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Abstract

Consider n cells, of which some are target cells, and suppose that each cell has a weight.
The cells are killed in a sequential manner, with each currently live cell being the next
one killed with a probability proportional to its weight. We study the distribution of the
number of cells that are alive at the moment when all the target cells have been killed.
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1. Introduction

Consider n cells, with cell i having weight wi , that are successively killed in the following
manner. If S is the set of currently live cells then, independently of the order in which the cells of
Sc were killed, i ∈ S is the next cell to be killed with probability wi/

∑
j∈S wj . Consequently,

the probability that the cells will be killed in the order i1, . . . , in is

n∏
j=1

wij∑n
k=j wik

.

Let 1j be the indicator function of the event that cell j, j > r , is alive when the target
cells 1, . . . , r have all been killed. We are interested in the properties of N = ∑n

j=r+1 1j , the
number of surviving cells when all the target cells have been killed. A possible application
for this model is the case in which the target cells are cancerous while the nontarget cells
are healthy cells. The model can also be viewed within the framework of the classic coupon
collector problem, where n−N represents the number of distinct types of coupon that must be
collected before all of the types 1, . . . , r have been collected.

In Section 2, we determine formulae for the mean and variance of N and derive simple
bounds on the mean for some special cases. In Section 3, we derive a lower bound for
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P(N ≥ k) and present a computational procedure as well as an efficient simulation procedure
for estimating P(N ≥ k). In Section 4, we discuss the asymptotic behavior of the mean and
distribution of N for the special case in which all the target cells have the same weight and
all the nontarget cells have the same weight. We also obtain sharp asymptotic results in this
case if we stop when all but a fixed positive fraction of the target cells have been killed. In
Section 5, we suppose that the weights are random variables with specified distributions. In the
final section, we return to having fixed weights and consider the case in which a stage consists
of a probe: each new probe enters a given live cell with a probability proportional to the weight
of that cell divided by the sum of the weights of all currently live cells. Supposing that a probe
in cell i kills that cell with probability pi , we compute the expected number of probes needed
to kill all the cells 1, . . . , r , and present an efficient simulation procedure for estimating the
distribution of this number.

2. The expected value and variance of N

To study N , consider a model in which cell i is killed at time Ti , where T1, . . . , Tn are
independent exponential random variables with respective rates w1, . . . , wn. Using the fact
that the remaining life of an exponential random variable conditioned to be greater than some
other independent random variable is still exponential (which is easily seen by conditioning
on the latter random variable and then using the lack-of-memory property of exponential
random variables), it follows that the order in which the cells are killed in this continuous-
time model is probabilistically the same as in the original model. Consequently, by letting T =
max(T1, T2, . . . , Tr ) and, for J ⊆ {r + 1, . . . , n}, letting TJ = minj∈J Tj and 1J = ∏

j∈J 1j ,
we find that the event (1J = 1) is equivalent to the event (TJ > T ). This leads directly to the
following result.

Lemma 1. Let

a(w) =
∫ ∞

0
we−wt

r∏
i=1

(1 − e−wit ) dt and w(J ) =
∑
j∈J

wj .

Then
P(1J = 1) = a(w(J )). (1)

Proof. Since (1J = 1) is equivalent to (TJ > T ),

P(1J = 1) = P(TJ > T ) =
∫ ∞

0
w(J ) e−w(J )t

r∏
i=1

(1 − e−wit ) dt.

Lemma 1 immediately yields a proposition.

Proposition 1. (i) E[N ] =
n∑

j=r+1

a(wj ).

(ii) var(N) =
n∑

j=r+1

a(wj )(1 − a(wj )) + 2
n−1∑

j=r+1

n∑
k=j+1

[a(wj + wk) − a(wj )a(wk)].

For the special case in which all the target cells have identical weights we have the following
corollary.
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Corollary 1. Let wi = w1, i = 1, 2, . . . , r . Then

(i) for J ⊆ {r + 1, . . . , n}, with r(J ) = w(J )/w1,

P(1J = 1) =
r∑

i=0

(−1)i
(

r

i

)
r(J )

r(J ) + i
=

r∏
i=1

i

r(J ) + i
,

and

(ii) with rj = wj/w1,

E[N ] =
n∑

j=r+1

r∑
i=0

(−1)i
(

r

i

)
rj

rj + i
=

n∑
j=r+1

r∏
i=1

i

rj + i
.

