inequalities.

Remark. Equations (1) and (2) remain valid for general Xi ; the inequalities (3) and (4),
however, require nonnegativity.

LetXi denote the number of subsets that must be chosen to obtain one that contains coupon
i, and define

X = max
i

Xi.

Let p(i1, . . . , ij ) denote the probability that a randomly chosen subset contains any of the type
coupons i1, . . . , ij . That is,

p(i1, . . . , ij ) =
∑

k:Sk∩{i1,...,ij }�=∅

αk.

Because min(Xi1 , . . . , Xij ) is geometric with parameter p(i1, . . . , ij ), we obtain the following
from Proposition 1.

Corollary 1. For an integer r

E[X] =
s∑

j=1

(−1)j+1
∑

i1<i2<···<ij

1

p(i1, i2, . . . , ij )
, (5)

P(X > r) =
s∑

j=1

(−1)j+1
∑

i1<i2<···<ij
(1 − p(i1, i2, . . . , ij ))

r . (6)

Although (5) involves a summation of 2s terms, it can be efficiently evaluated in a few special
cases which we now consider.

Note. In the following we adopt the convention that
(
a
b

) = 0 whenever a < b.
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2.1. The classical coupon collecting problem

The classical coupon collecting problem is a special case in which |Si | = 1 for all i =
1, 2, . . . , s. Substituting p(i1, i2, . . . , ij ) = p(i1) + p(i2) + · · · + p(ij ) in (5), and using
1/p = ∫ ∞

0 e−px dx, gives the following well-known expression (see, for example, [2] and [3]):

E[X] =
∫ ∞

0

[
1 −

s∏
i=1

(1 − e−p(i)x)

]
dx.

2.2. Independent subsets

In this case, a subset is selected by independently including a type i coupon in the subset
with probability p(i). Consequently, the Xi are independent random variables, giving

E[X] =
∞∑
r=0

[
1 −

s∏
i=1

[1 − (1 − p(i))r ]
]
.

2.3. Exchangeable elements

Suppose that, conditional on the event that there are k coupon types in a randomly chosen
subset, the set of coupon types is equally likely to be any of the

(
s
k

)
subsets of size k. Let βk be

the probability that the random subset is of size k, then

p(i1, i2, . . . , ij ) = 1 −
s∑

k=1

βk

(
s−j
k

)
(
s
k

) .

Consequently,

E[X] =
s∑

j=1

(−1)j+1

(
s
j

)
1 − ∑s

k=1 βk
(
s−j
k

)/(
s
k

) ,

P(X > r) =
s∑

j=1

(−1)j+1
(
s

j

)( s∑
k=1

βk

(
s−j
k

)
(
s
k

)
)r
.

Note that if all the subsets are of equal size, say βm = 1, then

E[X] =
(
s

m

) s∑
j=1

(−1)j+1

(
s
j

)
(
s
m

) − (
s−j
m

) , (7)

P(X > r) =
s∑

j=1

(−1)j+1
(
s

j

)(
s−j
m

)r
(
s
m

)r , (8)

where (7) was previously obtained in [7].

Remark. The random variables X1, . . . , Xs are clearly exchangeable under the conditions of
this subsection. In fact, these will be the only cases for which they will be exchangeable. To see
this, suppose they are exchangeable. Let 1j be the indicator for the event thatXj = 1, and note
that 11, . . . , 1s are also exchangeable. Then P(1i1 = · · · = 1ik = 1, 1j = 0, j �= i1, . . . , ik)

depends only on k. Calling this probability Pk , and letting βk = P(
∑s

i=1 1i = k), we have

Pk = βkP

(
1i1 = · · · = 1ik = 1, 1j = 0, j �= i1, . . . , ik

∣∣∣∣
s∑

i=1

1i = k

)
.
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Hence, the conditional probability on the right-hand side depends only on k, showing that,
conditional on k coupon types, the set of coupon types is equally likely to be any of the

(
s
k

)
subsets of size k.

2.4. The magic cards collecting problem

LetM1, . . . ,Mn be a partition of S and suppose that each random subset is equally likely to
be any subset of S that contains exactly mk elements of Mk , for k = 1, . . . , n. An application
of this case, which is related to the game of collecting a whole set of magic cards by purchasing
sealed packages, is presented in [1]. Let sk = |Mk|.

Let Yk = maxi∈Mk
Xi . Then X = maxk Yk , implying that

P(X > r) = 1 − P(X ≤ r) = 1 −
n∏

k=1

[1 − P(Yk > r)].

