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A combinatorial structure called abstract polytope is introduced. It is shown that
abstract polytopes are a subclass of pseudo-manifolds and include (combinatorially)
simple convex polytopes as a special case.

The main objective is to determine the maximum diameter of abstract polytopes of
dimension less than or equal to 5. Those results are relevant to the study of the efficiency
of “vertex following™ algorithms since the maximum diameter of d-dimensional poly-
topes with n facets represent, in a sense, the number of iterations required to solve ihe
“worst” problem (with constraint set of d variables with n inequality constraints) using
the “best” vertex following algorithm.

1. Introduction

Several algorithms of optimization problems with polytopes as
constraint set are based on what might be called “vertex following”
methods. These algorithms are based on the identification of a special
class of feasible solutions (called vertices) and the determination of an
adjacency relation among them. A vertex following algorithm starts
with a vertex and proceeds along successive adjacent vertices, according
to some specified rule, until an optimal vertex is reached (or until it is
shown that no optimal vertex exists). The simplex algorithm of linear
programming or Lemke’s algorithm for the linear complementarity
problem can serve as examples.

Related to the efficiency of such vertex following algorithms is the
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study of maximum diameter of polytopes. Loosely speaking, the maxi-
mum diameter of a d-dimensional polytope with n facets represents the
number of iterations required to solve the “worst” problem (whose
constraint set has n — d equations and n nonnegative variables) in using
the “best” vertex following algorithm.

In this paper, we introduce a general (and convenient) framework for
investigating the structure of the vertex set of a polytope and its adjacency
relations. This framework is provided by a set of three axioms which
define abstract polytopes.

Our main objective is to establish values and bounds for the maximum
diameter of abstract pclytopes of dimension less than or equal to 5.
These results are similar to those obtained by Klee and Walkup [4] for
ordinary polytopes. Our results, however, apply to a more general class
of combinatorial structures and imply theirs as a special case.

In Section 2, we introduce the three axioms defining abstract polytopes
together with some of the terminology to be used in the paper.

In Section 3, we discuss the relations between abstract and ordinary
polytopes.

The fourth section is intended primarily for readers who are familiar
with the combinatorial topology terminology. In this section, we study
the close relations between abstract polytopes and pseudo-manifolds
and provide a preview of our results in terms of the later.

In Section 5, we present some preliminary results which are used in
the proofs of the key theorems of Section 6. Finally, in Section 7, we
summarize our results with respect to maximum diameter of abstract
polytopes.

2. Abstract polytope—definition and notation

Given a finite set T of symbols, a family P of subsets of T (called
vertices) forms a d-dimensional abstract polytope if the following three
axioms are satisfied:

(i) Every vertex of P has cardinality d.

(ii) Any subset of d — 1 symbols of T is either contained in no

vertices of P or in exactly two (called neighbors or adjacent).

(iii) Given any pair of vertices v, 7€ P, there exists a sequence of

vertices v = v,,...,v;, = 0 such that
(@) v;, v;4 are neighbors (i = 0,...,k — 1),
®) {vnd} <o, (i=0,...,k).
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It is convenient to delete from T all symbols that are not used to define
vertices. Hence, we denote by UP the set of all symbols which appear
in at least one vertex (i.e., UP = {t:tevforsomeve P}).

Let u be a subset of UP such that | u| = k, (| u | denotes the cardinality
of u). If P = {ve P: v > u} is nonempty, we say that P’ is the face of P
which is generated by u, and denote it by Fp(u) or simply F(u) if the
abstract polytope P is clear. It is not difficult to verify that the family
{v — u:ve Fp(u)} of subsets obtained by deleting u from each vertex of
such a face is a (d — k)- dimensional abstract polytope. In the sequel, we
shall use this property of faces extensively. Whenever we refer to the
abstract polytope associated with a face, it is understood that the deleting
of common symbols has been performed. Since Fp(u) corresponds to a
(d — k)-dimensional abstract polytope, we say that it is a (4 — k)-dimen-
sional face of P. Zero, one and (d — 1)-dimensional faces are called,
respectively, vertices, edges, and facets. Let P have n facets.

A d-dimensional abstract polytope with n facets is called an (n, d)-
abstract polytope. (Note that n = | UPI.) We denote by Z(n, d) the class
of all (n, d)-abstract polytopes.

The graph G(P) of an abstract polytope P is the graph whose vertices
and edges correspond 1-1 to the vertices and edges of P, respectively.

Let P be an abstract polytope and let v,5 € P. A path of length k from
v to 7 in P is a sequence of vertices v = vy, ..., 0, = D such that v;, ;4
are neighbors (i = 0, ...,k — 1). (Note that vertices of the path are not
required to be in Fp(v N 7).) The distance pp(v, 7) between v and 9 in P
is the length of the shortest path joining v and 0. The diameter 6(P) or
8P is the smallest integer k such that any two vertices of P can be joined
by a path of length less than or equal to k: 8(P) = max pp(v, D) for
v,5€ P. We denote by A,(n,d) the maximum of §(P) over all (n,d)-
abstract polytopes. This corresponds to Klee and Walkup’s Ay(n, d) for
ordinary simple polytopes [4]. In general, of course, A,(n, d) = Ay(n, d).

As stated in the Introduction, our main objective is to establish values
and bounds for A (n, d). We shall show in particular that the analog of
the unsolved d-step (or Hirsch) conjecture, ie., that A(n,d)=n—d
holds forn — d < 5.