Proof. By Lemma 1, we have

P(IJ = 1) =
∫ ∞

0
w(J )e−w(J )t (1 − e−w1t )r dt

=
∫ ∞

0
w(J )e−w(J )t

r∑
i=0

(−1)i
(

r

i

)
e−iw1t dt

=
r∑

i=0

(−1)i
(

r

i

)
w(J )

w(J ) + iw1
.

On the other hand, it directly follows from the lack of memory of exponential random variables
that

P(1J = 1) =
r∏

i=1

iw1

iw1 + w(J )
.

This proves part (i), from which part (ii) follows immediately.

Our next result yields an upper bound for E[N ].
Corollary 2. Let w̄1 = (1/r)

∑r
i=1 wi . Then

(i) for J ⊆ {r + 1, . . . , n}, with r(J ) = w(J )/w̄1,

P(1J = 1) ≤
r∑

i=0

(−1)i
(

r

i

)
r(J )

r(J ) + i
=

r∏
i=1

i

r(J ) + i
,

and

(ii) with rj = wj/w̄1,

E[N ] ≤
n∑

j=r+1

r∑
i=0

(−1)i
(

r

i

)
rj

rj + i
=

n∑
j=r+1

r∏
i=1

i

rj + i
.

Proof. It is easily verified that
∏r

i=1(1 − e−wit ) is a Schur concave function of w1, . . . , wr .
Therefore,

r∏
i=1

(1 − e−wit ) ≤ (1 − e−w̄1t )r

and the result follows from Lemma 1 and Corollary 1.
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3. The distribution of N

Given (1), it is easy to construct an expression for P(N ≥ k). However, such an expression
involves a number of terms that is exponential with respect to n− r , which makes it impractical
for computations. We now present some bounds and computational methods.

Proposition 2. Let

w̄2 = 1

n − r

n∑
j=r+1

wj .

Then, for k = 1, . . . , n − r ,

P(N ≥ k) ≥
∫ ∞

0

r∑
i=1

wie
−wit

∏
j �=i, j≤r

(1 − e−wj t )

n−r∑
j=k

(
n − r

j

)
e−jw̄2t (1 − e−w̄2t )(n−r−j) dt.

Proof. We can write

P(N ≥ k) =
∫ ∞

0
P(N ≥ k | T = t) dFT (t), where FT (t) = P(T ≤ t).

However, P(N ≥ k | T = t) = P(the kth largest of Tr+1, . . . , Tn is greater than t). The result
now follows because (see [1]) the order statistic of a vector of independent exponential random
variables with rates r = (r1, . . . , rm) is stochastically smaller than the order statistic of a vector
of independent exponential random variables with rates v = (v1, . . . , vm) when v majorizes r .

3.1. Approximating P(N ≥ k)

Let �(k, t) = P(N ≥ k | T = t) and write

P(N ≥ k) =
∫ ∞

0
�(k, t) dFT (t).

For a given integer m and an ε > 0, let us construct a sequence t0, t1, . . . , tm+1 with t0 = 0,
ti+1 = ti + ε, i = 0, . . . , m − 1, and tm+1 = ∞. Since �(k, t) is monotonically decreasing in
t , we have

m∑
i=0

�(k, ti+1)(FT (ti+1) − FT (ti)) ≤
∫ ∞

0
�(k, t) dF(t) ≤

m∑
i=0

�(k, ti)(FT (ti+1) − FT (ti)).

Suppose that we can compute �(k, t) (as we will show below). Then the preceding expression
can be used to approximate P(N ≥ k) to any desired precision, by choosing a sufficiently large
m and a sufficiently small ε.

