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AN EXTENSION OF KARMARKAR TYPE ALGORITHM TO 
A CLASS OF CONVEX SEPARABLE PROGRAMMING 

PROBLEMS WITH GLOBAL LINEAR RATE 
OF CONVERGENCE*t 

RENATO D. C. MONTEIRO* AND ILAN ADLER? 

We describe a primal-dual interior point algorithm for a class of convex separable 
programming problems subject to linear constraints. Each iteration updates a penalty 
parameter and finds a Newton step associated with the Karush-Kuhn-Tucker system of 
equations which characterizes a solution of the logarithmic barrier function problem for that 

parameter. It is shown that the duality gap is reduced at each iteration by a factor of 
(1 - 8/ n), where 8 is positive and depends on some parameters associated with the 

objective function. 

1. Introduction. In Monteiro and Adler [11], an interior point primal-dual 
algorithm to solve convex quadratic programming problems has been presented which 
converges in O(rn/L) iterations with an average number of 0(n25) arithmetic 
operations per iteration. The present work discusses a variation of this algorithm 
which solves a class of separable convex programming problems subject to linear 
constraints. 

Recently, with the advent of the new interior point algorithm by Karmarkar [6] for 
solving linear programming problems, some attention has been devoted to study 
classes of problems that can be solved by interior point algorithms in polynomial time. 

The algorithm discussed in this paper is based on the logarithmic barrier function 
method and on the idea of following the path of minimizers for the logarithmic 
barrier family of problems, that is, the so called "central path". This path has been 
extensively studied in Bayer and Lagarias [1] and Meggido [9]. The logarithmic barrier 
function approach is usually attributed to Frisch [3] and is formally studied in Fiacco 
and McCormick [2] in the context of nonlinear optimization. Algorithms for linear 

programming problems based on following the central path have been presented in 
[12], [13], [5], [7] and [10]. All of these algorithms were shown to converge in 

polynomial number of arithmetic operations. Subsequently, Monteiro and Adler [11] 
developed an extension of the techniques in their previous paper [10] and presented 
an algorithm to solve convex quadratic programming problems which achieves a 

complexity of O(n-L) iterations, in the worst case, with an average computational 
effort per iteration of 0(n25) arithmetic operations, similar to the linear program- 
ming case presented in [10]. A similar result was obtained by Kojima, Mizuno and 
Yoshise [8]. The present work shows that an approach similar to the one used in [10] 
and [11] can also be applied to solve some class of separable convex programming 
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EXTENSION OF KARMARKAR ALGORITHM 

problems subject to linear constraints. An interesting feature of the algorithm 
presented in this paper is that it has global linear rate of convergence, for this 
particular class of problems. We show that the algorithm improves the value of the 
objective function at every iteration by at least a factor of (1 - 8/ /), where 8 is 
positive and depends on some parameters associated with the objective function. 

Our paper is organized as follows. In ?2, the problem is introduced and some 
theoretical background is discussed. In ?3, we present the algorithm. In ?4, we prove 
results related to the convergence properties of the algorithm. In ?5, we discuss how 
to initialize the algorithm. In ?6, we conclude the paper with some remarks. 

2. Problem description and some theoretical background. In this section, we 
introduce the class of problems which this paper is concerned with. We also review 
some results pertinent to the present work. A detailed discussion of these results can 
be found in [2] and [9]. We consider the following separable programming problem. 

n 

(P) min E i(xi) 
j=1 

s.t. Ax = b, 

x>0, x > O, 

where x = (x, ..., xn)T is an n-vector, b is an m-vector, A is an m x n matrix. The 
functions ifj, j = 1,..., n are assumed to belong to the collection of functions Y 
defined as follows. 

DEFINITION 2.1. Let I be a nonempty open subset of R which contains the 
interval (0, oo). We say that a function If: I -> R belongs to the collection Y if iI 

satisfies the following: 
(a) q e C3. 

(b) If 0 is not in the set I then limx_0+ qf(x) = oo. 
(c) There exist real numbers M > 0 and p > 0 such that for all reals x > 0 and 

y > 0, we have 

(2.1) Y"'(y) <Mmax () (x) ) (x). 

