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Capturing and Clustering Judges' Policies 

ILAN ADLER AND DITSA KAFRY 

University of California, Berkeley 

Judgment analysis has been used as a method for grouping judges according 
to the homogeneity of their regression equations. It is demonstrated that 
(a) contrary to.the accepted claim, judgment analysis may fail to generate 
an optimal grouping, and (b) this problem is, in fact, a special case of a well- 
known clustering problem for which a variety of cluster analysis techniques 
are available. 

1. INTRODUCTION 
The multiple regression model has been used to capture policies of 

judges with respect to their responses to a set of multiple characteristic 
stimuli (Slovic & Lichtenstein, 1971). According to this model each 
stimulus is defined by several characteristics which are quantitatively 
measured. Every judge is then required to respond to each of the stimuli 
by providing an overall numerical evaluation. A linear regression equa- 
tion relating the characteristics (independent variables) to the evaluation 
(dependent variable) is computed for each judge. The square multiple 
regression coefficient (R 2) is used as a measure of the efficiency with which 
the regression equation is capable of predicting the judges' evaluations. The 
R 2 measures the success in "capturing" the judges' policy by a linear 
regression equation. Once a policy of a given judge is successfully cap- 
tured, it can be used to interpret the weights attributed to each of the 
characteristics and it can be applied to simulate the judges' policy to 
obtain more consistent evaluations of additional set of stimuli. 

This model of policy capturing has been applied to a variety of decision 
making situations such as: selection and promotion (Christal, 1968). 
evaluation of beauty of paintings (Holmes & Zedeck, 1973), performance 
appraisal (Zedeck & Kafry, 1977), and organizational choice (Zedeck, 
1977). Obviously, policy capturing can be applied to a variety of other 
fields such as personality assessment, consumer behavior, perception 
and information processing, or for studies of need strength and motivation. 

In order to obtain a more parsimonious presentation and for reasons 
of organizationalprac_ticality, i_t is sometimes desired to provide a single 
regression equation to represent a group of judges who have similar equa- 
tions. Such clustering is also of interest for understanding the similarities 
and differences between the policies of groups of judges. Obviously one 
has to pay the price of such clustering in terms of the predictive efficiency 
of the group regression equation for the individual judges in that group. 
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Hence, the problem is to find the clustering (to a given number of groups) 
which minimizes the loss of predictive efficiency. 

The technique of judgment analysis (JAN) has been suggested as an 
efficient method to solve the grouping problem (Bottenberg & Christal, 
1961, 1968). This method has been the focus of several papers discussing 
its theoretical and practical virtues (e.g., Naylor & Wherry, 1965; 
Dudycha & Naylor, 1966; Dudycha, 1970) and has been applied in studies 
of policy capturing (e.g., Christal, 1968; Holmes & Zedeck, 1972; Zedeck 
& Kafry, 1977). However a close look at JAN and its iterative nature 
casts doubts on its ability to provide an optimal grouping (with respect 
to maximizing predictive efficiency). It is the purpose of this paper to 
demonstrate and explain that JAN does not necessarily generate an 
optimal grouping. It is also shown that the grouping problem can be 
transformed to the usual clustering problem and thus can be solved by 
known cluster analysis techniques. This transformation also provides 
a useful insight into the nature of the homogeneity criterion applied by 
JAN. 

For the purpose of clarity of the discussion we shall first present the 
transformation of the grouping problem to a clustering problem; this will 
be followed by a description of JAN and a demonstration and explanation 
of its failure to guarantee an optimal grouping. Finally, we conclude with 
a discussion of the possible applications of cluster analysis techniques 
to policy capturing problems. 

2. THE JUDGES' POLICY CAPTURING CLUSTERING PROBLEM 
The policy capturing model is composed of a set of m judges who 

evaluate n sets of stimuli, where each stimulus consists ofp characteris- 
tics. Specifically let 

X~ = the value of thej th characteristic of the ith stimulus ( /=  1 , . . . ,  
n ; j  = 1 . . . . .  p ) ,  

X i = the (1 × p) vector whosejth element is Xij (/ = 1 . . . .  , n), 
X = the (n x p) matrix whose ith row is X i, 
Yk~ = the overall numerical evaluation of X ~ given by the kth judge 

(k  = 1 , . . .  , m ; i  = 1 . . . . .  n ) .  

yk ___ the (n x 1) vector whose ith element is Yki (k = 1, . . .  , m). 

To simplify notation we shall assume that the levels of the characteristics 
are given in terms of deviations from the means, that is: 

n 

~,Xij = 0(j = 1 . . . . .  p) .  
i = 1  

As usual it is assumed that X has a full rank to guarantee the existence 
of a unique regression coefficients vector. 
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The objective of the policy capturing model is to try to represent the 
policy of each judge by a regression equation 

yk = X B  ~ + e k, 

where B k is a pxl vector of the computed least-squares regression coef- 
ficients and e k is the vector of residuals. Throughout the presentation 
u will be used to denote a column vector of l 's. 