Because Yk corresponds to the time to obtain a full set in the exchangeable case having
s = sk , βmk

= 1, we see from (8) that

P(Yk > r) =
sk∑
j=1

(−1)j+1
(
sk

j

)
a(j, k)r ,

where

a(j, k) =
(
sk−j
mk

)
(
sk
mk

) , j = 1, . . . , sk, k = 1, . . . , n

we can now compute E[X] from

E[X] =
∞∑
r=0

P(X > r) =
∞∑
r=0

[
1 −

n∏
k=1

[1 − P(Yk > r)]
]
.

3. Upper bounds for the mean

As stated previously, the expression for E[X] as given in (5) involves 2s terms and thus it
is generally impractical for exact computations. A potentially more practical approach is to
use the first few terms of (3) as upper and lower bounds for E[X]. However, it turns out that
the resulting bounds are too loose to be beneficial. As an alternative, we offer in the following
upper bounds obtained by applying (3) to a simple upper bound for E[X] rather than to E[X]
itself.

Again let Xi denote the number of subsets that must be chosen to obtain one that contains
coupon i, and let X = maxi Xi .

Proposition 2. For any k ≥ 0,

E[X] ≤ k +
s∑

i=1

E[(Xi − k)+],

E[X] ≤ k +
∑
i

E[(Xi − k)+] −
∑
i<j

E[min((Xi − k)+, (Xj − k)+)]

+
∑
i<j<�

E[min((Xi − k)+, (Xj − k)+, (X� − k)+)].
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Proof. Take expectations of both sides of the inequality

X ≤ k + max
i
(Xi − k)+

and then apply (3).

Corollary 2. For any k = 0, 1, . . . ,

E[X] ≤ k +
s∑

i=1

(1 − p(i))k

p(i)
, (9)

E[X] ≤ k +
∑
i

(1 − p(i))k

p(i)
−

∑
i<j

(1 − p(i, j))k

p(i, j)
+

∑
i<j<�

(1 − p(i, j, �))k

p(i, j, �)
. (10)

Proof. Conditioning on whether min(Xi1 , . . . , Xij ) > k yields that

E[min((Xi1 − k)+, . . . , (Xij − k)+)] = (1 − p(i1, . . . , ij ))
k

p(i1, . . . , ij )
,

and the result follows from Proposition 2.

Let UB1(k),UB2(k) denote the upper bounds presented in (9) and (10) respectively. While
these bounds are valid for any nonnegative integer k, we are obviously interested in making
them as small as possible.

Noting that

∂2

∂k2
UB1(k) =

s∑
i=1

(1 − p(i))k(ln(1 − p(i)))2

p(i)
≥ 0

(thus establishing that UB1(k) is convex), we proceed to obtain k∗, the integer minimizer of
UB1(k), as follows:

• Set U = UB1(k) (where k is an arbitrary nonnegative integer).

• Starting with the interval [0, U ], use the golden ratio search to find an interval, say u, of
length less than 1, which contains the true (continuous) minimizer of UB1(k).

• If u contains an integer, then this integer is k∗. Otherwise let k∗ be determined by
rounding down (or up, depending on which yields a lower value for UB1(k)) the middle
point of u.

Because we have not been able to establish that UB2(k) is unimodal, we cannot guarantee
that the following procedure gives the the minimizing value. However, it performed well in our
numerical testing (see Section 6).

• Set k0 = �UB1(k
∗)�.

• Evaluate UB2(k) for k = k0, k0 − 1, . . . , as long as UB2(k) decreases.

• Let k̄ be the last value to be evaluated, then set the improved upper bound as UB2(k̄−1).
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4. Simulating E[X]
Suppose we simulate the process until a complete set is obtained. In addition to the raw

simulation estimator for E[X], we offer three other unbiased simulation estimators.

4.1. First simulation estimator

Let Si1 , . . . , Sir denote the sequence of distinct subsets obtained, in their order of appearance,
and let Tj denote the number of subsets collected after Sij−1 has been obtained until Sij is
obtained, j = 1, . . . , r . Then the first simulation estimator of E[X] is

EST(1) = E[X | Si1 , . . . , Sir ]

=
r∑

j=1

E[Tj | Si1 , . . . , Sir ]

= 1 + 1

1 − αi1
+ 1

1 − αi1 − αi2
+ · · · + 1

1 − ∑r−1
k=1 αik

.

The final equality following because, given the subsets that have already appeared, the time to
obtain a new subset and the identity of this subset are independent.

4.2. Second simulation estimator

Number the elements of the set S so that

p(1) ≤ p(2) ≤ · · · ≤ p(s).

Let 1j , j = 1, . . . , s, be the indicator for the event that j has not been collected at the moment
when all of 1, . . . , j − 1 have been collected. Then, letting Aj denote the additional number
of subsets needed at the moment when all of 1, . . . , j − 1 have been collected until j has also
been collected, we have

E[X] = E

[
X1 +

s∑
j=2

Aj

]
= 1

p(1)
+

s∑
j=2

1

p(j)
E[1j ].