Observe that if condition (c) holds with M and p, it holds with any Mo > M and 
Po > p. From the definition above, it follows that, if / E Y then f"(x) > 0 for all real 
number x > 0. Also, if "(x) = 0 for some real x > 0 then f is of the form 
+(x) = dx + f for some constants d and f. Therefore, excepting this last case, I E Y 
is always a strictly convex function over the positive real numbers. In any case, the 
objective function of problem (P) is convex over the positive orthant. Thus, problem 
(P) enjoys all the properties of a convex programming type problem (see Proposition 
2.2 below). 

We now give some examples of functions which belong to the collection Y. 
(1) i?f(x) = dx + f, for any real numbers d and f, and with M = 0 and p = 0. 
(2) qf(x) = -log x, for x > 0, with M = 2 and p = 2. 
(3) q(x) = xd for some real d, such that d < 0 or d > 1, and with M = Id - 21 

and p = Id - 21. Note that, when d < 0, this function is only defined for x > 0. 
(4) q(x) = -d, x > 0, for some real 0 < d < 1, and with M= Id - 21 and 

p = Id - 21. 
(5) Any positive linear combination of functions in the collection Y belongs to Y. 
Since each function j in the objective function of problem (P) is in Y, there exists, 

for each j = 1,..., n, a pair of constants Mj > 0 and pj > 0 such that j, Mj and pj 
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satisfy relation (2.1). If we let 

(2.2) M= max Mj, p= max pj, 
J=l ,...,n j=l ...n 

then each function qij, together with M and p, still satisfies relation (2.1). This 
observation will be used later in ?4. 

In order to simplify the notation in what follows, we let T(x) = Ej j lj(xj). So if Ij 
denotes the domain of definition of the function krj, j = 1,..., n, the domain of the 
function P is just the Cartesian product Fnj Ji. The gradient of the function T at 
the point x = (x, ..., xn) is given by the vector VP(x) = (il(xl), ..., ,n(X,))' and 
the Hessian of P at x is given by the diagonal matrix V2p(x) - diag(l((xl), ..., 

;(Xn)). 
The Lagrangian dual problem corresponding to problem (P) is defined by 

(D) max T(x) - VP(x)Tx + bTy 

s.t. -Vt(x) + ATy + z = 0, 

z >0, 

where x and z are n-vectors and y is an m-vector. The relationship between 

problems (P) and (D) is provided by the following result known as the duality 
theorem for convex programming problems. 

PROPOSITION 2.2. (a) If problem (P) is unbounded then problem (D) is infeasible. If 
problem (D) is unbounded then problem (P) is infeasible. 

(b) If problem (P) has an optimal solution xo then there exist yo and z? such that the 

point (x, y, z) = (x?, y?, z0) is an optimal solution of problem (D). Moreover, the 

optimal values of both problems are identical. 

We define the set of interior feasible solutions of problems (P) and (D) as 

S {x E Rn; Ax = b, x > 0}, 

T- {(x,y,z) e Rn X Rm X Rn; -VP(x) + ATy +z = 0, z > 0}, 

respectively, and let 

W=-( );(x,y,z) x,y,z) e T, xe S}. 

For a point w = (x, y, z) E W, we define its duality gap g(w) to be g(w) = VT(x)Tx 
- bTy which is simply the value of the objective function of problem (P) at x minus 
the value of the objective function of problem (D) at (x, y, z). From the definition of 
the set W, one can easily verify that if w E W then g(w) = xTz. 

We impose the following assumptions: 
ASSUMPTION 2.3. (a) The set S is nonempty and bounded. 
(b) rank(A) = m. 
Condition (b) of Definition 2.1 and the fact that the set S is bounded imply that 

problem (P) has an optimal solution. Hence, by Proposition 2.2, problem (D) also has 
an optimal solution. 