Since it is sometimes desired to provide a single regression equation 
to represent a group of judges, the following clustering problem arises: 
for a given integer T (the desired number of groups) cluster the judges 
to T groups G~ . . . .  , Gr. The policy of all the judges in Group Gt is then 
captured and represented by a single regression equation in which B(Gt)  
is the computed vector of regression coefficients. The objective is to 
group the judges such that the predictive efficiency of the model is 
maximized. Given clusters Ga . . . . .  Gr the measure of the predictive 
efficiency R ~ (GI . . . . .  Gr) was defined (Bottenberg & Chdstal, 1968) 
as one minus the ratio between the sum of the unexplained square resid- 
uals of every cluster and the total square deviations of all the evalua- 
tions. More specifically 

T 

~, SS(G,) 
t = l  

R ~ ( G a , . . . ,  GT) = 1 - , (I) 

k = l  i=1  

where 

S S ( G t )  = 

and 

k~G t 

- m n  k=li=l 

Thus mathematically the po l i cy  cap tur ing  c lus ter ing  p r o b l e m  is: for a 
given integer T (1 ~< T ~< m) find a clustering G1 . . . . .  Gr such that R ~ 
(G1 . . . . .  Gr) is maximized over all possible clusterings of m judges to 
T groups. 

3. THE TRANSFORMATION OF THE POLICY 
CAPTURING CLUSTERING PROBLEM TO A 

GENERAL CLUSTERING PROBLEM 
In this section we shall first develop a convenient expression for 

SS(Gt )  which is the key to the transformation of the policy capturing 
clustering problem to the well-known general clustering problem. 
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Le t  B k be the p × 1 regression coefficient vec tor  for  the kth judge,  i.e.,  

B k = (X'X) -1X ' (Y k - u y(k)) (k = 1 . . . . .  m), (2) 

where 

Y(g) = n Yki. 
i=1 

Given a group Gt let us assume for  simplicity that Gt = ( 1 , . . . ,  g); that is, 
the group includes judges 1 . . . . .  g. We shall first develop a simple 
explicit expression for B(Gt)  the regression coefficient vec tor  obtained by 
computing a single regression ec uation for the group Gt. Thus, 

B(Gt)  = 

where 

(x'... x') -,y(c,~], 

g n 

gn e=l = 

(3) 

where the dimension of  the matrix (X' . . .  X')  is p × (ng). Carrying the 
matrix multiplication in (3) we get 

B ( G t ) g X , X ) - I X ,  ~ (yk  _ uy(k)) 
k= l  

= g ~ ( X , X ) - I X ,  (yk _ uy(k)) = B k . 
k = l  

(4) 

Hence the regression coefficient vector  of  the group is the simple 
average of  the regression coefficient vectors of the judges in the group. 
Similarly if we define Y(Gt) as the predicted evaluation vector  of  the group 
then, 

~(GO = XB(Gt )  + y(G¢) = X B  k + y(k) 1 •Itk , (5) g [.k=x = "ff-k=a 

where ~ is the predicted evaluation vector  of  the kth judge based on 
his/her own regression equation. Using these results we now construct  
useful expression for SS(Gt) .  By definition 
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g 

SS(Gt)  = ~ (yk _ ~'(Gt))' (yk _ F(Gt)) 
k = l  

g 

(r ~ - ~'~ + ~* - t(G,))' (r~ - i~ + ~* - Iz(G,)) 
k=l 

g 

(r~ - ~), (Y~ - ~) + y~ (~ - ~(~,)), (~ - ~'(e,)) 
k = l  k = l  

g 

+ 2 ~, (yk _ ~), (yk _ l~(G,)). 
k=l 

However ,  the last term is the covariance between the residual least- 
squares estimates,  Y - ~', and a linear function of  X. Hence ,  this last 
term equals to zero (Castellan, 1973), thus we have 

g g 

SS(Gt)  = ~ (yk _ ~ ) ,  (yk _ ~ )  + ~ (~,~ _ ~(Gt))' ( ~  - ~'(Gt)). (6) 
k = l  k = l  

Therefore ,  the sum of  squared residuals within the group is equal to the 
sum of  square residuals associated with the regression equations of  each 
of  the judges plus the sum of  square deviations of  the predicted evaluation 
of  each judge from the predicted evaluation of  the group• It is important  
to note that the second term of  SS(Gt)  is equal to ( l / g ) ~ = l ~ = k + , ( ~  k - 
1~)' (I~ - 1~), which expresses  the mean Euclidian distance between all 
the predicted vectors  of  group Gt. 