3. Relation between abstract and simple polytopes

Abstract polytopes are (combinatorially) closely related to simple
polytopes. A simple polytope can be expressed as the set of solutions ofa
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bounded and non-degenerate linear program. Suppose the latter consists
of m equations in n non-negative variables whose coefficient matrix is
of rank m. One can associate n symbols with the index set of the n columns
of the coefficient matrix. Then the family of subsets of symbols which
correspond to the non-basic columns of all the basic feasible solutions
(i.e., vertices) of the linear program forms an (n, d)-abstract polytope
where d = n — m. This is true because any feasible solution is defined
uniquely by the subset of d = n — m non-basic variables set to zero
(axiom (i)). Given a basic feasible solution, a new basic solution can be
obtained by dropping any one of the d non-basic variables. Exactly one
of the basic variables can be set equal to zero in its place (under non-
degeneracy and boundedness). This generates a neighboring vertex
(axiom (ii)). Given any two vertices v and 7, then by restricting ourselves
to the lowest dimensional face common to v and 7 (i.e., holding at zero
value the subset of non-basic variables common to the two vertices),
a path of neighboring vertices from v to & can be found (e.g., by using the
simplex method and a suitably chosen objective function)(axiom (iii)).

Although the class of abstract polytopes includes (combinatorially)
that of simple polytopes, the converse is not true. Indeed, it is well known
(e.g., see [2, p. 235]) that the graph of 3-dimensional simple polytope
is planar. However, the graph of the 3-dimensional abstract polytope
displayed in Fig. 2 is easily shown to be non-planar. Hence no simple
polytope can have the graph structure of this particular abstract poly-
tope. See also Remark 6.10.

4. Abstract polytopes and pseudo-manifolds

In this section, we explore the very close association between abstract
polytopes and pseudo-manifolds. This section is intended primarily for
the readers familiar with combinatorial topology terminology to provide
them with a “dictionary” relating our own terminology with that of
pseudo-manifolds. Since the rest of the paper is self-contained, this
section can be skipped.

Definition 4.1. A simplicial complex K consist of a set {v} of vertices and
a set {s} of nonempty subsets of {v} called simplices such that

(i) any set consisting of exactly one vertex is a simplex,

(ii) any nonempty subset of a simplex is a simplex.
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Definition 4.2. The dimension of a simplex s containing d + 1 vertices
is defined to be d and such a simplex is called a d-simplex. If s’ = s, then
5" is called a face of s and if s’ is d’-simplex, then it is called a d'-face of s.

Definition 4.3. A d-dimensional pseudo-manifold without boundary (or
simply a d-pseudo-manifold) is a simplicial complex K such that
(i) every simplex of K is a face of some d-simplex of K,

(ii) every (d — 1)-simplex of K is the face of exactly two d-simplices
of K,

(ii) if s and s are d-simplices of K, there is a finite sequence
S =58,53,...,8 = § of d-simplices of K such that s; and s;,, have a
(d — 1)-faceincommon fori=1,...,k — 1.

Now, let us apply the following natural correspondence between
abstract polytopes and pseudo-manifolds. Given a (d + 1)-dimensional
abstract polytope P, one can associate with it a simplicial complex K as
follows: Let HP (see definition in Section 2) be the set of vertices of K
and let s ¢ | JP be a simplex of K if and only if s < v for some ve P.
It is easily checked out that K is in fact a d-pseudo-manifold, since
axioms (i)-(ii) are identical with the first two conditions of pseudo-
manifolds and axiom (iii) is stronger than the third condition. However,
if we try the reverse process of associating a (d + 1)-dimensional abstract
polytope P to a given d-pseudo-manifold K (by defining the set of the
vertices of P as the set of all d-simplices of K), we might fail because axiom
(ii1) is not necessarily satisfied. Therefore, let us restrict ourself to a special
class of pseudo-manifolds as follows: Given a simplex s in a pseudo-
manifold K, the link of s in K is the complex composed of all simplices
of K which have no vertex in common with s, but which are faces of a
simplex having s as a face. We say that a d-pseudo-manifold K is locally
connected' if d = 1 or d = 2 and for each k-simplex s of K (k < d — 2)
the link of s in K is a pseudo-manifold.

With a little patience, one can verify that the correspondence (defined
above) between (d + 1)-dimensional abstract polytopes and d-dimen-
sional locally connected pseudo-manifolds (LCPM) is one-to-one. More-
over, if s’ < UP generates an (i + 1)-dimensional face F of the abstract
polytope P, then the link of s’ in K (the corresponding LCPM) is the
i-dimensional LCPM corresponding to F. Thus, abstract polytopes and

! This term was suggested by D. Walkup (private communication).
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locally connected pseudo-manifolds are essentially identical combina-
torial structures and one can use either of them in developing the results
presented in this paper. Although the terminology of pseudo-manifolds
is well established and widely used, we prefer the abstract polytope
terminology because of its natural association to simple polytopes -(or
equivalently nondegenerate linear programs) which are our primary
subject of investigation. However, we shall outline here our main results
and line of proofs using the combinatorial topology terminology to
provide a link between that terminology and ours.