The algorithm we consider in this paper is motivated by the application of the 

logarithmic barrier function technique to problem (P). The logarithmic barrier 
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function method consists of examining the family of problems 

n 

(PA) min P(x) - E In xj 
j=i 

s.t. Ax = b, 

x > 0, 

where ,u > 0 is the barrier penalty parameter. This technique is well known in the 
context of general constraint optimization problems. One solves the problem penal- 
ized by the logarithmic barrier function term for several values of the parameter i, 
with ,u decreasing to zero, and the result is a sequence of feasible points converging 
to a "solution" of the original problem. The interested reader can refer to [2] for a 
detailed discussion of this technique in the context of nonlinear constrained optimiza- 
tion. Recently this method was first reconsidered in Gill, Murray, Saunders, Tomlin 
and Wright [4] where a similarity with Karmarkar's algorithm is discussed. A compre- 
hensive analysis of the logarithmic barrier function approach as applied to linear 
programming and linear complementary problems with positive semi-definite matri- 
ces is given in [9]. 

Throughout this paper, we use the following notation. If x = (x1,..., x,) is an 
n-vector, then the corresponding capital letter X denotes the diagonal matrix 
diag(xl,..., x). Observe that the objective function of problem (P,) is a strictly 
convex function. This implies that problem (P,) has at most one global minimum, and 
that this global minimum, if it exists, is completely characterized by the Karush- 
Kuhn-Tucker stationary condition: 

VT(x) - tX-le -ATy = 0, 

Ax=b, x>0 

where e denotes the n-vector of ones and y is the vector of Lagrangian multiplier 
associated with the equality constraints of problem (P,). By introducing the n-vector 
z, this system can be rewritten in an equivalent way as 

(2.3.a) ZXe - ,ue = 0, 

(2.3.b) Ax = b, x > 0, 

(2.3.c) - VP(x) + ATy + z = 0. 

It turns out that, under Assumption 2.3, problem (P,) (and consequently system 
(2.3)) has a solution for all t > 0 (c.f. [2] and [9]). The Karush-Kuhn-Tucker system 
(2.3) provides important information which we now point out. Assume that ,I > 0 is 
fixed in the system (2.3). Since x > 0, equation (2.3.a) implies that z > 0. Equation 
(2.3.c) then implies that the triple (x, y, z) is an interior feasible solution for the dual 
problem (D). From (c) of Assumption 2.3, it follows that there is a unique y satisfying 
(2.3). We denote the unique triple that satisfies (2.3) by w(,u) = (x(/u), y(,), z(i)). 

At this point, we observe that (a) of Assumption 2.3 implies that the set W, and 
therefore the set T, is nonempty. Indeed, w(it) E W, for all ,L > 0. From (2.3.a), it 
follows that the duality gap at w(,u) is given by g(w(,I)) = n,i for all AL > 0 and 
therefore g(w(,u)) converges to zero as p. approaches zero. This implies that the 
objective function value of problem (P) at x(p.) and the objective function value of 
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problem (D) at (x(,u), y(ut), z(AL)) converge to the common optimal value of problems 
(P) and (D). In fact, we have the following stronger result (cf. [2] and [9]). 

PROPOSITION 2.4. Under Assumption 2.3, as ,L- -> 0, x(/l) and (x(,L), y(A), z(,a)) 
converge to optimal solutions of problems (P) and (D) respectively. 

The following notation will be useful later. If w = (x, y, z) e R" x R" x R" then 
f(w) = (fl(w),..., fn())T Rn denotes the n-vector XZe, that is, fj(w) = xjz,, 
j = 1,..., n. We denote by r the set (or path) of solutions w(/,), /u > 0, for the 
system (2.3), i.e., 

r = {w(,= ) (X(,),y(),z(,l));jl > 0}. 

The algorithm which will be presented in the next section is based on the idea of 
following this path F closely. The path r will serve as a criterion to guide the points 
generated by the algorithm. 

3. The algorithm. The algorithm presented in this section extends the one 
presented in [10] for linear programming problems and in [11] for convex quadratic 
programming problems. We also refer the reader to [7] and [10] for a motivation of 
the directions generated by the algorithm that we now describe. 

In order to motivate the idea behind the algorithm, we need to introduce a 
definition. 

DEFINITION 3.1. Let 0 with 0 < 0 < 1 be given. We say that a point w E W is 
0-centered with respect to A > 0 if IIf(w) - /Jell < 0/u where 1. II denotes the 
Euclidean norm. 

Obviously, the solution w(tL) of system (2.3) is 0-centered with respect to ut for any 
0 > 0. We can view 0-centered points w E W as points that are close to the central 
path r, where the criterion of closeness is given according to Definition 3.1. The 
following trivial observation is important for our purposes. 