Our second simulation estimator is

EST(2) = 1

p(1)
+

s∑
j=2

1

p(j)
1j .

4.3. Third simulation estimator

The idea used to obtain the simulation estimator EST(2) could have been used on any
permutation i1, . . . , is of the elements of S. That is, if 1{ij : i1, . . . , ij−1} is the indicator for
the event that ij is first obtained after all of i1, . . . , ij−1 have been obtained, then

1

p(i1)
+

s∑
j=2

1

p(ij )
1{ij : i1, . . . , ij−1}

is an unbiased estimator of E[X]. Hence, another estimator is obtained by taking the average
of the preceding over all s! possible permutations. That is,

EST(3) = 1

s!
∑

i1,...,is

(
1

p(i1)
+

s∑
j=2

1

p(ij )
1{ij : i1, . . . , ij−1}

)
.
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Letting B(i) denote the number of elements that are collected (strictly) earlier than i, we can
rewrite this as

EST(3) =
s∑

i=1

1

p(i)

[
1

s
+

s−1∑
j=1

j !(s − j − 1)!
s!

(
B(i)

j

)]

=
s∑

i=1

1

p(i)

B(i)∑
j=0

j !(s − j − 1)!
s!

(
B(i)

j

)
.

Remark. The simulation estimators presented aremodifications of ones given in [5] for coupon
collecting and in [6] for determining the mean coverage time of a semi-Markov process.

5. Applications

5.1. A reliability application
Consider a coherent reliability system whose set of components is T , where by coherent

we mean that there are subsets T1, . . . , Ts of T , none of which is a subset of the other, such
that the system is said to be functional if all the components of at least one of these subsets are
functional. The subsets T1, . . . , Ts are called theminimal path sets of the system. Suppose that
the system is subject to shocks, with each shock affecting a random subset of elements of T .
That is, the shocks are independent and

P{shock i affects elements in R} = αR, R ⊂ T ,
∑
R

αR = 1.

Any component that is affected by a shock becomes a failed component. Starting with all
working components, letX denote the number of shocks until the system is failed. That is,X is
the number of shocks required until at least one component of each minimal path set is affected.

By associating with each shock the subset of minimal path sets that have at least one
component that is affected by that shock, the problem reduces to the model we have been
considering. Namely, each shock (subset) affects a random subset of S = {1, . . . , s} and we
continue to observe shocks until all elements in S have been affected.

5.2. A cost application

Suppose there is a cost c incurred in obtaining a new subset and that when a full set is
obtained any extra type j coupons can be resold for the price cj , j = 1, . . . , s. That is, if Tj is
the number of type j coupons obtained, and X is, as before, the total number of subsets, then
C, the total cost, is given by

C = cX −
s∑

j=1

cj (Tj − 1).

Taking expectations gives

E[C] = cE[X] −
s∑

j=1

cjE[Tj ] +
s∑

j=1

cj

=
[
c −

s∑
j=1

cjp(j)

]
E[X] +

s∑
j=1

cj ,
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where the final equality used Wald’s equation to conclude that E[Tj ] = p(j)E[X]. Hence,
when the expected net cost of purchasing a subset is positive (that is, when c >

∑s
j=1 cjp(j))

our upper bounds on E[X] yield upper bounds on E[C].

6. Numerical examples

To gain more insight into the several upper bounds and simulation estimates offered in
Sections 3 and 4, we present in this section some numerical results based on randomly generated
examples. For two of the special cases for which we know how to calculate the exact values
for E[X] (see Subsections 2.1 and 2.2), we include a few examples comparing the exact value
to the various upper bounds and simulation estimates. We also include the results of a general
case, where no exact value is available, and compare the upper bounds to the simulation results.
In the following tables, EST(0) denotes the raw simulation estimator X.

As can be seen, the upper bounds, particularly UB2, perform well.
The simulation results detailed in Table 1 are for classical coupon problems where the

probabilities p(j) chosen were roughly of equal magnitude, with the ratio of the largest to the
smallest being around 2. As there tend to be many duplications in the classical problem, EST(1)
performs quite well. However, because of the lack of spread of the probabilities, EST(2) is a
poor estimator in these cases. (Indeed, in the case where each coupon is equally likely to be
any of the s types, an easy derivation shows that var(EST(2)) = s2

∑s−1
j=1 j/(j + 1)2, whereas

the variance of the raw simulation estimator is var(EST(0)) = s2
∑s−1

j=1(1 − j/s)/j2. The
estimator EST(3), the average of all s! of the EST(2)-type estimators, has the smallest variance
but is computationally more involved.

The simulation results detailed in Table 2 are for the independent case. Because there are
2s possible subsets there will almost never be any duplications, and so EST(1) is basically

Table 1: The classical coupons collecting problem (200 runs).