In terms of pseudo-manifolds, our purpose is to find the maximum
diameter of locally connected d-pseudo-manifolds with n vertices for
n —d + 1 £ 5. (The diameter of a pseudo-manifold K is defined as the
smallest integer k such that any two simplices of K can be joined by a
path of adjacent simplices of length less than or equal to k.) This result
follows a similar one obtained by Klee and Walkup [4] for convex
polytopes. Their main argument is that every simple 3-polytope with 6,
7 or 8 facets satisfies what they term as Property A (see [4] and Remark
6.3). But this line of proof cannot be used in our case because of the
existence of a (unique) 2-dimensional locally connected pseudo-manifold
with 8 vertices (see Fig. 2) which violates Property A. (In fact, this
2-pseudo-manifold corresponds to a triangulated projective plane with
a handle.) However, considering the uniqueness of that counterexample
and using some simple arguments, we can still prove the main result,
namely, that the maximum diameter of a locally connected 4-pseudo-
manifold with 10 vertices is 5. (See Theorems 6.1 and 7.1.)

5. Some preliminary results
We shall make frequent use of the following theorem.

Theorem 5.1 [1]. Given an abstract polytope P, if two vertices v, T in P
do not have a symbol (say A) in common, then there exists an “ A-avoiding
path” joining them; i.e., there exists a path from v to T such that no vertex
along the path contains A.

The next theorem is the analog of a result of Klee and Walkup [4].
The proof here is similar.
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Theorem 5.2. Fork =0,1,2,...
(i) Ayn, d) < An+ k, d+k),
(i) A,n, d) < Ant k,d),
(iii) A,(n, d) < A n +2k,d+k)—k, A 24, d) =d,
(iv) A,(2d,d) =A,2d + k, d +k).

Proof. We shall prove (i)-{iii) for k = 1; the extension to k > 1 is trivial.

Let P be an (n, d)-abstract polytope such that 6(P) = A(n, d).

(i) Let A€ UP and let A" ¢ UP be a new symbol, define P’ as an ab-
stract polytope identical with P except the symbol 4’ replaces 4. Define
P as a new abstract polytope with vertices v U A"and v’ U A forallve P
and all v e P.

It is easy to verify that P is an (n + 1,d + 1)-abstract polytope with
a diameter at least as big as 6(P), thus

An + 1,d + 1) = 8(P) = 8(P) = A,(n, d).
This inequality is sharp since it will be shown later that A6, 2) =
= A(7,3) =3 and A,(2d,d) = A2d + k,d + k) for all k =0.

(i) Let A" ¢ UP be a new symbol and v' € P. Let vy,...,v, be the d
subsets of v’ with cardinality d — 1. Define

P=P\{p}u{vF:vr=vud;i=1,...,d}

It isobvious that Pe 2(n + 1,d)(i.e., Pisan (n + 1, d)-abstract polytope)
and that 8(P) = 6(P), hence

AJn + 1,d) = 8(P) = 8(P) = Ay, d).

This inequality is also sharp since it will be shown that A,(n,2) =
= A,n + 1,2) = n/2 for n even.

(iii) Let A4}, A5 ¢ UP be two new distinct symbols. Define P; =
{(vu 4): veP}, i=12 Then P,UP,eP(n+2,d+1) and 8(P,UP,)=
o(P) + 1. So

Afn+2,d+ 1) — 1 =8P, U Py) — 1 = §(P) = Afn, d).

In particular, 1 = A,(2,1) < A(2d,d) —(d — 1) or A 2d,d) = d.
(iv) Let Pe 2(2d + k,d + k),(k = 0), where 6(P) = A,(2d + k,d + k).
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Choose v, v € P so that the shortest path from v to v has length 6(P).
Note that |[v 5| = k + £,0 < £ < d. Consider the face P' = Fp(v N D)
of P which corresponds 1—1 to a (d + k' — j, k')-abstract polytope,
where k' =d+k — |v?P 0 |=d—-1Land 0 << k. Since P < P, the
length of the shortest path from v to ¥ in P’ is at least as large as 5(P).
Hence

AR2d —4 —j,d—2)=8P)=8P)=A,2d + k,d + k).
However, by (i) and (ii),

A2d + k,d + k) 2 A2d,d) = A,2d — L — j,d — 1).
Hence

A2d + k,d + k) = A, (2d, d)

Theorem 5.3. Given d > 1 and k = 0, there exists a Pe P(2d + k,d)
with disjoint vertices v*, v* whose distance p(v*,v*) is A,(2d + k, d).

Proof. Let P, € Z(n, d), where n = 2d have two vertices v, 7, such that
pp (Vo Do) = Ay(n, d). Assume s = | v, N Dy | > 0 and consider the face
Py = Fp(von0p)eP(n — s — j,d — s), where j = 0 is the number of
symbols in the set UP1\{Uo M Do) not used to form the vertices of the
face. We have

Adn, d) = 8(P,) < 6Fp (v N Bo) < Adn — s — j,d — ).

But by Theorem 5.2(i),(iii), A(n,d) = A(n — s — j, d — s) with strict
inequality if j > 0. Hence we conclude j = 0, P, e #(n — s,d — s), and

0P, = A(n — s,d — 5) = Ay(n,d).

Moreover, the vertices vy = v\ {vo N Do}, D' o = Do\ {Vo N Ty} of P,
are disjoint and

7 =

PPZ(UO, Vo) = Aa(n -, d— S) = Aa(n’ d)

Let u = UPZ\{DQ, U Dp}. Note |u| = (n — 5) — 2(d — s). Note also
that |u| = sif and only if n > 2d, i, if n = 2d + k, k = 0, which is in
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accord with our hypothesis. Select any subset of s symbols {4,, 4,, ...,
A} = u. We now define a new abstract polytope P by adjoining to UP2
the set of new symbols u' = {4}, A3, ..., A;}. For each v € P, we define
{vuu'}eP; given any generated v'e P and any i then replacing in
v, A} by A; if Ajev’ and A;¢v generates additional v” e P. It is not
difficult to show that Pe2(n,d) and 6P, < 6P; moreover, pp,(v5,0) <
pp(vE, %), where v§ = {vp U u}and 5§ = {7, v u'} Netethat vonu =90,
Ty A u = P so that vy N T, = @ implies that v§ and 73 are also disjoint.
We have

Agn, d) = A(n — 5,d — 5) = pp,(vh, To) < pp(vd, TE) = Aqln, d).