We can compute �(k, t) by first recursively computing

φt (�, i) = P

( �∑
j=r+1

1(Tj > t) = i

)
,
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where 1(Tj > t) is the indicator function of the event Tj > t and � = r + i, . . . , n, as follows:

φt (�, 0) =
�∏

j=r+1

(1 − e−wj t ), � = r + 1, . . . , n,

φt (�, 1) = e−wr+1t , � = r + 1,

φt (�, i) = φt (� − 1, i) P(T� ≤ t) + φt (� − 1, i − 1) P(T� > t)

= φt (� − 1, i)(1 − e−w�t ) + φt (� − 1, i − 1) e−w�t .

Then �(k, t) = ∑n−r
i=k φt (n, i).

3.2. Using simulation to compute P(N ≥ k)

We now show how to efficiently use simulation to estimate P(N ≥ k). To begin, generate
the values of Tr+1, . . . , Tn, order these values, and let Yi be the value of the ith largest,
i = 1, . . . , n − r . Then use the conditional expectation estimator

P(N ≥ k | Yk = yk) =
r∏

i=1

(1 − e−wiyk ).

This yields the following scheme for estimating P(N ≥ k), k = 1, . . . , n − r .

1. Generate random numbers U1, . . . , Un−r .

2. Let

Tr+i = − 1

wi+r

log(Ui), i = 1, . . . , n − r.

3. Arrange the values Tr+1, . . . , Tn in descending order of size and denote the ordered values
by Y1, . . . , Yn−r , respectively.

4. Let

θk =
r∏

i=1

(1 − e−wiYk ), k = 1, . . . , n − r.

This scheme should be repeated many times; the average value of θk obtained is the estimate
of P(N ≥ k), k = 1, . . . , n − r .

Remark 1. Note that, because the preceding estimator is a monotone function of Tr+1, . . . , Tn,
antithetic variables can be used for further variance reduction (see [3]).

4. A special case: uniform weights

In this section, we consider the special case in which all the target weights are equal and all
the nontarget weights are equal. Specifically, we assume that

wj =
{

1 if j = 1, . . . , r,

w if j = r + 1, . . . , n.

Let

�(a) =
∫ ∞

0
e−t ta−1 dt,

B(a, b) = �(a)�(b)

�(a + b)
=

∫ 1

0
ta−1(1 − t)b−1 dt.
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Then, for J ⊆ {r + 1, . . . , n} and |J | = k, we have

P(1J = 1) =
∫ ∞

0
kw e−kwt (1 − e−t )r dt

= kwB(kw, r + 1)

= rB(kw + 1, r).

Thus, if we set m = n − r , we obtain

E[N ] = mrB(w + 1, r),

var(N) = mrB(w + 1, r) + m(m − 1)rB(2w + 1, r) − m2r2B2(w + 1, r),

and for the distribution of N we have

P(N ≥ k) =
∫ ∞

0
P(N ≥ k | T = t) dFT (t)

=
∫ ∞

0
re−t (1 − e−t )r−1

n−r∑
j=k

(
n − r

j

)
e−wtj (1 − e−wt )n−r−j dt,

which, by using the binomial expansion, collecting terms, and evaluating the resulting integral,
yields

P(N ≥ k) = r

m∑
j=k

(
m

j

) m−j∑
�=0

(
m − j

�

) r−1∑
i=0

(
r − 1

i

)
(−1)(�+i) 1

(� + j)w + i + 1
.

Alternatively, we could calculate P(N ≥ k) by considering

φ(k, r ′, n′) = P(N ≥ k | there are r ′ target cells and a total of n′ cells).

The function φ is recursively defined as

φ(k, 0, n′) = 1, n′ = r + k, . . . , n,

φ(k, r ′, r ′ + k) =
r ′∏

i=1

i

kw + i
, r ′ = 1, . . . , r,

φ(k, r ′, n′) = r ′

(n′ − r ′)w + r ′ φ(k, r ′ − 1, n′ − 1)

+ (n′ − r ′)w
(n′ − r ′)w + r ′ φ(k − 1, r ′, n′ − 1),

and P(N ≥ k) = φ(r, k, n).
Next we develop bounds for P(N ≥ k). Let τ denote the time by which all r target cells

(which each live for an exponential time with rate 1) have been killed. Imagine that the m = n−r

nontarget cells (which each live for an exponential time with rate w) continue to die even after
time τ . Let N(t) denote the number of nontarget cells that are alive at time t . Note that N(t)

is a binomial random variable with parameters m and e−tw, and that N = N(τ).
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Fix an A < r and let t = ln(r/A). Note that

(1 − e−t )r = (1 − A/r)r and e−tw = (A/r)w.

