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Abstract This paper presents a technique for planning and contgobievel-tip
steerable needles towards a target location in 3-D anaterdgruthe guidance of
partial, noisy sensor feedback. Our approach minimizeptbieability that the nee-
dle intersects obstacles such as bones and sensitive drgdh¥explicitly taking
into account motion uncertainty and sensor types, and I@yg for efficient opti-
mization of sensor placement. We allow for needle trajéesf arbitrary curvature
through duty-cycled spinning of the needle, which is balgktto make a needle path
small-time locally “trackable” [13]. This enables us to UG control to guide
the needle along the path. For a given path and sensor plateweshow that a
priori probability distributions of the needle state cargséimated in advance. Our
approach then plans a set of candidate paths and sensomplaiseand selects the
pair for which the estimated uncertainty is least likely tuse intersections with
obstacles. We demonstrate the performance of our approacimiodeled prostate
cancer treatment environment.

1 Introduction

We consider the problem of planning, sensing, and contigoli bevel-tip steer-
able needle towards a target in 3-D anatomy with obstadlet as sensitive and
impenetrable tissue. Needles are used in many forms of mlatiagnosis and treat-
ment, and accurately reaching a specific target is requiraethiny procedures such
as tissue biopsies and placement of radioactive seedsrfoecaeatment. Bevel-tip
steerable needles are asymmetric-tip, flexible needlasribae along trajectories
of constant curvaturgg when pushed forward [27]. The direction of motion can be
changed by reorienting the bevel tip through twisting ofitieedle at its base. This
allows for steering the needle around anatomical obstacleards previously in-
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accessible targets, and allows for significantly reduciaiggmt trauma by avoiding
the puncturing of sensitive tissues.

Planning and controlling the motion of a steerable needéedkallenging prob-
lem. A steerable needle is controlled from its base throudjiosertion and twist-
ing, and we do not allow retractions and re-insertions asrisults in excessive
tissue damage. As such, a steerable needle is a highly wtdated non-holonomic
system. In fact, the needle is not small-time locally coltdtile, and a natural nee-
dle path (with curvaturep) is not small-time locally “trackable” (i.e., the deviatio
with respect to the path is not small-time locally contrbl&g [13]. In addition, the
motion of the needle is subject to uncertainty due to tissh@rmogeneity, tissue
deformation, needle torsion, etc. [7, 23]. To address 8sge, we follow the sug-
gestion of Kallem [13] that a path with a smaller curvature B < kg is small-time
locally trackable and that this can be achieved using dytjed spinning of the
needle during insertion. This would enable us to use feddbawtrol to guide the
needle along a pre-planned path. Our experiments suggasthib is indeed the
case. The sensor feedback, however, may be noisy and Est@lrrent medical
imaging technology does not allow for measuring the fullestsf the needle tip (the
imaging resolution is often too low to infer its orientatjdor instance [12], and
often only provides planar views in real-time feedbackagitns).

Our objective is to compute a sensor placement and a neetllégthe target
location, such that the path’s execution using LQG contasldminimal probability
of intersecting obstacles in the anatomy, given a stoahagidel of the motion and
sensing uncertainty. Our approach is as follows. First, uikllon work of [16] to
encapsulate the (high-frequency) duty cycled spinningefieedle in a higher-level
kinematic model that allows direct control of the curvatofehe needle motion.
We then derive an LQG controller (consisting of a Kalmanffilte state estimation
and an LQR control policy) for the extended kinematic modebptimally guide
the needle along a given path. Based on the sensor placereengn computén
advancethe a priori probability distributions of the state of theedée along the path
[25]. From these distributions and a geometric model of th&t@mical obstacles,
we can quickly compute the probability that the needle wilérsect obstacles. Our
method then plans a set of candidate paths using a varidm &RT algorithm [14]
and samples a set of feasible sensor placements, and tleetssbk pair for which
this probability of obstacle intersection is minimal.