Using SS(Gt)  in the expression of  R 2 ( G 1 ,  . . . , a T )  (see (1)) we thus 
get that for every  clustering G1 . . . .  , Gr  with gt as the number  of  groups 
in Gt we have 

R2(G, . . . . .  GT) 
T 

k = l  t = l  g t  k , j~G t 
--~ 1 - -  

E (Y~, - ~)~ 
k = l  i = 1  

It is obvious that since ~'~=~ (yk _ 1~)' (I ~ - ~ )  and ~'~=1 ~ = 1  
(Yk~ - :~)2 are constant  for all possible groupings G~ . . . .  , GT the clustering 
problem is equivalent to the following problem: Given m vectors 1; "1 . . . . .  
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f~ and an integer T (1 ~< T <~ m), cluster the 1~ vectors to T groups 
G1 . . . .  , Gr as to minimize 

T 
1 

DU(G1,...  ,GT) = E ~t E (~m _ ~) , (~k _ ~) .  
t = l  k,j~G t 

This problem is the well-known clustering problem with the predicted 
evaluation vectors 1~ 1 . . . . .  1~ as the points to be clustered and the 
Euclidian distance as the measure of homogeneity. Therefore known 
cluster analysis techniques can be employed for its solution. A discus- 
sion of the availability of such methods is presented in the concluding 
section. 

It should be noted that this transformation of the judges' grouping 
problem to the general clustering problem provides a useful insight to 
the measuring of the criterion of maximizing the predictive efficiency 
(R2). 

As is evident from the previous discussion the application ofR 2 as the 
criterion results in clusters which are homogeneous with respect to the 
Euclidian distances among the predicted evaluation vectors. Hence, such 
clustering should be undertaken only if this is a desirable measure of 
homogeneity. 

4. THE dAN METHOD 

It was demonstrated in the previous section that grouping judges' 
policies is a special case of the general clustering problem for which a 
variety of methods have been developed. However, one can find in the 
literature only one technique that has been applied to the judges' grouping 
problem: the Judgment Analysis (JAN) method (Bottenberg & Christal, 
1968). 

In this section we shall present this method and then illustrate by a 
numerical example that it may fail to generate an optimal solution to the 
grouping problem. 

Starting with a maximal possible number of groups (which is obviously 
equal to the number of judges) the JAN method gradually decreases 
the number of clusters by combining two previously defined clusters that 
minimize the reduction in the overall predictive efficiency (R2). This 
process stops when all the judges are combined to form a single cluster. 
Alternatively, the process could be terminated either when a given 
number of groups is obtained, or when a predetermined lower bound of 
R 2 is reached. 

Though the JAN method in its original form (Bottenberg & Christal, 
1968) was presented in terms of maximizing the predictive efficiency 
(RZ), we prefer to present the method in terms of the equivalent problem 
of minimizing the mean-square Euclidian distances among the predicted 
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evaluation vectors within the groups. We believe that such a presenta- 
tion is simple, computationally efficient and consistent with our approach 
to the grouping problem. Let us now present the JAN method in detail. 

Preparation Step 

The regression equations of the judges are computed and then used to 
compute the predicted evaluation vectors ~1 . . . . .  , F '~ of the m judges. 

First Step 

The two vectors 17 ~, ~ with the minimal Euclidian distance are com- 
bined into one cluster. 

General Step 

Given previously defined clusters G1 . . . .  , GT (where Gt is the set of 
indices corresponding to the judges in the tth cluster), the two clusters 
Gt, Gr whose grouping resulted in minimal increase of the mean Euclidian 
distances among the predicted evaluation vectors in the combined group 
are grouped together. That is, groups Gt and Gr for which the sum of the 
mean-square Euclidian distances within clusters, D(G1 . . . . . .  Gt U Gr . . . . . .  
Gr), is minimal are combined. 

Termination Rule 

The process terminates when all the judges form one cluster (or accord- 
ing to the alternative termination rules which were mentioned pre- 
viously). 

It should be noted that the predictive efficiency R2(G~ . . . . .  GT) of the 
clusters formed at step m - T is easily computed by using the expres- 
sion that was developed in the previous section 

~ (yk _ I~)~ (yk _ Fk) + D2(G~ . . . .  , GT) 

k:l (9: 

/ ,  
k = I  /--1 

m n y~ (Note that ~ ~=1 (yk _ ~) ,  (yk _ ~ )  and ~=~ ~ ~=~ ( ~ _~)2 can be com- 
puted in the preparation step based on the computed judges' regression 
equation while D2(G1 . . . . .  GT) is provided at the end of every Step:.) 