Corollary 5.4. There exists a P e P(2d — k,d) with vertices v* and v*
such that {{JP — v*} and {UUP — o*} are disjoint and p(v*,7*) =
A, (2d — k,d).

Proof. The proof is along similar lines and will be omitted. Theorem 5.3
and Corollary 5.4 are the same for k = 0.

6. Key theorems

Theorem 6.1 will be used (in Section 7) to establish the values of
A,(n,2) and the values of A (n, d) for all n,d such that n — d < 5. Note
that Theorem 5.3 allows us to consider P € 2(2d, d), with disjoint vertex
pairs vg, by € P such that p(vy, 5p) = 6P = A,(2d, d).

We shall make frequent use of the notion of the “shell” bordering a
set of vertices of an abstract polytope. Let P be an abstract polytope and
let Z < P. A vertex v of P belongs to the i** shell N(Z) of Z in P if and
only if i is the minimum length of all the paths in P joining v to the various
vertices of Z. The O-shell of Z is Z itself. The 1-shell of Z is the set of
vertices which are adjacent to but not in Z. In general,

v = N @),

For simplicity, the 1-shell of Z in P will also be denoted by N p(Z) or
simply N(Z)if P is clear.
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Theorem 6.1. Given P e 2(2d, d) (i.e., P is a (2d, d)-abstract polytope) and
Vg, Do € P such that vy, g partition UP. Let (vg,0y,.--,0) and (Do, Dy,
., D7) be two paths in P with the property | v, " T;| = i + j, then such
paths exist for
(i) d= 1k
(i) d =2,k
(i) d = 3,k
where ¥, is any
(iv) d =4,k

’

’

0,k
1,k
2,k
iven ve rtex in N(@,),
2,k

il ‘° ol

Proof (except part (iv) for d = 5). It is convenient to switch from using
symbols A4; e T to symbols {1,...,d;1,...,d}, and let v, = {1,...,d},
Do = {I,...,d} partition P. The symbols v;, 5; where used below satisfy
| v; " 9;| = i + j or will be shown to do so.

(i) Obvious.

(ii) Relableso thatd, = {1,1,...,d — 1}. Note that {d} & (vo U 7y).
By Theorem 5.1, there exists an d-avoiding path between v, and 7, in
F(vy N 7,). Thus, all the vertices of the path contain v, " 7, = {1} but
do not contain {d}. Let v, be the neighbor of v, in this path. Since
{d} & vy, it must contain, for d = 2, one symbol different from those in
vo U {d}. Hence, noting {1} = v,,|v; N7, | =2

(i1i) Let 7, € N(9,), then by (ii) there exists a vertex v, € N(v,) such that
|v; N3y | = 2. By relabeling, let v, = {1,...,d — 1,1}, 5, = {1,1,...,
d — 1}. Define P’ = F(vy n7;) and W = N(vy) n P'. Note that W is
the set of all vertices of N(v,) which contain both {1} and {I}.

By Theorem 5.1, there exists a d-avoiding path from v, to 7, in P'.
Let v, be a vertex of this path which belongs to Np{W) (such vertex exists
because v, € W while 7, ¢ W for d = 3). But v, contains {1, I} and one
symbol out of {2,...,d — 1}, hence |v, "3, | = 3.

(iv) (d = 4) by (iii), there exists 7, € N(D,) and v, € N*(v,) such that
|v, N, | = 3. Since d = 4, the second axiom of abstract polytopes
implies that v, is a neighbor of 7,. Thus letting v, = v, completes the
proof of this case.

Part (iv) for d = 5 will be established via Theorem 6.2 and ford = 6
via Theorems 6.4, 6.5, 6.7 and 6.9.

Theorem 6.2. Let Pe (10, 5) and let (vy, v, ,); (Ty, V1) be paths in P
satisfying | v; " 3;| = i + j. Define
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P = F(v, n1y), W = N(vo) N P, W = N(v,) n P

Then either there exists a path of length 3 connecting a vertex in Wto a
vertex in Wor

(@) F(v, N 9,) is (by relabeling) the 7-vertex 2-dimensional abstract
polytope displayed in Fig. 1 and also by heavy edges in Fig. 2.

(b) F(v, n,) is (by relabeling) the 3-dimensional abstract polytope
given in Fig. 2 (note that the graph of F(v, N v,) is non-planar).

vy = ALT2}0 (23 }—{ 1,12} U {53 }mmm{ 1,12} U {54
( (1,12} u{34} =7,

(112} 0 {25} {112} u{45} (1,12} u{43}

Fig. 1. Face F(1,1,2).
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Fig. 2. Face F(1, 1). F(1, 1) e 2 (8, 3) has a diameter 5 = 4.

Proof. Assume (by relabeling if necessary) that

vo = {1,2,3,4,5}, v, ={1,2,3,4,1}, vy = {1,2,3,1,2},
50={-1_’2’3’1’§}’ 5l ={T,za3’4a1}- ) 1

(a) Since | v, N3y | = 3, P” = F(v, N D) corresponds 1—1 to an (n, 2)-
abstract polytope. It is easy to show that every (n, 2)-abstract polytope

T,
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Q has exactly n vertices and that every symbol of | JQ is contained by
two adjacent vertices of Q. Furthermore, the graph of Q forms a simple
cycle with diameter [n/2]. It is obvious that the number of vertices in P”
satisfies

7=|UP|—|Uzhﬁl|2|P"|Z|02U51|_|vzhvl|=4.