EST(0) EST(1) EST(2) EST(3)

s Exact UB1 UB2 Av Std Av Std Av Std Av Std

80 434.6 470.8 444.6 434.3 120.2 431.9 31.2 434.2 162.0 434.3 17.6
90 498.7 539.5 510.1 493.4 151.5 498.9 31.3 505.5 201.9 499.3 19.0

100 582.0 629.8 595.5 580.9 163.4 575.5 38.7 595.1 238.4 578.2 24.7
110 647.0 699.2 662.0 640.9 154.1 643.8 43.8 661.8 236.4 646.6 26.3
120 722.8 780.6 739.6 718.8 182.3 727.3 44.8 691.6 222.9 726.7 27.0

Table 2: Independent subsets (200 runs).

EST(0) EST(1) EST(2) EST(3)

s Exact UB1 UB2 Av Std Av Std Av Std Av Std

80 426.4 437.3 427.1 400.8 463.9 400.8 463.9 426.5 16.6 423.1 99.7
90 124.7 136.2 125.6 129.5 108.1 129.5 108.1 124.5 23.5 123.9 29.9

100 1349.5 1395.8 1350.4 1125.3 993.9 1125.3 993.9 1352.2 71.2 1344.4 268.8
110 169.1 191.9 172.0 157.4 81.6 157.4 81.6 176.0 59.8 169.0 20.4
120 75.6 85.2 77.3 75.4 43.7 75.4 43.7 77.2 25.9 76.7 10.9
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Table 3: The general case (300 runs).

EST(0) EST(1) EST(2) EST(3)

s Exact UB1 UB2 Av Std Av Std Av Std Av Std

80 110.2 101.5 97.0 46.7 95.5 41.6 96.9 36.4 97.0 16.3
90 91.6 84.7 82.1 38.3 81.0 35.7 81.1 31.4 79.8 12.3

100 275.6 251.3 245.5 156.6 250.0 156.6 247.2 49.3 247.9 66.0
110 288.1 252.7 245.7 158.7 242.5 126.7 245.0 79.7 246.7 54.5
120 505.8 424.0 420.3 324.2 402.3 244.9 419.2 94.1 413.7 100.7

equivalent to EST(0). The probabilities {p(j), j = 1, . . . , s, } used for the cases in Tables 2
and 3 had a much greater spread than in the cases considered in Table 1; consequently, both
EST(2) and EST(3) tended to perform quite well.

In practice, when a very precise estimate is desired it probably pays to initially do some runs
and then use the results to estimate the variance of each of the simulation estimators. Based on
these variance estimates, and the computational effort needed to determine the numerical value
of the estimators, a single estimator can be used for the remaining runs. If the computational
effort needed to evaluate the estimators from the simulated data could be ignored, then the best
estimator would be to take a weighted average of the estimators EST(1), EST(2), and EST(3).
(Because EST(1) is a conditional expectation ofX, nothing is gained by includingX = EST(0)
in the weighted average.) The optimal weights can then be estimated from the simulation.

7. The number of distinct subsets

Let Y denote the mean number of distinct subsets that must be chosen to obtain a complete
set of at least one of each type of coupon. To analyze E[Y ], let Yi denote the number of distinct
subsets needed to obtain one that contains coupon i, and note that

Y = max
i

Yi .

With B(i1, . . . , ij ) = {r : ik ∈ Sr for some k = 1, . . . , j},

E[min(Yi1 , Yi2 , . . . , Yij )] = 1 +
∑

r /∈B(i1,...,ij )
P(Sr before any St ∈ B(i1, . . . , ij ))

= 1 +
∑

r /∈B(i1,...,ij )

αr

αr + ∑
t∈B(i1,...,ij ) αt

.

Substituting the preceding into (2) provides an expression for E[Y ].
While it is rather complicated to derive the computable upper bounds to E[Y ] analogous

to those developed in Section 3, we can easily provide such bounds under the additional
assumptions that all the subsets are equally likely to be selected (that is, αi = 1/m, i =
1, . . . , m).

In this case, with n(i1, . . . , ij ) equal to the number of subsets that contain any of the coupon
types i1, . . . , ij ,

E[min(Yi1 − k, . . . , Yij − k) | min(Yi1 , . . . , Yij ) > k] = m − k + 1

n(i1, . . . , ij ) + 1
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and

P(min(Yi1 , . . . , Yij ) > k) =
(m−n(i1,...,ij )

k

)
(
m
k

) .

Therefore,

E[min((Yi1 − k)+, . . . , (Yij − k)+)] = m − k + 1

n(i1, . . . , ij ) + 1

(m−n(i1,...,ij )

k

)
(
m
k

) . (11)

Proposition 2 can be used, together with (11), to provide upper bounds for E[Y ].
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