Then

P(N ≥ k) = P(N ≥ k | τ ≤ t) P(τ ≤ t) + P(N ≥ k | τ > t) P(τ > t)

≤ P(τ ≤ t) + P(N(t) ≥ k) P(τ > t)

=
(

1 − A

r

)r

+ P(N(t) ≥ k)

(
1 −

(
1 − A

r

)r)
. (2)

By letting S = m(A/r)w and k = (1+δ)S, and applying to (2) a Chernoff bound for a binomial
random variable X, namely

P(X ≥ (1 + δ) E[X]) ≤
(

eδ

(1 + δ)1+δ

)E[X]

(see, for example, [2]), we obtain the inequality

P(N ≥ (1 + δ)S) ≤
(

1 − A

r

)r

+
(

eδ

(1 + δ)1+δ

)S(
1 −

(
1 − A

r

)r)
< e−A +

(
eδ

(1 + δ)1+δ

)S

.

Finally, we comment on the asymptotic behavior of N as r and m tend to ∞. By noting that

B(w, r) = �(w)r−w

(
1 − �(w)�(w − 1)

2r
(1 − O(r−1))

)

(see http://functions.wolfram.com/GammaBetaErf/Beta/06/02/), we find that

rB(w + 1, r) ∼ �(w + 1)r−w as r → ∞.

Thus, for r → ∞,

E[N ] ∼ �(w + 1)mr−w,

var(N) ∼ E[N ] + (�(2w + 1) − �2(w + 1))m2r−2w.
(3)

For asymptotic results related to the distribution of N , we let t = ln(r/B), and use the fact that

P(N ≤ k) = P(N ≤ k | τ ≤ t) P(τ ≤ t) + P(N ≤ k | τ > t) P(τ > t)

≤ P(N(t) ≤ k)

(
1 − B

r

)r

+ 1 −
(

1 − B

r

)r

. (4)

Applying a Chernoff bound for a binomial(m, p) random variable X and an a > 0, namely

max(P(X ≥ mp + a), P(X ≤ mp − a)) ≤ e−2a2/m (5)

(see, for example, [2]), first to (2) and then to (4) gives

P

(
N ≥ m

(
A

r

)w

+ a

)
≤

(
1 − A

r

)r

+ e−2a2/m (6)
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and

P

(
N ≤ m

(
B

r

)w

− a

)
≤ e−2a2/m

(
1 − B

r

)r

+ 1 −
(

1 − B

r

)r

. (7)

Then, if we substitute a = δmAw/rw into (6) and a = δm/(rwAw) into (7), let A < r be a
nondecreasing unbounded function of r , and let B = 1/A, we can conclude that, for a given
δ > 0 and as r, m → ∞,

(i) if lim inf mAw/rw = ∞ then P(N < (1 + δ)mAw/rw) → 1,

(ii) if lim inf m/(rA)w = ∞ then P(N > (1 − δ)m/(rA)w) → 1.

Remark 2. (a) If, for a fixed α, 0 < α < 1, we let A = αr, then part (i) is satisfied. Hence,
by letting ε = (1 + δ)αw we see that, for any ε > 0, P(N < εm) → 1.

(b) It follows from part (ii) that if m/r2w → ∞, then P(N > (1 − ε)m/r2w) → 1 for any
ε > 0.

(c) It follows that P(N ≥ k) ≤ minA<r(e−A + e−S(eS/k)k), where S = m(A/r)w.

(d) Finally, we observe from (3) that if mr−w → 0 (a condition which is satisfied whenever
the conditions of parts (i) and (ii) are violated), then P(N = 0) → 1.

We can obtain sharp asymptotic results if we stop at the first moment the number of surviving
target cells has been reduced to a fraction ε > 0 of its original value. Let Nε be the number of
nontarget cells still surviving at that time. We shall prove that Nε is concentrated around the
value mεw.