(al) | P”| < 5. In this case n = 4 (or 5), there exists a path of length
two joining v, and v,, hence of length 3 joining v, in W to %, in W,
(a2) | P"| = 6. In this case P” has the form

Uyl
= {1,T,§}u{z,3}< >{1,T,i}u{§,2} =7,.
I/— z

Since {1, 1,2} is a subset of each vertex of P”, and v,ud ={1,1,2}u
{2,3,3,4}, one of the remaining symbols {4}, {5}, or {5} is contained
by the two adjacent vertices v}, v, and another by v3, vy. But if {4} is
contained by v3, v} (or v3, vy), then v} (or v3) is a neighbor of v,. If not,
then {5} is contained by v}, v}, (or v%, v}), and v} (or v}) is a member of W,
In either case, there exists a path of length 3 from a member of W to a
member of W.
(a3) | P"| = 7. Here P” has the form

2P j—"
= Ti}u{23< )>ll,§}u{§,3}=61.

Using the same arguments as in (a2), we see that if every path from a
member of W to a member of Wis not to have a length of 3, then v}, v},
must contain {5}; v}, v5 must contain {4} and vj, v; must contain {5}.
Thus P” has the form of Fig. 1, except for possible interchange of symbols
{2} with {3} and {3} with {4}.

(b) Suppose every path in P’ joining a member of W to a member of
Whas a length larger than 3, so that P” as displayed in Fig. 2 by heavy
lines has the form given in Fig. 1. Let us denote the vertex {1,1,2} u
{4,3} e ‘P”} by 7,. We can apply now the above analys1s to the face




2.0 T S THU SO A R PR St bt e e v L P e e

32 I. Adler, G.B. Dantzig, Maximum diameter of abstract polytopes

and {I,2,3,4,5} into {1,4,2,3,5}. Thus F(v; N v,) = F(1,4, 1) has the
followmg form (w1th the possible interchange of {2} with {3} and {2}
with {3}):

(14,1}01{3,5)=={ 14,1} U {2,5 }=={ 1,4,1'}u{2',3}> =0,

<{ 14,110 {24} —{ 14T} U{54}=={141}U{53)

Note that interchanging {2} with {3} is not possible since {1,4,1} U
{2,5} is forced as a neighbor of 7, because it already exists as a vertex of
F(v2 A 7,). The above cycle is shown by dotted edges in Fig. 2 with the
possibility that the symbol {2} is interchanged with {3} in two of its
vertices.

We now let v, = {1,1,4} U {2,4} and apply the argument of (a) on
F(, n9,) = F(1,1,4). Since { 1, 1,4} U {52}eF@,n7)and {1, 1,4}
v {4,5} € F(v, nD,), we geta unique form for F(v, n 7,)as follows:

vy = ALTA U {2,4}—{113}u{4,5}=—{1,14}U{52}
< >{1,T,Z}u{i,§} =7,
(11430125} =—={1,1,4} U {3,5}=={ 1,14} U{3,3}

The above cycle is displayed in Fig. 2 by double-lined edges. If we would
have interchanged {2} with {3} in F(v, N 7,), and defined 1}, as above,
except {2} is replaced by {3}, then F(v3 n7;) would be uniquely the
the above cycle except {2} and {3} would be interchanged. But then we
would have {1,1,4} U {2,5}eF(vyn7,) and {1,4,1}U{2,5}€F(v;N7T,)
but {1,1,2} U {2,5} e F(v; n ;). So axiom (ii) of abstract polytopes
would have been violated since {1, 2, 1,5} would be a subset of 3 vertices
of P.

Hence, we can conclude that {2} is not interchangeable with {3} in
F(v, N 7,) (i.e., the structure of this face which is given above is the only
structure which is compatible with F(v, n7,) given in (a) and the
assumption that no path of length less than 4 joined a member of Wto
a member of W).

Finally, letting 7, = {1,3,T} u {3,4}, we consider F(v; N 73) =
F(1,3,1). We note that {1,3, 1,u15 2}, {1,3,T}u{2,2}, {1,3,T}u

(4,5} and {1,3, 1} U {4, 5} are already vertices belonging to F(v, N 75).
We get applymg (a) that the form of F(v, N 75) is necessarily as follows:
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L3110 {45} =—{13,1} U{45l={13,1}U{34}\ =0}
v, = {1,3,1’}u{z,4}< )

(1,31} U{2,2)mmm{ 13,1} U {52 )= {1,3,1} U{5,3]

Collecting all the vertices of the four 2-dimensional faces considered
above it is not difficult to verify that they form a 3-dimensional abstract
polytope which has the structure described in Fig. 2.

Remark 6.3. Klee and Walkup [4] named the property that every path
from a member of W to a member of W has a length of at most 3, as
“Property A”. They showed that every 3-dimensional simple polytope
with 8 facets satisfies Property A. We have shown that all 3-dimensional
abstract polytopes with 8 facets also satisfy Property A except one,
namely the one with structure given in Fig. 2. Note, however, that this
structure is non-planar. For simple polytopes this cannot happen by
Steinitz’s theorem [2]. Therefore, noting Theorems 5.3 and 6.1(ii), the
above constitutes a new proof Klee and Walkup’s theorem for A,(2d, d)
based on simpler assumptions, i.e., that the Hirsch d-step conjecture is
true for d < 5.

