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ABSTRACT. It has been a challenge for mathematicians to theoreti- 
cally confirm the extremely good performance of simplex algorithms for 
linear programming. We have confirmed that a certain variant of the 
simplex method solves problems of order m x n in an expected num- 
ber of steps which is bounded between two quadratic functions of the 
smaller dimension of the problem. Our probabilistic assumptions are 
rather weak. 

1. Introduction. We consider the linear programming problem of order 
m x n  in the form: Maximize cTx over all x >_ 0 in Rn such that Ax 5 6 ,  
where A E Rmxn.  It has been observed that the simplex algorithms for 
linear programming, developed by George Dantzig [Dl, work extremely well. 
A central question in the field of analysis of algorithms is to estimate the 
expected number of steps that these algorithms perform relative to different 
probability distributions of inputs. Some background is given in 52. In [AM1 
and T] we consider a variant of the simplex method called the "lexicographic 
self-dual method". We find that the expected number of steps of this variant, 
relative to a rather weak probabilistic model, is only O((min(m, n ) ) 2 ) .  This is 
the first polynomial average-case upper bound for a simplex algorithm which 
is capable of solving any linear programming problem. The first two authors 
[AM21 have also determined a quadratic lower bound, so the behavior of 
this variant is indeed quadratic, whereas it has been conjectured that other 
variants take a linear expected number of steps. With various choices of the 
starting point, this variant can simulate different "constraint-by-constraint" 
and "variable dimension" algorithms, as well as combinations thereof [Me2]. 
Adler, Karp and Shamir [AKS] provide a different proof of similar upper 
bound for a certain class of "constraint-by-constraint" algorithms. It follows 

. from [Me21 that their variant can also be simulated by the self-dual algorithm 
with an appropriate starting point. 

2. Background. The simplex algorithms iteratively change the basis of 
a linear system of equations, until they reach an "optimal" hasis, or a basis 
that exhibits that no optimal solution exists. Potentially, there are (m, fn)  
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bases, so this is an obvious upper-bound on the number of steps that any 
simplex algorithm can perform. Klee and Minty [KM] and, later, others have 
shown that many simplex algorithms require an exponential number of steps 
in the worst case. A bad example for the variant discussed here was given by 
Murty [Mu]. Computational experience has shown that the number of steps 
is usually much smaller. This has been observed in practice and in controlled 
experiments referenced in our detailed reports. It has been a challenge to 
confirm these findings theoretically. Note that the ellipsoid algorithm for 
linear programming [K], which has a worst-case bound that is polynomial in 
m, n and the logarithms of the numbers involved, appears at present to be 
inefficient for practical solution of linear programming problems. 

Borgwardt [Bol, Bo2] and Smale [Sl ,  S2] have recently provided prob- 
abilistic analyses of simplex algorithms. Both assume that the vectors gen- 
erating the problem are sampled from spherically symmetric distributions; 
however, Smale actually obtains his results under a weaker model of symme- 
try. Borgwardt analyzes a subclass of the general class of linear programming 
problems. He shows that the expected number of steps is 0(n4m11(n-1) 1. 
We note that this upper bound tends to infinity when either m or n tend 
to infinity. Smale considers the secalled self-dual simplex algorithm [Dl. He 
shows that the expected number of steps is less than ~ ( m ) ( l n n ) ~ ( ~ +  '1. Ob- 
viously, this upper bound tends to infinity with n. Blair [Bl] proves an upper 
bound of c(m)(ln n)"("f l)ln(rn+l)+ rn under a weaker model. Megiddo [Mel] 
has shown that under Smale's model the expected number of steps decreases 
to a limit c(m) whenever n tends to infinity while m if is fixed. 

Our papers [AMl, AM2, T] considerably improve upon the previous 
results. We confirm that the average number of steps is polynomial in the 
smaller dimension of the problem. We analyze the average number of pivot 
steps performed by a variant of the self-dual simplex algorithm described 
below. This variant yields a much better estimate of the number of steps. 
We show that this number is bounded between two quadratic functions of the 
minimum of the two dimensions. Furthermore, our analyses in these papers 
are carried out under models which are much weaker than Borgwardt's and 
Smale's. Instead of complete spherical symmetry, we require only symmetry 
with respect to certain reflections, together with a certain regularity condition 
on the matrix with probability one, which holds if the problem is sampled 
from any continuous distribution. We note that Haimovich [HI and Adler [A] 
consider the weak probability model we describe below and independently 
obtain linear bounds on the expected length of an efficient path determined 
by two objective functions; however, these results do not explain the behavior 
of an algorithm for solving a general linear programming problem. 