Proposition 3. For all δ greater than 0, as r → ∞ and m → ∞, we have

P((1 − δ)mεw ≤ Nε ≤ (1 + δ)mεw) → 1.

Proof. We first show that

P(Nε ≤ (1 + δ)mεw) → 1 as r, m → ∞. (8)

To show this, let τε denote the first time by which at least (1 − ε)r target cells have been killed,
meaning that Nε = N(τε). Let γ be such that 0 < γ < δ, and let t = −ln(ε(1 + γ )1/w). We
will prove (8) by showing that, as r and m approach ∞,

(i) P(τε ≤ t) → 0 and

(ii) P(N(t) > (1 + δ)mew) → 0.

As these convergences imply that

P(N(τε) ≤ (1 + δ)mεw) ≥ P(τε > t, N(t) ≤ (1 + δ)mew) → 1,

(8) will then follow.
The number, Y say, of surviving target cells at time t is a binomial random variable with

parameters r and e−t = ε(1 + γ )1/w. Hence, with a = rε[(1 + γ )1/w − 1], we have

P(τε ≤ t) = P(Y ≤ εr) = P(Y ≤ re−t − a) ≤ e−2a2/r ,
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where the inequality follows from the Chernoff bound (5). This proves part (i), because a2/r

goes to ∞ as r goes to ∞.
To prove part (ii), note that N(t) is a binomial random variable with parameters m and

e−wt = εw(1 + γ ). Hence, by letting b = mεw(δ − γ ) and again applying the Chernoff bound
(5), we obtain

P(N(t) > (1 + δ)mεw) = P(N(t) > me−wt + b)

≤ e−2b2/m.

This proves part (ii), because b2/m goes to ∞ as m goes to ∞. Thus, we have proved (8).
The proof that

P(Nε ≥ (1 − δ)mεw) → 1

is similar, and a combination of the results completes the proof of the proposition.

5. The case of random weights

An important variant of the problem arises when we suppose that the target weights are
randomized. That is, with Wi being the weight of cell i, suppose that W1, . . . , Wn are
independent random variables with Wi , i = 1, . . . , n = r + m, having some specified
distribution Fi . Also suppose that, conditional on Wi = wi, i = 1, . . . , n, the probabilistic
model for the order in which cells are killed is as before. Let N denote the number of cells
r + 1, . . . , n that are alive when all cells 1, . . . , r have been killed.

As in the fixed-weights case, it is helpful to use a continuous-time probabilistic experiment
to generate the order in which cells are killed. This can be done as follows.

1. Generate the values of n independent random variables from the distributions F1, . . . ,

Fn; call the generated values w1, . . . , wn.

2. Generate n independent exponential random variables Ti, i = 1, . . . , n, with Ti having
rate wi . Interpret Ti as the time at which cell i is killed.

3. If Ti1 < Ti2 < · · · < Tin , take i1, . . . , in as the order in which cells are killed.

Denote the Laplace transform of a distribution R by LR(t) = ∫ ∞
0 e−xt dR(x). It follows

from our construction that T1, . . . , Tn will be independent random variables, with Ti having
distribution function

Hi(t) = P(Ti ≤ t) = 1 − LFi
(t). (9)

Let T = max(T1, . . . , Tr ) and

H(t) = P(T ≤ t) =
r∏

i=1

Hi(t).

We can derive expressions for E[N ] and var(N) as in the fixed-weights case. For instance,

E[N ] =
∑
j>r

P(Tj > T )

=
∑
j>r

∫ ∞

0
H(t) dHj(t).
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However, the computational effort expended in doing so seems prohibitive. Probably a better
approach is to use simulation. We present two methods of efficiently using simulation to
compute E[N ].

One way is to generate all the values Wi, i = 1, . . . , n; if Wi = wi, i = 1, . . . , n, use the
expression given in Proposition 1 as the estimate from that run. Because N can be expressed
as a monotone-nondecreasing function of W1, . . . , Wr and a monotone-nonincreasing function
of Wr+1, . . . , Wn, (by writing Tj = Ej/Wj , where E1, . . . , En are independent exponential
random variables, also independent of W1, . . . , Wn, with rates 1), we can further improve the
efficiency of the simulation estimator by using

∑r
i=1 Wi and

∑n
i=r+1 Wi as control variables.