Proof of Theorem 6.1 (part (iv) for d = 5). 1t is obvious that (iv) holds
if and only if there exists a path of length 5 from v, to ,, i.e., if and only if
there exists a path of length 3 from a neighbor of v, to a neighbor of o,.

Suppose (iv) does not hold, then by Theorem 6.2(b) every 3-dimen-
sional face of P which is generated by a member of N(v,) and a member
of N(v,) with two symbols in common has the structure of Fig. 2 after
relabeling. In particular, let v, = {1,2,3,4,1}, v, = {1,2,3,1,2},
9, = {1,1,2,3,4} and P’ = F(v; n9,) = F(1, 1) has the form of Fig. 2.
Considerv, = {1,2,3,4, 5} and itsincident edge generated by { 1,3, 4, 5}.
The other vertex incident to this edge cannot be {1, 3,4, 5} U {i}, where
i=1,2,3,4,since this would imply that there is a path of length 5 from
vy to 7, via that edge and one of the following four vertices of P':

(1,3,51,3}, (1,4,5,1,3}, {1,3,51,2}, {1,4,5,1,4}.

Hence {1, 3,4, 5,5} is a vertex adjacent to v,.

Similar arguments lead to the conclusion that either the set {1,2,4,5,5}
or {1,2,4,5,2} is the vertex other than v, incident to the edge generated
by {1,2,4,5}.

e —
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The same argument with respect to b, and the edge generated by
{1,2,4,5} (because of the presence of vertices {1,4,1,2,5},{1,3,1,4, 5,
(1,2,1,2,5}, {1,2,1,4,5} in P) implies that {5,1,2,4,5} € N (D).

Consider now vertices {1,3,4,5,5} and {5, 1,2,4,5}, by Theorem 6.2,
in order not to have a path of length 3 joining these two vertices, the face
of their intersection F(5, 5) must have the structure of Fig. 2. But note in
Fig. 2 that the three neighbors of v, which are in N2.(v,) have the property
that no two are neighbors. This rules out the possibility that {1,2,4,5,5}
is a vertex as it would lie in this face and would be a neighbor of
(1,3,4,5,5} in N(vo) instead of N 2(y,). Hence if (iv) does not hold,
(1,2,4,5,2} € N(vo).

Let us now consider the face F({1,2,4,5,2} n7,}) = F(1,2). By
Theorem 6.2, under the assumption that (iv) does not hold, F (1,2) must
have the structure of Fig. 2. It contains the nonempty 2-dimensional face
F(v, A 9,) = F(1,T,2). But note that F(1, I, 2) also lies in F(v; N 9,) and
has the 7 vertices shown connected by heavy arcs in Fig. 2. But all
2.dimensional faces with seven vertices of the abstract polytope given in
Fig. 2 have the property that one of its vertices is adjacent to v, in P’ and
thus analogously one of the seven vertices of F(1, 1, 2) should be adjacent
to {1,2,4,5,2} in F{l, 2} but in fact none are, a contradiction. So (iv)
must hold ford = 5.

The last part of Theorem 6.1(iv), for d =6, will be proved via Theo-
rems 6.4, 6.5 and 6.7.

Theorem 6.4. Given Pe P(2d,d) (where d = 4) and paths (vo, 1), Do
satisfying | v; N\ T;| = i + jand 3,03 € N*(v,) satisfying |v, N0, NT5| =3,
then there exists a vertex v, € N*(vo) such that | v, N0, | = 4, where either
5, = 0, or b, = Tj.
Proof. By relabeling for d = 4, we are assuming
U0={1,...,d}, 50={T,...,a}, Ul={1,...,d‘—l,r},
% ={1,2,1,...,d}\{ij}

(1,2,1,...,d}\{k 1} Q2 <7ijkX<ad,

vz=

where 7, j, k,Z are all distinct or i = k and 7,j,4 are distinct. Note that
v, T, nTy = {1,2,T}.

B
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By Theorem 5.1, there exists an i-avoiding path from v, to 7, in
P’ = F(v, N 0,). Let Z = N(vy) N P'. Since v, € Z, while 7, ¢ Z, this path
intersects Np{Z), say at v,. Note that v, € Np(Z) = Np(vo).

By definition, all the vertices of P’ = F(v; N 75) contain the symbols
(1,2, T}, and v, contains also some {s}e{t:7€{2,...,d}, 1 # i}. But
either v, or 73 must contain {5}. Hence either 5, = 0 orv, = 7 satisfies
v, "D, | =4

Theorem 6.5. Let P 2(2d, d) and let {vy, vy, 05}, {To,0,} be two paths
in P such that |v;nv;| =i+ j. Let W= N(vo) " F(v; n7,); then if
d=6 and |W| 22, there exists vy € N?(vo) and 5 € N*(Do) such that
[vy "Dy | = 4.

Proof. By relabeling, let

P = F(v, N 7y), W = N(vo) N P, P" = F(v, N 7y),
Z = N@y) AP, U ={veNp2):{i}co} (=2...,4.

Theorem 6.5 is an immediate consequence of the following lemma,
because the denial of the existence of such v5, 7, implies by (b4) below
that | W| = 1 whereas by hypothesis | w|=2.

Lemma 6.6. (a) U,,..., U; partitions NpAZ). At least one U; # 9,
25i<d- 1.