Observation 3.2. If w - (x, y, z) E W is 0-centered with respect to the parameter 
tu > 0 then g(w) xTz < (1 + O)npu. 

The algorithm described in this paper generates a sequence of points (wk) in the 
set W and a strictly decreasing sequence of positive parameters (Ak) converging to 0 
such that wk is 0-centered with respect to lk for all k > 1. In view of Observation 
3.2, we would like the sequence of parameters (juk) to approach 0 as fast as possible. 
However, as we will see later, the speed of convergence of the sequence of parame- 
ters (k) is constrained by the condition that the sequence (wk) be 0-centered. 

We now describe how the algorithm iterates. Given a point w E W 0-centered with 
respect to ,t > 0, we want to construct a point w E W which is 0-centered with 
respect to a smaller parameter ,i > 0 (the values of 0 and of the ratio i/,L will be 
specified later in this section). To determine a point w c W with this property, 
consider the direction Aw (Ax, Ay, Az) E Rn x Rm X Rn determined by the fol- 

lowing system of linear equations 

(3.1.a) Z Ax + XAz = XZe - fie, 

(3.1.b) A Ax = 0, 

(3.1.c) - V2T() Ax +AT Ay + Az = 0. 

The direction Aw is just the Newton direction for the system (2.3) with /L = /. After 
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some algebra, one obtains the following expressions for Ax, Ay and Az: 

x=(Z + XQ)-[I- XT(A(Z + XQ) -XAT) A(Z + XQ) ' (XZe -Ae), 

Ay= -[(A(Z + XQ) -X4T) A(Z + XQ) (XZe - ,e), 

Az = QAx - ATAy 

where Q- V2t(x) denotes the diagonal Hessian matrix of the function P at x. 
After computing the direction Aw according to system (3.1), the next iterate w- 
(x, y, z) is determined as follows: 

(3.2.a) x =x- Ax, 

(3.2.b) = y -Ay, 

(3.2.c) z= VA(x) -AT9. 

Observe that z is defined to be the slack vector for the dual problem (D) correspond- 
ing to x and 9. The following relation expresses the vector z in terms of the vector z 
and the direction Az: 

(3.3) z = z - Az + V*P( ) - VP(x) + V2t(x) Ax. 

This expression is verified by using (3.1.c) and (3.2.c). We denote the direction 
Aw = (Ax, Ay, Az) determined by the system (3.1) and the point wi = (x, y, 2) given 
by (3.2) as Aw(w, ,2) and w(w, 2) respectively, in order to indicate their dependence 
on the point w = (x, y, z), and on the penalty parameter 2. 

We are now ready to give a detailed description of the algorithm. Let 0 > 0 be a 
constant defined as 

(3.4) 0 = min 2(1 + M) ' 4(p + 1) ' 8 

where M and p are defined by (2.2). At the beginning of the algorithm, we assume 
that an initial point w? (x?, yO, zo) E W 0-centered with respect to a positive 
parameter /I0 is given, that is, 

(3.5) Ilf(w?) - ,Loe| < 0 to. 

Let 8 > 0 be defined as 

(3.6) 8 = 0 - 202. 

Note that 8 is a positive real number. Indeed, 

(3.7) 0 < 8 < 0 

by (3.4) and (3.6). For later reference, we also note that 0 and 8 satisfy 

~(3.8) 
e0 + 8 

20. (3.8) 26. 

We now state the algorithm. 
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ALGORITHM 3.3. 
Step 0. Let 0 and 8 be as in (3.4) and (3.6). Let w? E Wand /lo > 0 satisfy (3.5). 

Let E be a given tolerance for the duality gap. 
Set k := 0. 

Step 1. If (xk)Tzk < E, stop. 

Step 2. Set yk+l I= Ak(1 - 8/ 1n). 
Calculate Awk - Aw(wk, ,k+ 1). 
Set wk+l := ^(wk, ) 
Set k := k + 1 and go to Step 1. 

end of algorithm. 

In the following sections, we prove that all points generated by Algorithm 3.3 are 
in the set W and that the kth iterate wk is 0-centered with respect to the parameter 
1-k for all k > 1. We also show that Algorithm 3.3 terminates in at most 

O(vn max(log - 1, log n, log L,o)) iterations. 