(By improved efficiency we mean that the new estimator would remain unbiased but have a
smaller variance. See [3] for details on simulation using control variables.)

A second way to use simulation to estimate E[N ] is to generate the value of T (this will
usually require generating the values of T1, . . . , Tr ). If T = t , use the estimator

E[N | T = t] =
∑
j>r

LFj
(t).

Now consider two alternative scenarios. In scenario 1, the weights are independent random
variables from the distributions F1, . . . , Fn. In scenario 2, they are instead from the distribu-
tions G1, . . . , Gn. It then follows from (9), upon using standard coupling results concerning
stochastic ordering (see [4]), that if

LFi
(t) ≤ LGi

(t), i = 1, . . . , r,

and
LFi

(t) ≥ LGi
(t), i = r + 1, . . . , n, for all t,

then the number of surviving normal cells in scenario 1 will be stochastically larger than the
number in scenario 2. Similarly, if

LFi
(t) ≥ LGi

(t), i = 1, . . . , r, and LFi
(t) ≤ LGi

(t), i = r + 1, . . . , n,

then the number of surviving normal cells in scenario 1 will be stochastically smaller than the
number in scenario 2.

Let R(w, k) be an Erlang distribution with parameters (k/w, k), where k is positive integer
(that is, R(w, k) is the distribution of the sum of k independent and identically distributed
exponential random variables having rate k/w). Thus, for W ∼ R(w, k), we have E[W ] = w

and var(W) = w2/k. Since LR(w,k)(t) = (1+wt/k)−k , it follows that LR(w,k)(t) is decreasing
in k for all nonnegative w and t . To illustrate the preceding stochastic ordering result, we
consider a simulation in which all the target cells have one weight distribution while all the
normal cells have another weight distribution. We use the second suggested simulation scheme
to estimate E[N ], with the following setup.

• The target cell weights have distribution R(1, KT ), with KT = 2, 10, 50, ∞.

• The normal cell weights have distribution R( 1
10 , KN), with KN = 2, 10, 50, ∞.

• The number of target cells is r = 1000.

• The number of normal cells is n − r = 10 000.
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Table 1: The expected number of surviving normal cells.

KT KN = ∞ KN = 50 KN = 10 KN = 2

∞ 4768 4793 4896 5327
50 4579 4605 4714 5176
10 4013 4046 4177 4711

2 2482 2528 2710 3452

For each of the 16 possible combinations of weight distributions, we simulate E[N ], the
expected number of surviving normal cells, with a run of 50 000 repetitions. The results are
presented in Table 1. The number reported for the case KT = KN = ∞, which corresponds
to having fixed weights, is calculated using the formula for E[N ] presented in Section 4. The
results of the simulation are clearly consistent with the theoretical observation that the number of
surviving cells in this case is stochastically decreasing with the variability of the target weights
and stochastically increasing with the variability of the normal weights. It is also interesting to
note that, when the variances of both distributions increase simultaneously, it is the variability
of the weights of the target cells that has the greater effect. However, this might be partially
due to the choice of the specific parameters (r , n, and w) in the test cases.

Now consider the important special case in which Fi = F, i ≤ r , and Fi = G, i > r .
That is, all the target cells have weight distribution F and all the normal cells have weight
distribution G. Let A(t) = 1 − LF (t) and B(t) = 1 − LG(t) be the distributions of the
lifetimes of, respectively, target cells and normal cells. Thus, FT (x) = Ar(t).

Now, for any t , let K(t) be the number of normal cells killed by time t . Then K(t) has
the binomial distribution binomial(n − r, B(t)). Note that if t1 < t2, then K(t2) stochastically
dominates K(t1). Let K = n− r −N be the number of normal cells killed before all the target
cells have been killed. Then, for any a and t ,

P(K ≥ a) = P(K ≥ a | T ≥ t) P(T ≥ t) + P(K ≥ a | T < t) P(T < t)

≤ P(T ≥ t) + P(K(t) ≥ a)

= 1 − Ar(t) + P(binomial(n − r, B(t)) ≥ a).

