Introduction to Queuing Theory and Its Use in Manufacturing

Rob Leachman
IEOR 130
Nov. 15, 2016
Purpose

• In most service and production systems, the time required to provide the service or to complete the product is important.
 – We may want to design and operate the system to achieve certain service standards.
• Generally, the time required includes “hands-on” time (actually processing) plus time waiting.
• Queuing theory is about the estimation of waiting times.
Terminology and Framework

- **Customers** arrive randomly for service and await availability of a **server**
 - When the server(s) has (have) finished servicing previous customers, the new customer can begin service
- **Time between arrival of customer and start of service** is called the **queue time**
- **Customer departs the system after completion of the service time**
- **Total time in system** = **queue time + service time**
Analytical Approximation

- The mathematics of queuing theory is much easier if we assume the customer inter-arrival time has an exponential distribution, and if we assume the service time also has an exponential distribution. The exponential distribution has the memoryless property:
 - Suppose the average inter-arrival time is t_a. Given it has been t since the last customer arrival, what is the expected time until the next customer arrival? Answer: Still t_a!
 - Suppose the average service time is t_s. Given it has been t time units since service started, what is the expected time until service ends? Answer: Still t_s!
The M/M/1 Queue

- Queuing notation: $A/B/n$ means inter-arrival times have distribution A, service times have distribution B, n means there are n servers
- M means Markovian (memoryless), 1 means one server
- In a Markovian queuing system, the only information we need to characterize the state of the system is the number of customers n in the system
The M/M/1 Queue (cont.)

• We write \(\lambda = 1/t_a \) as the arrival rate and \(\mu = 1/t_s \) as the service rate.
• The utilization of the server is \(u = t_s / t_a = \lambda / \mu \).
• Note that we must have \(u < 1 \) for the queue to be stable.
The M/M/1 Queue (cont.)

- Markovian state-space: Node n represents the state with n customers in the system
- The arcs show the rate at which the system transitions to an adjacent state

![Diagram of M/M/1 Queue](image)

λ μ λ μ λ μ
The M/M/1 Queue (cont.)

- Let $p_n =$ probability system has n customers in it.
- Because there is only one server, the system can only change by one unit at a time.
- The system moves from state n to state $n+1$ at rate λ.
- The system moves from state $n+1$ to state n at rate μ.
- If the system is in a steady state, we must have
 $$\lambda p_n = \mu p_{n+1} \text{ or } p_{n+1} = \left(\frac{\lambda}{\mu}\right) p_n = u \ p_n$$
The M/M/1 Queue (cont.)

• Now \[1 = \sum_{n=0}^{\infty} p_n = \sum_{n=0}^{\infty} p_0 u^n = p_0 \frac{1}{1-u} \]

• So \[p_0 = 1-u \]

• The expected total time a customer stays in the system is

\[
\sum_{n=0}^{\infty} t_s (1+n) p_n = t_s \sum_{n=0}^{\infty} p_n + \sum_{n=0}^{\infty} t_s np_0 u^n = t_s + \sum_{n=0}^{\infty} t_s n(1-u)u^n
\]

\[
= t_s + \sum_{n=0}^{\infty} t_s n(1-u)u^n = t_s + t_s (1-u)u \sum_{n=0}^{\infty} nu^{n-1}
\]

\[
= t_s + t_s (1-u)u \sum_{n=0}^{\infty} \frac{d}{du} u^n = t_s + t_s (1-u)u \frac{d}{du} \sum_{n=0}^{\infty} u^n
\]

\[
= t_s + t_s (1-u)u \frac{d}{du} \left(\frac{1}{1-u} \right) = t_s + t_s \frac{u}{(1-u)} = \frac{t_s}{(1-u)}
\]
The M/M/1 Queue (cont.)

- And so the expected queue time is

\[QT = \frac{t_s}{1-u} - t_s = \frac{u}{1-u} t_s. \]
Numerical Example

• Suppose $t_s = 12$ minutes, $\lambda = 4$ per hour
• Then $u = \frac{\lambda}{\mu} = \lambda \cdot t_s = 4 \times \frac{12}{60} = 80\%$
• Probability server is idle $= 1 - u = 20\%$
• Expected queue time $= \frac{u}{1-u} t_s = \left(\frac{0.8}{0.2}\right) \times 12 = 48$ minutes
• Expected time in system $= 48 + 12 = 60$ minutes
Queuing in Manufacturing

- Customers = production lots. Total time a lot is at a production step (wait + process) is called the *cycle time* of the step.
- Servers = machines. Machines require maintenance. They are only available for processing work part of the time.
- Suppose the *availability* is A and the process time is PT. The effective long-run service rate is $\mu = A \times (1/PT)$. u becomes $u = \lambda/\mu = \lambda*(PT/A)$.
- Note that we decrease the service rate and we increase utilization to account for machine down time
Queuing in Manufacturing (cont.)