(b) If there exist no v € N*(vo) and ¥, € N*(By) such that |v5 N vy =4,
then

®1) |T;|=0fori=2,...,d -2,
(b2) |gd—l| = 1,
(b3) | U] = d

— 4,
(b4) |[W|=1ford 2 6.

Proof. (a) Every vertex of P = F(v, n ;) = F(1, I, 2) contains {1} and
thus every vertex of Z = N(3,) N P” contains exactly one unbarred
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symbol—namely {1}. Every vertex of Np.(Z) contains {1} and exactly
one other non-barred symbol. Obviously,

—_— d —— —— p—
NeZ)y=\J U, and U;nU;=9 forij=(Q,...,d),i#]j
i=2

By Theorem 5.1, there exists a {d }-avoiding path joining v, to 9, in P".
Since 7, € Z and v, ¢ Z, this path must intersect Np.(Z). Thus, there
exists a vertex 5 € Np(Z) = N*,) which does not contain {d} implying
atleastone | U;| # Ofori=2,...,d — L.

(bl) Assume U;, # @ and v, € U,, for some iy, 2 < iy < d — 2, then
(1,io, 1,2} = B,. Hence | v, N 8 | = 4. Moreover, 7, € Np(Z) = N*(Bo).
This contradicts the hypothesis of (b) and we conclude | U;| = 0 for
2Li<d—-2.

(b2) From (bl) and the discussion under (a) we conclude | Uy, | 2 1.
Assume now that | U,_,| =2 and let v, 75 € U;—,. Since v, and v
both contain {1,d — 1,1}, we have | v, "D, N7, | = 3. Furthermore,
¥y, 75 € Np.(Z) = N*(By), so by Theorem 6.4 there exists v, € N*(vp) such
that either | v, N7, | = 4 or | v, N 73 | = 4, contrary to hypothesis of (b).
Thus we conclude that | U, | = 1.

(b3) Suppose | Z | = k. Note that k = 1 because 5, € Z. The vertices [
of Z have the form, {1} U B, \{i} for ie R, where R is a subset of k !
indices of {3,...,d}.

By the second axiom of abstract polytopes, the subset {1} U vo\ {i,j},
(feR,j¢R,je{(3,...,d})is contained by two vertices of P". Thus every
vertex of Z gives rise to d — 2 — k distinct vertices in Np.(Z). Therefore,
| Np(Z)| = kid — 2 — k). Hence by (a), (b1) and (b2),

|INpZ)| = | Ug| + 1 = k(d — 2 — k).
The last expression implies that

0<k<d-2 and |U,|2d-4

(b4) Finally, let us assume thatd = 6 and | W| = 2, and let v; € Wbe
distinct from v,. Note that v € W is of the form vy U {T}\ {i},i # 1 and
that v, is obtained by setting i = d and that v is formed by setting i = i,
for some iy # 1 or d. Thus {1,d, T} < vj. By (b3), either there exists
vy € N%(vo) and B € N%(To) such that | vy N0y | = 4or| U, 2 d -4 22
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for d = 6. Accordingly, let 5,75 € U,. Since both 7 and 7% contain
{1,d, T}, we have | v} N Dy N D3 | = 3 which by Theorem 6.4 implies that
there exists a v, € N(vo) such that either | v; N 7 | = 4 or | vy 75| =4,
contrary to hypotheses of part (b). We conclude for d = 6 that |w|=1

Theorem 6.7. If d = 6 and if there exist v, v] = N(v) and v, = N(vy)
such that | vy A v} "D, | = 2, then Theorem 6.1(iv) holds.

Proof. Without loss of generality we can assume that
vo = {

vy ={1,...,d — 2,d,1},

50={l,...,d}, 51={1,T,...,d—1},

P = F(v, " 7y), W = P n N(vo)-

We wish to show that if d = 6, then there exist v € Np(vo) and
¥, € N2(3,) such that | v, N 7| = 4.

By Theorem 5.1, there exists a {d}-avoiding path from v, to v, in
P’ = F(v, N 5,) = F(1, ). This path intersects N (W) at v, (say). In this
case, 0o, Uy, Us, Do, Uy satisfy the conditions of Theorem 6.5. Moreover,
| W| = 2since vy, v} < W and d = 6 so that by Theorem 6.5 there exist
v, € N2(v,) and ¥, € N3 (Do) such that | v, n 75| = 4.

Corollary 6.8. If d = 6 and if there exist adjacent vy,Vy = N(vo), then
Theorem 6.1(iv) holds.

Proof. Let {1} = v} nvjandlet {k} ¢ v\ and {£} ¢v].Fori=(,..., d),
let #; € N(3,) such that vertex #; o 7, \ {i}. Let p; = & N vo. If for some
i,p;¢ {k,4}, then {i#i;nvynvi} ={T,p;} and Theorem 6.7 applies.
Otherwise, all #; contain {k} or {£}, and there exist a % and #, both of
which contain {k} (say), but then {#i; ", nvj} = {I,k} and again
Theorem 6.7 applies.

Proof of Theorem 6.1 (part (iv) for d = 6). By Theorem 6.1(iii), we can
assume the existence of paths (v, b1, v2), (%o, 7;) such that |v; " 7;| =
i + j. Without loss of generality we can assume that
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[~

vl=‘{l,...,d‘—l,l—}, U2={l,...,d—‘2,1_,2},

b
Lo (B =11,...,d=1}

—
Vo = 1
f

]

{1

L...,

&

U =1{1,...,
Let us define P, P, W, Zand U, (i=2,...,d) as in Lemma 6.6.
Since we assume that d = 6, we have by Lemma 6.6 that | U] = 2.
Let 3,,0,€ U,.
If | Z| = 2, then (considering the two vertices in Z and v, ) (iv) holds
by Theorem 6.7. If | Z| = 1, then Z = {%,} and necessarily b,, 7, have
the form

B, ={1,d,1,..., d= T\ {§,

B={Ld T, =T\

for some iy, jo, 3 < Ip,jo < d — 1 and T, # J,.