4. Convergence results. In this section, we present convergence results for the 

algorithm described in ?3. The convergence results presented in this section are 
similar to the ones presented in [10] and [11] for linear programming problems and 

quadratic programming problems respectively. 
Let w = (x, y, z) W and , > 0. Let Aw = (Ax, Ay, Az) denote the direction 

Aw(w, 4) and let w = (x, 9, z) denote the point w(w, /). The next result provides 
expressions for the products of complementary variables fj() =XjZj, j = 1,..., n. 

PROPOSITION 4.1. Let w E Wand o > 0 be given and consider Aw and w as above. 
Then the following expressions hold: 

(4.1) fj(w) = + Axj Azj + (xj - Axj) 

x [qj(xi - Axj) - ij(xj) + f'(xj) A,x], 
n 

(4.2) (Ax)T(Az) = E J<'(xj)(Axj)2 > 0. 
j=1 

PROOF. By definition of fj(w) and expression (3.3), we have for all j = 1,..., n 

f,(w) = xzJ 

= (xj - Ax,)[zj - Azj + q,(xj - Axj) - fj(xj) + ;j'(xj) Axj] 

= 
xjzj 

- 
(Xi Azj + Zj AXj) + Axj Azj 

+(xj - Axj)[j(xj - Axj) - f;(xj) + qIj(xj) Axj] 

= 2 + Ax Azj 

+ (x - Axj)[ ((xi - Axi) - G;f(xj) + O;'(xj) Axj] 

where the last inequality follows from (3.1.a). This shows (4.1). Multiplying expres- 
sions (3.1.b) and (3.1.c) on the left by (Ay)T and (Ax)T respectively, and combining, 
we obtain the equality part in (4.2). Noting that qj"(x) > 0 for all xj > 0 and all 

j = 1,..., n, we obtain the inequality part in (4.2). This completes the proof of the 

proposition. - 
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We now state and prove a result that provides bounds necessary to show that the 
points generated by Algorithm 3.3 are feasible and remain close to the path F. 

Let w = (x, y,z) e W and , > 0. Let Aw = (Ax, Ay, Az) be the direction 
Aw(w, 2). Let Af (AXXAZ)e, where AX and AZ are the diagonal matrices 
corresponding to the vectors Ax and Az respectively. The next result provides an 
upper bound on the Euclidean norm of the vector Af. 

LEMMA 4.2. Let Af be defined as above. Then, we have 

1l f(w) - 1iell2 (4.3) IlAf l< f11f e1 where 
2fmin 

fmin min xjzj; j = 1,..., n . 

Furthermore, we have 

(4.4) E '(xi)(Ax,)2< lf() - 
j=1 2fmin 

AX(4.5) 11 X112+D llI f(w) - e112 (4.5) ID - ll + iAID 1 fmin fmin 

where D is the diagonal matrix defined by 

(4.6) D= (Z-1 )1/2 

PROOF. By equation (3.1.a), we have 

D-1 Ax + DAz = (XZ)-1/2(XZ - Ae). 

It then follows that 

(4.7) ID-1 x + D Az12 =I(XZ)-l/2(XZe -/ e) [2 

n=l -y-y ^min 

(fj(w) - )2 lf(w) _-_ell2 

j=1 XjZj fmin 

On the other hand, we have 

(4.8) H1D- Ax + DAz112 =I D-1Ax l2 + 2(Ax)T(Az) + IID Azz2. 

Inequality (4.5) follows immediately from (4.7) and (4.8) and the inequality in (4.2). 
Similarly 

(4.9) E j(xj)(Axi)2= AxT z <l()2fmi 
=1 mn 
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which proves (4.4). Using the Cauchy-Schwarz inequality, we obtain 

n 

(4.10) IlAf I ? F lAx1 Az1j 
j=1 

n 

- EDj1AxjI IDjj AzjI 
j=1 

< ID-1 Axll lID Azll. 

Relations (4.10) and (4.5) then imply (4.3). This completes the proof of the lemma. 
U 

The next lemma provides important relations that will be useful in the proof of the 
main theorem. 