• When we have one machine, we can estimate the avg. queue time as:
 \[QT = \frac{u}{1-u} \frac{PT}{A} \]

• Queuing model: Time in system = queue time + service time =
 \[QT + \frac{PT}{A} \]

• Real life: Time in system = wait time + process time = (wait time) + \(PT \)

• So (wait time) = \[QT + \frac{PT}{A} - PT = QT + t_s - PT \]
Queuing in Manufacturing (cont.)

• The standard cycle time SCT is the total time a lot is resident at the production step when there is no waiting. It is often somewhat larger than the process time PT as it accounts for material handling time or other factors performed in parallel with the processing of other lots.

• Therefore, lot $CT = (\text{wait time}) + SCT$

$$= (QT + t_s - PT) + SCT$$

$$= QT + (1/A - 1)PT + SCT$$
Queuing in Manufacturing (cont.)

• Another way to think of this is:

\[
\text{(Cycle time)} = (\text{Time in queuing system}) + (\text{portion of cycle time not in queuing system})
\]

\[
= (QT + PT / A) + SCT – PT
\]

\[
= QT + (1/A – 1)\times PT + SCT
\]
Numerical example

- Availability of machine $A = 85\%$
- Arrival rate of lots $\lambda = 2$ per hour
- $PT = 0.25$ hours (i.e., 15 minutes), $SCT = 0.30$ hours (i.e., 18 minutes)
- $u = (2)(0.25)/0.85 = 0.588$
- $QT = [0.588/(1-0.588)]*(0.25/0.85) = 0.42$ hours = 25 minutes
- $CT = 25 + (1/0.85 -1)*15 + 18 = 45.6$ minutes
- Note that the avg. waiting time (30.6 mins) is much longer than the process time (15 mins)
More general queuing formula

- We may have m machines instead of 1
- Service and arrival rates might not be exponential, machines may experience long down times (failures or major maintenance events)
- Generic formula for queue time per lot or batch (Kingman, Sakasegawa, Hopp and Spearman):

$$QT = \left(\frac{c_a^2 + c_e^2}{2} \right) \left(u \frac{\sqrt{2^{(m+1)-1}}}{m(1-u)} \right) \left(\frac{PT}{A} \right)$$
More general formula (cont.)

- c_a^2 is the normalized variance (the squared coefficient of variation, or “c.v.2” for short) of the arrival rate, i.e., $c_a^2 = \sigma_a^2/\lambda^2$
- c_e^2 is the normalized variance of the (effective) service time, composed of the following:
 - c_0^2 is the normalized variance of the process time, i.e., $c_0^2 = \sigma_{PT}^2/PT^2$
 - $MTTR$ is the average length of a downtime event
 - cr^2 is the normalized variance of the length of an equipment-down event, i.e., $cr^2 = \sigma_r^2/MTTR^2$
More general formula (cont.)

- A is the average availability of the machine type
- Then

$$c_e^2 = c_0^2 + (1 + cr^2)A(1 - A)\left(\frac{MTTR}{PT}\right)$$
Key point: Wait time =

\[
\text{Variability} \left\{ \frac{(u)^{\sqrt{2(m+1)}-1}}{m(1-u)} \right\} \text{Process time/Availability} + \{\text{Process time}\} \{1/\text{Availability} - 1\}
\]

- One can reduce cycle time if any of the above terms is reduced (i.e., reduce variability, reduce \(u\), increase \(m\), reduce \(PT\), or increase \(A\))
Queuing Analysis (cont.)

{Variability}

- \(ce = \) effective service time c.v. (reflects machine down time)
 - Let \(c_0 \) denote intrinsic process time c.v., \(cr \) denote repair time c.v., \(A \) denote availability, \(MTTR \) denote mean time to repair, \(PT \) denote avg. process time

\[
ce_k^2 = c_0^2 + (1 + cr_k^2) A_k (1 - A_k) \frac{MTTR_k}{PT_k}
\]

Utilization should be kept lower for machines with higher variability
{Utilization}

- System performance is very sensitive to high utilization levels.

- Balancing utilization reduces wait time.

- Increasing the number of qualified machines reduces wait time:

![Wait Time vs. Utilization Graph](image)