Let W' = F(1) n N(vo). Note | W'| =d — 1. Every ve W’ contains
I,d, except v,. If any vje{W’'\v,} contains ¢ {i,,Jo,d}, then
| v1 N v, A 05| = 3 so that Theorem 6.1(iv) follows from Theorem 6.4.
If, on the contrary, all v € { W'\ v, } contain either d or i, or j,, then there
exists a pair vy, vf € { W'\ v, } both of which contain {1,d} or {1,7,} or
{1,/o} because | Wy, | =d—2 =4 for d 6. We may now apply
Corollary 6.8.

Theorem 6.9. (i) A,(2d + 1,d) <A,2d,d — 1) + 1, for d > 2,
(i) A,2d, d) < A,2d — k,d — k) + k,fork = (1,2, 3,4),d — k > 2,

Proof. (i) Let Pe 2(2d + 1, d) such that P = A, (2d + 1, d) and let the
minimum path joining v, to 7, in P has length A,(2d + 1, d). By Theorem
5.3, we can assume v, "D, = @ and there exists v, € N(vg) such that
lvi | = 1, otherwise all ve N(vo) would be neighbors and there
would be no path from v, to 7,. The result follows since O[F(v; nDy)] <
A2d,d — 1)

(i1) Follows immediately from Theorem 6.1.

Remark 6.10. Relations for simple polytopes. Note that the various
arguments presented apply if the phrase “simple polytope” is substituted
for abstract polytope wherever it occurs, and the term A (n, d) is replaced
by Ayn,d) (the maximum diameter of ordinary polytopes over all
d-dimensional polytopes with n facets) and therefore the various theo-
rems and corollaries are also valid after the replacement of these terms.
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7. Maximum diameters of abstract polytopes and the Hirsch conjecture

Corresponding to the Hirsch conjecture of simple polytopes is the
conjecture for abstract polytopes that

Andy<n-—-d d>1l,nzd+ 1)
Theorem 7.1 is the analog of the results of Klee and Walkup [4] for

abstract polytopes (except for Ayn,3) = [2n/3] — 1 for n = 9) and is
mainly based on Theorem 6.1.

Theorem 7.1. The values of A,(n, d) for n — d < 5, and all d are as given
in Table 1. In addition, A(n, 2) = [n/2].

Table 1
Values of A (n,d)

n-d

1 2 3 4 5
d
1 1 X X X X
2 1 2 2 3 3 .. A (n2) = [n/2]
3 i 2 3 3 4
4 1 2 3 4 5
=5 1 2 3 4 5

Proof. Let P e 2(n,d), P = A,(n,d). By Theorem 5.3, we can further
assume for n = 2d, that there exist vg, D, € P such that v, N 9, = @ and
p(vo, Do) = Agn, d).

(a) 2d > n. By Theorem 5.2(iv), each column of Table 1 is constant
from the main diagonal downwards.

(b) d =2,n = 4. Since P is a 2-dimensional abstract polytope, the
number of vertices of P is equal to the number of its edges, therefore the
graph of P forms a simple cycle with n vertices. Hence A,(n, d) = [n/2].

(c) n = 2d,d < 5. Applying Theorem 6.1, A,2d,d) = p(vg, Do) = d.

(d) d=3,n=7Let (JP\ {vo U Ty} = 4; then by Theorem 5.1 there
exists an A-avoiding path between v, and T,. This path intersects
N2(v,) at v, (say). Since every vertex in N 2(v,) contains two symbols of
{UP\vo},vz is necessarily adjacent to 7,. Hence A,7,3) < 3. Since
A(7,3) = AL6,2) = 3, by Theorem 5.2, we obtain A (7,3) = 3.
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€ d=3,n=28 Let JP= 11,2,3,4,5,6,7,8}, v, = {1,2,3}, 5, =
{4,5,6}, where A,(8, 3) = p(v,, Ty). Fig. 2 is an abstract polytope belong-
ing to (8, 3) with diameter 6 = 4. Therefore, 5(P) = 4. Assume 5(P) > 4,
then every vertex contains either {7} or {8} for otherwise a vertex in
N(vo) and B, (or in N(,) and v,) would both contain a symbol in com-
mon, say {5}, and we would have A,(8,3) = 6(P)< 1 + §(FO) <1 +
A,(7,2) = 4. Thus we can assume without loss of generality N(v,) =
(1,2,7};{1,3,7}; {2,3,8} and N(5,) = {4,5,7}; {4,6, 8}; and either
{5,6,7} or {5,6,8}. Consider now the cycle F(7) which can contain at
most seven vertices. In the first case, the shorter leg of the cycle joining
N(v,) to N(v,) provides a path of length 2. In the second case, neither
{4,6,7} nor {5,6,7} can appear in the cycle so that it has at most six
vertices and it too provides a path of length 2. Thus 4 < A,(8,3) =
pvo, Do) < 4.

(f) d =4, n=9. Klee and Walkup [4] exhibit a Pe 2(9,4) with
0P = 5. Thus, by Theorem 6.9 and (), 5 < A,(9,4) < A(8,3) + 1 = 5.
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