The type and placement of sensor(s) can have a big influenegimh path is
optimal (see Fig. 1). For example, if a sensor obtains a 2djeption along the
x-axis of the 3-D position of the needle tip, there will be mareertainty in the
x-coordinate of the needle state than in yp@ndz-coordinates. If we then have to
steer the needle through a passage that is narrow in eithg+ dr thex-direction,
our path planner will prefer the passage for which the praibalof intersecting
obstacles is less, which is the one that is narrower inyt&ection. Given a set
of candidate paths and the space of possible sensor platgmenapproach will
choose a needle path and find an axis along which a projectiobtained that
minimizes the probability of collisions for the chosen nlegohth. We demonstrate
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Fig. 1 Two examples of sensor placement, in which (left) onlyxhandz-coordinate and (right)
only they- andz-coordinate of the needle-tip are measured by the imagivige¢blue). Different
paths will be optimal even as the obstacles (grey) and téwgation (cross) are the same.

the performance of our approach in modeled prostate camegntent environments
with simulated uncertainty for different examples of sermeodels.

The remainder of this paper is organized as follows. We dsquevious work
in Section 2, and review the kinematic model of a steerabdellean Section 3. In
Section 4 we derive an LQG controller to optimally guide tleedle along a given
path. In Section 5, we show how to estimate the probabilitylstacle intersection
for a given path and sensor placement, and present our paitteasor planner. We
present simulation results in Section 6 and conclude ini@eét

2 Related Work

A significant body of previous work exists on planning andfontrolling bevel-
tip steerable needles. A kinematic model for a steerabldleggneralizing a uni-
cycle model was introduced in [27], and has been used by nubsesuent work
on needle steering, including this paper. In [16], it wasvamehat in addition to
the insertion and rotation speed, the curvature of the eqeath can be controlled
through duty-cycled spinning of the needle during insertio

2-D planners that address motion uncertainty have beeamessin [2, 3], which
optimize a Markov decision process (MDP) over a discretitate space to provide
feedback control assuming full state observation. Theaaagrwas extended in [22]
and integrated with imaging feedback. In [12], a feedbaakiradler is presented
to stabilize the needle in a plane. Tissue deformation isrtaikto account in the
planner of [1], which optimizes a path using 2-D FEM simwdatof soft tissue.

Needle path planners for 3-D environments with obstacles baen proposed
in [8, 9], based on optimization and inverse kinematicspeetvely. Rapidly-
exploring random trees (RRTs) have been used in [29, 30,028} plore the entire
3D space of feasible paths. These approaches do not adskass isuch as uncer-
tainty in motion and sensing. A diffusion-based planner inet®duced in [18], but
it does not take into account obstacles or sensor types. db& controller for
3-D needle steering was presented in [11], and proved ragashst motion devia-
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Fig. 2 Local coordinate frame W
attached to the needle tip.
Its kinematics are shown
by yellow arrows. Figure
reproduced with permission
from [9].

tion and sensing noise, even for a greedy control policy.agproach is not able to
guide the needle along a prescribed path and does not addistssle avoidance.

The approach we present in this paper extends these prevarks and applies
to 3-D environments with obstacles, takes into accountonaind sensing uncer-
tainty, and does not require discretization of the stateespOur approach to needle
steering is the first that specifically addresses the sewrsipgbilities and its effect
on optimizing the path.

3 Needle Kinematics

We base our motion model of a bevel-tip steerable needle®id#alized kine-
matic model of [27], using the nomenclature of [8], in whidtetneedle state is
represented by a rigid body transformation. This modelrassuthat the motion of
the needle is fully determined by the motion of the tip, whikbeveled such that it
follows a perfect arc of curvature) when pushed forward, independent of insertion
speed and tissue properties. The model further assumeth¢hagedle is flexurally
flexible (it bends to follow the needle tip), but axially amddionally stiff, such that
the insertion and twisting of the needle at its base is dirék@nsmitted to its tip.

The state of the needle tip can be described by a 3-D rigid baahgformation
relative to a world coordinate frame, which is compactlyressented by a 4 4
transformation matriX € SE(3);

-[53)

whereR S SO(3) is a 3x 3 rotation matrix describing the rigid body’s orientation,
andp € IR® a vector describing the rigid body’s position.