Similarly,

P(K ≤ a) = P(K ≤ a | T ≤ t) P(T ≤ t) + P(K ≤ a | T > t) P(T > t)

≤ P(T ≤ t) + P(K(t) ≤ a)

= Ar(t) + P(binomial(n − r, B(t)) ≤ a).

We thus obtain the following bounds:

P(K ≥ a) ≤ inf
t

[1 − Ar(t) + P(binomial(n − r, B(t)) ≥ a)]

and
P(K ≤ a) ≤ inf

t
[Ar(t) + P(binomial(n − r, B(t)) ≤ a)].

For any particular cumulative distribution functions F and G, these bounds can be estimated
numerically with the help of Chernoff bounds for the binomial distribution.
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6. The probe model

Suppose now that whereas a probe will hit a live cell i with probability equal to wi divided
by the sum of weights of all currently live cells, the probe only kills the cell with probability pi .
The results of the previous sections clearly are applicable, with wk replaced with pkwk, k =
1, . . . , n. Thus, for j > r ,

P(1j = 1) =
∫ ∞

0
wjpj e−pj wj t

r∏
i=1

(1 − e−piwi t ) dt

and

E[N ] =
n∑

j=r+1

∫ ∞

0
wjpj e−pj wj t

r∏
i=1

(1 − e−piwi t ) dt.

An additional random variable of interest in this model is R, the number of probes needed
to kill all the target cells 1, . . . , r .

Proposition 4. The expectation of R is

E[R] =
n∑

i=1

1

pi

−
n∑

j=r+1

∫ ∞

0
wj e−pj wj t

r∏
i=1

(1 − e−piwi t ) dt.

Proof. Imagine that probing does not end when the cells 1, . . . , r have all been killed, but
continues until all n cells have been killed, and let Q denote the number of probes required
to do so. Also, let Rj denote the number of probes of cell j after cells 1, . . . , r have all been
killed. Then

E[R] = E[Q] −
n∑

j=r+1

E[Rj ] =
n∑

i=1

1

pi

−
n∑

j=r+1

P(1j = 1)
1

pj

,

which completes the proof.

We now show how to efficiently use simulation to estimate P(R < k + r). Suppose that
probes of the cells i, i ≥ 1, occur at times distributed according to independent Poisson
processes with rates wi, i ≥ 1, with each probe of cell i being a killing probe with probability
pi or a nonkilling probe with probability 1 − pi . Then T1, . . . , Tn, the times of death of cells
1, . . . , n, are independent exponential random variables with respective rates p1w1, . . . , pnwn.
Let T = max(T1, . . . , Tr ). Because the processes of nonkilling probes are independent of those
of killing probes, it follows that, conditional on T = (T1, . . . , Tn), the number of nonkilling
probes of live cells by time T is Poisson distributed with mean∑

i

wi(1 − pi) min(Ti, T ).

Consequently, conditional on T , we have R
d= n − N + W, where W is a Poisson random

variable, independent of N , with mean∑
i

wi(1 − pi) min(Ti, T ),

and ‘
d=’ denotes equality in distribution.
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It follows from this that

P(R < k + r | T ) = P(W < k + r − (n − N) | T ).

Therefore, we propose the following method of estimating P(R < k + r) for each k ≥ 1.

1. Generate independent exponential random variables T1, . . . , Tn with respective rates
p1w1, . . . , pnwn.

2. Let T = max(T1, . . . , Tr ).

3. Let n − N = r + ∑n
j=r+1 1(Tj < T ).

4. Let a = ∑
i wi(1 − pi) min(Ti, T ).

5. Let

est(k) =

⎧⎪⎪⎨
⎪⎪⎩

0 if k + r ≤ n − N,

m∑
j=0

e−a aj

j ! if k + r > n − N,

where m = k + r − (n − N) − 1.

The estimate of P(R < k + r) from this run is est(k).
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