LEMMA 4.3. Suppose w = (x, y, z) e W and 1tt > 0 satisfy 

(4.11) IIf(w) - 1-e(eII ? 0/6t 

where 6 is a positive constant such that 6 < 1. Let Aw (Ax, Ay, Az) be the direction 
Aw(w, 2) where 2 = pXl - 8/ n ) > 0 with 8 > 0. Then the following relations hold: 

(4.12) Iaf (6 + )2 
2(1 - 6) 

____l (6 +t 8) 
(4.13) 1n 

xi 

(4.14) 
( q(x1)(Ax1)2 e + 5)2 

(4. 2(1 - 6) 

PROOF. Relation (4.11) implies that 

(4.15) fmin = min{xiz1}> (1 6)- pt. 

Since Ilell = Vn and /t - = (8/ xn)itt, it follows from relation (4.11) that 

(4.16) Ilf(w) - geI12 ~ CIf(w) - (W eIl + Iitie - 

s< (6itt + (pk - ^2)IleIl1)2 

< (OA + 5/,)2 

< (6 + 8)2A2. 

Using Lemma 4.2 and the two previous relations, we immediately obtain (4.12), (4.14) 
and the following inequality. 

18x11 6+)2k 
(4.17) lID-' (1-6) 
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where the matrix D is given by (4.6). To show (4.13), observe that for all j = 1,..., n, 
we have 

Axj \2 
n 2n j ) E(AXk ) ~ Xkk ( E = 

\ J I k=l k=l X Zk 

ID-1 Ax12 <(0+52 
< (1-0)/x 1 -0 

where in the last two inequalities, we used relations (4.15) and (4.17) respectively. 
This completes the proof of the lemma. ? 

The following lemma provides an inequality that will be useful in the proof of the 
main theorem. We leave the reader to verify its validity. 

LEMMA 4.4. Let p be a real number such that p > 1. Then for all real numbers u, 
with 0 < u < 1, the inequality (1 - u)P > 1 - pu holds. 

We now state the key result that will enable us to show the convergence of 
Algorithm 3.3. The following theorem shows the behavior of one iteration of Algo- 
rithm 3.3. 

THEOREM 4.5. Let 0 > 0 and 8 > 0 satisfy relations (3.4) and (3.6) respectively. 
Let w = (x, y, z) E W and Au > 0 satisfy If(w) - tellI < Ot4. Let w = (x, 9, z) denote 
the point w(w, Ai) where f > 0 is defined as 

(4.18) A = A(1 - /fn. 

Then the following statements hold: 
(a) w E W and 

(4.19)) - eI| <0. 

(b) g(w) T- ^2 < (1 + O)n . 

PROOF. (a) We first show that w = (x, y, 9) is in the set W (cf. ?2). Since w e W, 
Ax = b. From relation (3.1.b) and the definition of x given by (3.2.a), it follows that 
Ax = b. From the way z was defined in relation (3.2.c), it follows that - VT(^) + 
AT9 + z = 0. Therefore, we only need to show that the vectors x and z are strictly 
positive to conclude that w e W. Observe that by expressions (3.8) and (4.13) 

(4.20) IAxjl < 260x 

for all j = 1,..., n. Therefore, 

j = xj - axj. > xj - lAxjl = (1 - 20)xj 

for all j = 1,..., n. Since 0 < 1/8 by (3.4) and xj > 0, the last relation implies that 
Xi > 0, for all j = 1,..., n. Assume inequality (4.19), x2jj > (1 - 0)i > 0. Therefore, 
we must have Zj > 0, for all j = 1,..., n. 

We observe that the proof of (4.19) does not depend on the condition that z > 0. 
We now show (4.19). If let r = (r,..., rn)T E Rn denote the vector whose jth 
component is given by 

r = (x, - Ax,)[i '(xi - Axj) - ,(x) + j'(xj) Axj] 
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then expression (4.1) and the triangle inequality for norms imply 

(4.22) \\f(w) - ie\ < IIAtll + lrll. 

Our objective is to bound the right-hand side of the above inequality. By the mean 
value theorem, there exists a real ti, 0 < tj < 1, such that 

t- (1 - tj)xj + tj(xj - Axj) = xj - ti Axj > 0 

satisfies 

;'(xj - Axj) - qj,(xj) + ij"(xj) Axj = j"'(j)(Ax . 