Obviously this hierarchical method is very simple to program and highly 
efficient. However, a close look at the method casts doubt on its ability 
to produce an optimal grouping. It is clear that once a group is formed 
it can never be separated in subsequent steps. But it seems quite possible 
that two (or more) judges who form a group in one of the early stages will 
belong to different clusters in the optimal grouping of later stages. 

In the following example we present such a case, thus illustrating that 
the JAN method does not necessarily generate an optimal clustering. 
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Consider the following data: Given four judges,  one characteristic, and 
five stimuli (hence m = 4, p = 1, and n = 5), where (1)° (5)44 

• • • = 4 7  • = , = 36 , , = 2 6  , = 15 X y1 y 2  . ](3 y 4  

1 9  32 39 54 
6 35 48 55 

Preliminary Step 

Computing the regression equation for each of the judges we obtain: 

B 1 - - -  5 ;  B 2 = 5 ;  B ~ = 5 ;  

and the predicted evaluation vectors are 

~k~2//1~ ( 1 6 ) ( 2 6 )  21 31 
f-1 =1  ]5 / ; I ~ =  26 ; ~ =  36 

20 31 41 
5 36 46 

B a''G 5, (37) 
42 

;f-4 = 47 
52 
57 

Since we are interested in the value of  R 2 in each iteration we compute  
4 

(yk _ f-k),(yk _ f.k) = 40 ,  
k = l  

and 

~,  (rki - ~)~ = 3850.  
k = l  i=1 

To facilitate the computation, we shall present in every step a matrix 
A whose (t, r)-th element is equal to the increase in the mean-square 
Euclidian distances resulting by combining groups Gt with Gr. Thus at 
each step the two groups corresponding to the minimal value in A are 
combined• 

Step 1 

SO 

G1 __.v_ {1}  G 2 = {2} G 3 = {3} G4 = {4}. 

D2(G1,G2,Ga,G4) = O, 

R~(G1,G2,Gz,G4) = 1 
4 0 +  0 
- -  - .990. 

3850 
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Computing the A matrix we get 

G~ G 3 G 4 
G1 302.5 1102.5 2560 
G2 250 1102.5 
G 3 302.5 

Thus we combine {2} and {3}, s o  G 1 : { 1 } ; G2 = {2,3} ; G 3 = {4}, and 
D2{G,,G~,G3} = 302.5, 

40 + 302.5 
= .925. 

3850 
Re(G1,Ge,G~) = 1 

Step 2 
The new A matrix is 

G2 Ga 

G2G 1 800.8 2757.5800.8 

Thus we combine either G 1 with G~, or G2 with G a, and let us arbitrarily 
combine G1 with G2 so G1 = { 1,2,3}, G2 = {4}, 

D2(G1,G2) = 302.5 + 800.8 = 1103.3, 

40 + 1103.3 
R2(G1,G2) = 1 3850 - .703. 

Step 3 
The new A matrix is: 

G2 
cl [WSZT  

Obviously we combine the last two groups G1, G2 thus obtaining GI = 
{1,2,3,4}, 

D2(G~) = 1103.3 + 1706.7 = 2810 

40 + 2810 R~(G1) = 1 - .260. 
3850 

In summary,  the JAN method generated the following groups: 

Number  of  groups Groups R ~ 

4 {3}; {4}.990 
3 t l t ;  t2,3}; {4} .925 
2 ~ 1,2,3 }; {4} .703 
1 ~1,2,3,4} .260 
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However, it can be easily shown that { 1,2}; {3,4} is a better grouping 
for two groups than the one produced by the JAN since D2({'i~} , {3,4}) = 
605 so R2({1,2}; {3,4}) = 1 - (40 + 605)/3850 = .832 which is greater 
than .703. 

5. CONCLUSIONS 
Capturing judges' evaluation policies by regression equations and 

grouping them while retaining maximum predictive efficiency (R 2) has 
been used in a variety of decision making situations. In these studies 
the hierarchical Judgment Analysis (JAN) technique has been applied. 
It was demonstrated here that this technique does not necessarily gen- 
erate an optimal clustering. However, it has been shown that the judges' 
grouping problem can be transformed to an equivalent general clustering 
problem. In the latter case the objective is to minimize the mean-square 
Euclidian distances among the judges' predicted evaluation vectors 
within each cluster. Hence, the judges' grouping problem can be solved 
by applying a variety of known cluster analysis techniques. 

To the best of our knowledge the only clustering method which guar- 
antees an optimal solution is that suggested by Jensen (1969). Unfor- 
tunately, its application is limited to about 25 judges. Therefore, when- 
ever a larger problem is presented, it is recommended to use several 
out of the multitude of available efficient heuristic techniques choosing 
the one which generates the best solution. An extensive list of such 
techniques (together with computer programs) can be found in Ander- 
berg's book (1973). It is believed that following such a procedure could 
lead to better clustering. 
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