1 Definitions

Consider a discrete time LTI system:

\[x_{n+1} = Ax_n + Bu_n, \quad x_0 = \xi. \]

Now suppose that we do not measure \(x_n \). Instead, consider a model in which we measure \(u_n \) and

\[y_n = Cx_n + Du_n, \]

where \(C \in \mathbb{R}^{m \times p} \) and \(D \in \mathbb{R}^{m \times q} \); this equation is often called a read-out equation. Note that we assume that \(A \in \mathbb{R}^{p \times p} \), \(B \in \mathbb{R}^{p \times q} \), \(C \in \mathbb{R}^{m \times p} \), and \(D \in \mathbb{R}^{m \times q} \) are known. We have two related definitions. The LTI system with pair \((C, A)\) is:

1. **observable** if and only if given values of \(u_n \) and \(y_n \) for \(n = 0, \ldots, p - 1 \), we can uniquely determine \(x_0 \);

2. **detectable** if and only if given values of \(u_n \) and \(y_n \) for \(n = 0, \ldots, p - 1 \), we can determine an estimate \(\hat{x}_n \) such that \(\|x_n - \hat{x}_n\| \to 0 \).

These definitions are related because if an LTI system is observable, then it is also detectable. The converse is not true: There are detectable LTI systems that are not observable. Also not that we made these definitions only with respect to the pair \((C, A)\) and not \(B \) or \(D \). We can remove the effect of \(D \) by considering a model \(\bar{y}_n = y_n - Du_n = Cx_n \). And because \(x_n = A^n x_0 + \sum_{k=0}^{n-1} A^{n-k-1} B u_k \), we can subtract out the \(B \) by defining \(\bar{y}_n = \bar{y}_n - C \sum_{k=0}^{n-1} A^{n-k-1} B u_k = CA^n \bar{x}_0 \). Lastly, note that these definitions do not say anything about boundedness of the states. We could in fact have that \(\|x_n\| \to \infty \).

2 Conditions

There is a duality between controllability (stabilizability) and observability (detectability). A pair \((C, A)\) is observable if and only if the pair \((A', C')\) is controllable. Similarly, a pair \((C, A)\) is detectable if and only if the pair \((A', C')\) is stabilizable.

3 Linear Observer

The concepts of observability and detectability are important because of the following result: An LTI system \((C, A)\) is detectable if and only if there exists a constant matrix \(L \in \mathbb{R}^{p \times m} \) such that
$A + LC$ is stable. To understand why this is relevant, suppose that we choose the following estimate

$$
\hat{x}_{n+1} = A\hat{x}_n + Bu_n + L(\hat{y}_n - y), \quad \hat{x}_0 = \phi
$$

$$
\hat{y}_n = C\hat{x}_n + Du_n.
$$

Now if we define the estimation error as $e_n = \hat{x}_n - x_n$, then we have

$$
e_{n+1} = \hat{x}_{n+1} - x_{n+1} = A\hat{x}_n + Bu_n + L(C\hat{x}_n + Du_n - Cx_n - Du_n) - Ax_n - Bu_n
$$

$$
= (A + LC)(\hat{x}_n - x_n) = (A + LC)e_n,
$$

meaning that $\|e_n\| = \|\hat{x}_n - x_n\| \to 0$ because $A + LC$ is stable.

The condition of observability is even more powerful. Let $\lambda_1, \lambda_2, \ldots, \lambda_p \in \mathbb{C}$ be fixed complex numbers. If (C, A) is observable, then there exists an L such that the eigenvalues of $A + LC$ are precisely the $\lambda_1, \lambda_2, \ldots, \lambda_p$ that were chosen.

4 Steady State Kalman Filter

Consider the following LTI system with noise:

$$
x_{n+1} = Ax_n + v_n
$$

$$
y_n = Cx_n + w_n
$$

where $v_n \sim \mathcal{N}(0, Q)$ is process noise (or state noise) and $w_n \sim \mathcal{N}(0, R)$ is measurement noise. The initial condition to this system is $x_0 \sim \mathcal{N}(\mu, \Sigma_0)$. For simplicity, we will assume that $Q > 0$ and $R > 0$.

Based on this system, consider the following optimization problem

$$
\lim_{n \to \infty} \min \mathbb{E}\left[(\hat{x}_{n+1} - x_{n+1})'(\hat{x}_{n+1} - x_{n+1})\right]
$$

s.t. $x_{k+1} = Ax_k + v_k$

$$
y_k = Cx_k + w_k
$$

$$
v_k \sim \mathcal{N}(0, Q)
$$

$$
w_k \sim \mathcal{N}(0, R)
$$

Note that this minimum may not be finite unless we impose additional restrictions.

In particular, suppose that (C, A) is detectible. Then the minimizer is given by $\hat{x}_{n+1} = A\hat{x}_n + L(\hat{y}_n - y)$ (i.e., linear observer with constant gain), where

$$
L = -APC'(R + CPC')^{-1}
$$
and $P > 0$ is the unique solution to the discrete time algebraic Riccati equation (DARE)

$$P = Q + A(P - PC'(R + CPC')^{-1}CP)A'.$$

If K is the feedback gain for the infinite horizon LQR problem with pair (A', C'), then we actually have that $K = L'$; in other words, there is a duality between the infinite horizon LQR problem and the steady-state Kalman filter gain.

5 Separation Principle

Suppose we have an LTI system in which (A, B) is stabilizable and (C, A) is detectable. And imagine that we do not have access to measurements of x_n, rather we only measure u_n and y_n. An interesting question to what happens if we use an observer to produce estimates \hat{x}_n, and then uses these estimates with a linear feedback to control the system? Is the resulting closed-loop system stable? It turns out that the answer is yes, and the answer lets us separate the observer design from the controller design.

In particular, consider an output-feedback controller

$$\begin{align*}
\hat{x}_{n+1} &= A\hat{x}_n + Bu_n + L(C\hat{x}_n + Du_n - y_n) \\
u_n &= K\hat{x}_n,
\end{align*}$$

where K, L are any matrices such that $(A + BK)$ and $(A + LC)$ are stable. Note that the closed-loop system is given by

$$\begin{bmatrix} x_{n+1} \\ \hat{x}_{n+1} \end{bmatrix} = \begin{bmatrix} A & BK \\ -LC & A + BK + LC \end{bmatrix} \begin{bmatrix} x_n \\ \hat{x}_n \end{bmatrix}.$$

Next consider a change of variables

$$\begin{bmatrix} x_n \\ e_n \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_n \\ \hat{x}_n \end{bmatrix}.$$

Then the dynamics in this new coordinate system are given by

$$\begin{bmatrix} x_{n+1} \\ e_{n+1} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} A & BK \\ -LC - A & A + LC \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} x_n \\ e_n \end{bmatrix}$$

$$= \begin{bmatrix} A + BK \\ -LC - A & A + LC \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_n \\ e_n \end{bmatrix}$$

$$= \begin{bmatrix} A + BK & BK \\ 0 & A + LC \end{bmatrix} \begin{bmatrix} x_n \\ e_n \end{bmatrix}$$

The eigenvalues of this block matrix are precisely the eigenvalues of $A + BK$ and $A + LC$, and so the closed-loop system as long as $A + BK$ and $A + LC$ are both individually stable.