From the definition of rj in (4.21), the previous expression and the fact that each 
function ,fj is in the collection Y, it follows that 

(4.23) Irjl = 2(xj) (xj - Axi) , j" () 

1 
)2 (Xi j (i- Axj) 

2(ax (X [ x),?")XI) 

< 2(xj-A 
x 

)i M'(xj)max( j) (x i )P} 

where M and p are as given in (2.2). Now, using (4.20), one can easily show that 

(xi - Axx) 1 x1 1 j ) < 1 + 20< 1 < 1-20 and 

x- < 1 + 20 < 1 - 20 

Using these three last estimates in relation (4.23), we obtain 

~;'( Xj) (A Xj)2 M 
(4.24) Irj1< j 

) 2(1 - 20)p+1 

Using expression (3.4) and Lemma 4.4, we obtain 

(1 -20)P+1 > 1-2(p + 1)0 > 

since 0 < 1/4(p + 1). Using this last estimate in (4.24), we obtain, for all j = 1,..., n, 
Irjl < Mqi'(xj)(Axj)2. Summing up the above inequality over all j = 1,...,n and 
using relation (4.14), we obtain 

nj1( __ (+5)2 I1ri 1< 
M2(1 - 0) /=1 
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Relations (4.12) and (4.22) together with the previous inequality then imply that 

||f( ) - e 
e ||< AllA + llrll 

n 

< IlAfll + E Irl 

(6 + 8)2 

j=l 

< ((1 - 6) (1 + M)tA 2(1 - 0) 

= 202(1 - 0)(1 + M)/. 

where the equality is due to (3.8). Since 0 < [2(1 + M)]-' by (3.4) and / = (1 - 
8/ /n-)/ > (1 - 8)/ > - (1 - 0)/ by (4.18) and (3.7), the last relation implies that 
IIf(w) - tAell < 0t and this completes the proof of (a). 

(b) Statement (b) follows from statement (a) and Observation 3.2. This completes 
the proof of the theorem. O 

As a consequence of Theorem 4.5, we have the following corollary. 

COROLLARY 4.6. All points wk generated by Algorithm 3.3 satisfy 
(a) For all k = 1,2,..., wk E Wand IIf(wk) - Akell< Ok. 
(b) For all k = 1, 2,..., g(wk) (xk)Tzk < (1 + 0)nuk, where 1k = 0o(1 - 

8/ A)k. 

PROOF. This result follows trivially by arguing inductively and using Theorem 4.5. 

We now derive an upper bound on the total number of iterations performed by 
Algorithm 3.3. The following result follows easily from Corollary 4.6 and is proved in 
?4 of [10]. 

PROPOSITION 4.7. The total number of iterations performed by Algorithm 3.3 is no 
greater than k* [log((1 + O)nE- ',o)v/n/8 where E > 0 denotes the tolerance for the 
duality gap and ,uo is the initial penalty parameter. 

If the constants M and p are both 0(1), which is usually the case, then by (3.4) and 
(3.7), 8-1 is 0(1). In this case, Proposition 4.7 asserts that Algorithm 3.3 terminates 
in at most 0(v max(log E- , log n, log ,i0)) iterations. 

5. Initialization of the algorithm. In order to initialize the algorithm, the ap- 
proach is to use a transformed problem equivalent to original one that satisfies the 
initial condition (3.5). Therefore, by solving the transformed problem, we are able to 
obtain a solution for the original problem. 

Consider the convex programming problem 

(P) min P(x) 

s.t. Ax =b, 

x> 0, 

where A is an mh x h matrix which has full row rank and b is a vector of length rm. 
Assume that '(i) = E_lq,(xj) where each fj belongs to the collection Y (see 
Definition 2.1). We also assume that the set of feasible solutions of problem (P) is 
bounded. Therefore, (P) has an optimal solution. 
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Let n = h + 2 and m = m + 1. Let A be a large constant satisfying erx < nA for 
all feasible solution x of problem (P). The constant A exists since the set of feasible 
solutions of (P) is bounded by assumption. Also, let K > 0 be a sufficiently large 
constant. Consider the transformed problem as follows. 