3. The probabilistic model. Our results are valid for any distribution 
in a wide class which we define below. Natural probabilistic models to look at 
are those with some symmetry assumptions. It is desirable to have the group 
of symmetries as small as possible. Under the spherically symmetric model 
each class contains a continuum of instances. 
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Under our model the classes are finite. Given an instance (A, b, c), let 
A* E R ( ~ + ~ ) ~ ( ~ + ~ )  denote a matrix consisting of A together with b as an 
additional column and cT as an additional row. There is thus a redundant 

entry AL+l,n+P It is convenient to assume every submatrix of A* is nonsin- 
gular with probability one, which is true if A* is sampled from any continuous 
distribution. 

We first describe the weaker model under which we prove the upper bound 
result. The distribution is required to be invariant under the group of sym- 
metries generated by the m + n transformations of multiplying either one of 
the first n columns, or one of the first m rows of the matrix A* by -1. Thus, 
in every equivalence class, each of the 2m+n members is equally probable. It 
is interesting to mention that the number of symmetries cannot be subexpe 
nential if we are to prove a polynomial upper bound on the average number 
of steps, since in the worse case the number is exponential. 

The stronger model, under which we are able to prove the lower bound 
result, requires that all entries of A* be independent, identically distributed 
random variates whose common distribution is symmetric about the origin. 

4. The algorithm. It is known from the theory of linear programming 
that x E Rn (such that Ax 5 b and x > 0) is an optimal solution if and 
only if there exists y E Rm such that yTA > cT, y > 0 and the following 
equalities (called "complementary slackness" conditions) hold: yT(Ax - b) = 
(yTA - cT)x = 0. The problem may be restated in the following way: Given 
(A,b,c), find (x,y,u,v) > 0 such that Ax + u = b, v - ATy = -c and 
yTu = vTx = 0. Since the variables are "complementary" (in the sense that 
xjv3 = 0, j = 1,.  . . ,n, and yiuz = 0, i = 1, .  . . ,m) ,  we can use a vector 
[ E Rm+n to describe all of them as follows. We identify [jf = vj and 
[r = -xj for j = 1,.  . . , n ,  and [:+; = ui and = -yi for i = 1, .  . . ,m. 

3 
Equivalently, the problem is: Find [ such that F([) = q, where F is a certain 
piecewise linear mapping from Rmfn into itself and q = (-cT, bT)T. The 
mapping F is linear on each orthant and coincides with the identity on the 
positive orthant. Obviously, if q is positive then F(q) = q and the problem 
is solved in a trivial way. In general, the algorithm can start at any positive 
point qo and follow F-l((1 - t)qo + tq), while t goes from 0 to 1. When the 
inverse image crosses the boundary between two orthants of Rm+", aUpivot" 
step occurs. Thus, the essence of the analysis is to estimate the number of 
times the inverse image crosses such boundaries. The self-dual method uses 
the starting point qo = (1,. . . , I ) ~ .  It turns out that the analysis is much 
more favorable and tractable when qo consists of painvise distinct powers of E ,  

where E is sufficiently small. Also, in that case the sequence of orthants visited 
by the inverse image of the segment [go, q] can be generated by lexicographic 
pivoting rules. 

5. Outline of the analysis. The key to estimating the expected number 
of steps is the evaluation of the probabilities of bases occurring in the solution 
process. These events were characterized by Smale in terms of inclusions of 
random vectors in random cones in Rm+". The random vector is q. The 
cones are spanned by columns and rows of A (augmented with zeros), a few 
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unit vectors and the vector go. Alternatively, the roles of q and qo can be 
reversed. There are ("2") cones to consider. For each cone, the bounds 
obtained depend on two indices, namely, the smallest powers of E which occur 
in two critical sections of the vector go. Once these bounds are obtained (all 
are powers of 1/2), it only remains to count the number of cones with the same 
indices and sum up the probabilities. The reader is referred to the detailed 
reports for the complete analysis. 

To illustrate how the probabilities are estimated, we give an analogous 
simplistic example. Let u E Rk be fixed and let S E R~~~ be generated 
as is A* in the (weaker) model of 53. Then the probability that u lies in 
the cone C(S)  spanned by the columns of S is 2-k. This easily follows by 
considering all 2k matrices S' obtained from S by reversing the signs of some 
of its columns; with probability one, u lies in C(S1) for just one such S'. 
Our analysis is complicated by the unit vectors, the form of go, and the extra 
zeroes. 
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