Outline

1. 1st Homework
2. Revisit Maximum A Posterior
3. Regularization
About 1st Homework

- For method of moments, understand the difference between μ_i, $\hat{\mu}_i$, θ_i, $\hat{\theta}_i$

- For uniform distribution on (θ_1, θ_2), understand why $\hat{\theta}_2 > \hat{\mu}_1 > \hat{\theta}_1$

- Solution will be posted online
Revisit Maximum A Posterior (MAP)

\[f(\theta|X) = \frac{f(X|\theta)g(\theta)}{f(X)} \]

\[\Leftrightarrow \]

Posterior = likelihood \cdot prior \over evidence

- MLE: maximum likelihood \(f(X|\theta) \)
 \[\hat{\theta}_{ML} = \arg \max f(X|\theta) = \arg \max \log f(X|\theta) \]

- MAP: maximum posterior \(f(\theta|X) \)
 \[\hat{\theta}_{MAP} = \arg \max f(\theta|X) = \arg \max \log f(\theta|X) \]
 \[= \arg \max \{ \log f(X|\theta) + \log g(\theta) \} \]
MLE vs MAP

(Based on Avinash Kak, 2014) Let X_1, \ldots, X_n be a random sample. For each i, the value of X_i can be either Clinton or Sanders. We want to estimate the probability p that a democrat will vote Clinton in the primary.

- Given a p, X_i will follow a Bernoulli distribution:

\[
\begin{align*}
\Pr(X_i = \text{Clinton}|p) &= p \\
\Pr(X_i = \text{Sanders}|p) &= 1 - p
\end{align*}
\]

- What is the MLE?
Now consider the MAP:

- What should be the prior?
 - The prior should be within the interval \([0, 1]\) (common knowledge)
 - Different people can have different beliefs about the prior: where should the prior peak? what should be the variance?
- Here, we take the Beta prior:

\[
p \sim \text{Beta}(\alpha, \beta) : \quad g(p) = \frac{1}{B(\alpha, \beta)} p^{\alpha-1} (1 - p)^{\beta-1}
\]

where \(B(\alpha, \beta)\) is the beta function. The mode for the Beta distribution is

\[
\frac{\alpha - 1}{\alpha + \beta - 2}
\]

And the variance is

\[
\frac{\alpha \beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}
\]

- Choose the parameters for the prior as \(\alpha = \beta = 5\).
MLE vs MAP

- Derive the MAP.

- If we have a sample of size $n = 100$ with 60 of them saying that they will vote for Sanders. Then what’s the difference between the estimates of p using MLE and MAP?
Motivation

Why do we want to impose regularization on OLS?

- Tradeoff between bias and variance: OLS is unbiased but variance may be high
 - \(n < p \), when the observation is not enough, OLS may fail
 - Collinearity: when predictors are correlated, the variance of OLS is significantly high
 - Adding regularization will introduce bias but lower the variance

- Model interpretability
 - Adding more predictors is not always good, it increases the complexity of the model and thus makes it harder for us to extract useful information
 - Regularization (shrinkage) will make some coefficients approaching zero and select the most influential coefficients (and corresponding predictors) from the model
Regularization

- Ridge regression: l_2-norm regularization

\[
\hat{\beta} = \arg \min \ | |Y - X \beta|^2 + \lambda | \beta |^2
\]
\[
= \arg \min \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2 + \lambda \sum_{j=1}^{p} \beta_j^2
\]

- Lasso: l_1-norm regularization

\[
\hat{\beta} = \arg \min \ | |Y - X \beta|^2 + \lambda | \beta |_1
\]
\[
= \arg \min \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2 + \lambda \sum_{j=1}^{p} | \beta_j |
\]

- Elastic net: combination of l_1-norm and l_2-norm regularization

\[
\hat{\beta} = \arg \min \ | |Y - X \beta|^2 + \lambda | \beta |_2^2 + \mu | \beta |_1
\]
(Gareth, et al. 2013) Given a dataset that records

- Balance
- Age
- Cards (Number of credit cards)
- Education (years of education)
- Income
- Limit (credit limit)
- Rating (credit rating)
- Gender
- Student (whether a student or not)
- marital status
- ethnicity

Let Balance be the response and all other variables be predictors.
Credit Data Example

FIGURE 3.6. The Credit data set contains information about balance, age, cards, education, income, limit, and rating for a number of potential customers.
Ridge Regression

FIGURE 6.4. The standardized ridge regression coefficients are displayed for the Credit data set, as a function of λ and $\|\hat{\beta}_R^\lambda\|_2 / \|\hat{\beta}\|_2$.

\[\lambda \uparrow \quad \|\hat{\beta}_R^\lambda\|_2 \downarrow \]
Lasso

\[\lambda \uparrow \quad ||\hat{\beta}_x^L||_1 \downarrow \]

FIGURE 6.6. The standardized lasso coefficients on the Credit data set are shown as a function of \(\lambda \) and \(||\hat{\beta}_x^L||_1/\hat{||\beta||}_1 \).

Lasso does variable selection, and gives sparse model.
Lasso

\[\lambda \uparrow \quad ||\hat{\beta}_\lambda^L||_1, ||\hat{\beta}||_1 \downarrow \]

Lasso does variable selection, and gives sparse model.

FIGURE 6.6. The standardized lasso coefficients on the Credit data set are shown as a function of \(\lambda \) and \(||\hat{\beta}_\lambda^L||_1/||\hat{\beta}||_1 \).
Elastic Net

\[\frac{\lambda}{\mu} = 0.3 \]

The path for Limit and Rating are very similar.
Choose λ

Cross-Validation