(P) min +t(x) +_ n 

s.t. Ax + (A- -A-e)xn = b, 

eJ + in_1 + in = nA, 

X > O, xn- 0> , > 0, 0, 

where i = (x~,..., Xn-2)T is an (n - 2)-vector and xn_ and xn are scalars. This 

problem can be cast in the notation of problem (P) of ? 2 as follows. Let x= 
(T, Xn_l, xn)T E R" and define b E RM and A E Rmxn as follows. 

-b=4 0 A A -Ae 
nA' -eT 1 1 

Define T(x) = Pt() + Kxn. With this notation, we can then rewrite problem (P) as 
in ?2. 

Let (x,, y, z * ) denote an optimal solution of the dual problem corresponding to 
problem (P) such that x * is an optimal solution of (P). The following result provides 
a theoretical lower bound on the constant K in such a way that if K is larger than 
this bound then the optimal solutions of problem (P) immediately give optimal 
solutions for problem (P). 

PROPOSITION 5.1. Assume that the cost coefficient K in the objective function of 
problem (P) satisfies K > (A-b - Ae)Ty *. Then 

(1) The optimal value of problem (P) is equal to the optimal value of problem (P). 
(2) If x = (x1,..., xn)T is an optimal solution of problem (P) then xn = 0. Moreover, 
= (x1,... , Xn2 )T is an optimal solution of (P). 

The proof of Proposition 5.1 is straightforward and is left to the reader (see ?5 of 
[11] for a proof of this proposition for the case the objective function of (P) is a 
convex quadratic function). We now verify that problem (P) satisfies Assumption 2.3 
of ?2. Condition (c) of Assumption 2.3 is obviously satisfied since A was assumed to 
have full row rank. We verify conditions (a) and (b) of Assumption 2.3 jointly by 
exhibiting a point w? = (x?, y0, z0) which is in the set W defined in ?2 and satisfying 
the criterion of closeness (3.5). Let x?- Ae E R". Observe that Ax? = b. Let 
y0 = (0,..., , - 0Uo/A)T E Rm where uo0 satisfies 

A ? ||Vt(Ae) || 
(5.1) AO > I 0 

Let z? E Rn denote the slack vector VT(x?) - ATyO for the dual (D) corresponding 
to the pair x = x? and y = yO. Since ATy = --A-lo0e, it follows that z? = VT(Ae) 
+ A'-luOe. Then 

E (x zO - o)2 = A2 1 VP(Ae) 12 
j=1 

and therefore the criterion of closeness (3.5) is satisfied due to expression (5.1). 
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Observe that Algorithm 3.3, applied to problem (P), will obtain a feasible solution 
x = (x1, . .., xn) to (P) whose value is within the optimal value by e where E is the 

specified tolerance for the duality gap. If we let x = (x, ..., xn_2) then x will not be 
a feasible solution to problem (P), since x, being an interior point, has last compo- 
nent different from zero. However, by choosing the tolerance e sufficiently small, x 
will approximate feasibility to any desired degree of accuracy. 

6. Remarks. The purpose of this paper is to present a theoretical result. Thus in 
order to simplify the presentation, we constructed ,2 = t(1 - 8/ Vn). Obviously, one 
can use , which is less than or equal to the above value, but still satisfies (a) of 
Theorem 4.5. In this way, one can accelerate the convergence of the algorithm. 

If the objective function of problem (P) is of the form j(x) = Ei=ij(xj) + 

(1/2)xTQx where Q is a n X n symmetric positive semidefinite matrix and each 
function ij belongs to the collection Y, then all the results of this paper are still valid. 
The only change to be noted is in relation (4.2), which in this case would be 

(AX)T(Az) = AxT V2I(x) AX 

n 

E oj(Xj)(AXj) 
O. 

j=l 

The class of functions introduced in Definition 2.1 is dictated by the proof of 
Theorem 4.5. Although this class of functions is not intuitive, it contains the familiar 
class of functions given after Definition 2.1. We should mention that Algorithm 3.3 
can be slightly modified to handle problems minimizing a general convex function 
subject to linear (or convex nonlinear) constraints. However, in this case, we may not 
guarantee the strong convergence property achieved in this paper for the special class 
of functions described in ?2. We conjecture about the possibility of extending this 
strong convergence property to a larger class of functions. 
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