The kinematics of a rigid body, i.e. the evolution of its etaver time, can gener-
ally be described a follows. Letc R3 andw € R2 be the vectors of instantaneous
linear and angular velocities, respectively, expressatieriocal coordinate frame
attached to the rigid body. Then (using notatida refer to the time derivative):

X'=XU, U= {[‘3’] ‘(’)] 2)

where 4x 4 matrixU € se(3) is the twist of the rigid body. The notatidg] for a
vectora= [ay ay az]T € R3 refers to the following 3 3 skew-symmetric matrix:
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0 —a; ay
[@=]a 0 —al. 3)
—ay ay O

When the twist) is constant, the state of the rigid body at tihggven the initial
state at time 0 is computed explicitly by integrating Eq, &) which a closed form
expression exists [8]:

X(t) = X(0)exp(tU). 4

For the steerable needle, the local coordinate frame idlyigittached to the tip
of the needle such that ttreaxis points along the forward direction of the needle,
and they-axis points along the bevel direction (see Fig. 2). The arotif the needle
is determined by two control inputs: the linear forward spées. the speed with
which the needle is inserted), denotedand the bevel orientation speed (i.e. the
speed with which the needle is twisted at its base), denateldence, the linear
and angular velocities of the needle tip given the contrpuisv > 0 andw are
v=1[00 v]T andw = [vko O w]T, respectively, wherey is the (fixed) curvature
of the arc the needle follows through the tissue.

This needle model is constrained by the fact that the curgadgiof the needle
paths is fixed. In recent work, however, Minhas et al. [16)sltizat by performing
duty cycled spinning of the needle during insertion, anyaturex of the needle
motion between 0 an#y can be approximated. The greatest degree of curvature
(kK = Kp) is achieved by no spin at all, while a straight trajectaxy=£ 0) is cre-
ated by constantly spinning the needle at a high (infinite) darring insertion. Any
trajectory in between these two extrema can be approxiniatetiity cycling the
spinning in a spin-stop-spin-stop fashion. Longer stoprirdls create steeper cur-
vature of the needle, and shorter stop intervals creatigstea trajectories. To be
precise, the proportionf o < 1 of the time spent in spin intervals to approximate
a curvature of & k < Kg is given by:

a=1-K/Kp. (5)

Let the needle perform arProtation each spin interval, and let the spin intervals
be of a small and constant duratidnThen, the period of one spin-stop cycléij&r.
In order to incorporate the duty cycling into the kinematiodal of the needle, the
control inputw(t) (parameterized by timg is adjusted to:

B 2r/o+w if j<t/(d/a)< j+a (spin)
“u= { wif j+a<t/(d/a)<j+1, (stop) (6)

foranyj € Z, wherew is the higher-level control of the speed with which the needl|
is rotated at its base (at the lower level, it is augmenteld veipid 27 rotations).

By taking the limitd — 0, the resulting high-level kinematic model is similar
to the low-level kinematic model described above, with tifeecence thatw is
replaced byw, and the curvature is added to the set of control inputs. The high-
level twistU given high-level control inpute, w andk is then given by:
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To account for the uncertainty the motion of the needle igesuitto due to tissue
inhomogeneity, tissue deformation, needle torsion, ate.augment the model by
assuming that the twist is corrupted by additive ndisdrawn from a zero-mean
Gaussian distribution with variané#:

v=10 OV}T, w = [VK OW}T. (7)

5 |[Wvp (v
o= |53 |5 =m~rom. ®)
The stochastic kinematics of the needle sk¥is then given by:
X'=XU+0). 9)

4 LQG Control for Steerable Needles

Let us be given a needle pafhconsisting of stateX and control input twisté)
formed from control inputs > 0, W and 0< K < kg (see Eq. (7)), such that

5 g _[RB] 5 [WV
U, X_[Ol}’ U_[OO]' (10)
That is, the path is consistent with the needle kinematitisoumi noise, and as con-
jectured in [13], the path is small-time locally trackahilece 0< K < Ko.

During control of the needle along the pdth we can assume that we obtain
potentially noisy and partial observations of the stateeasliback from sensors, in

order to compensate for unexpected needle motion. We asthanthis feedback
will be according to the following (general) sensor model:

z=h(X,q), q~-4(0,Q), (11)

wherez is a vector of measurements that relates to the 3tateough functiorh,
andq is the measurement noise drawn from a zero-mean GaussiamavianceQ.

To control the needle along the needle pathwe use the LQG-controller, since
it provides optimal control for linear Gaussian motion aetsor models with a
quadratic cost function penalizing deviation from the patie LQG controller uses
a Kalman filter for state estimation in parallel with an LQRtol policy. Since our
motion and sensor model are non-linear, we approximate thighmocal lineariza-
tions around the path. This is reasonable as the needle iotied to stay close to
the path during execution.

For purposes of linearization, we will not directly conttbe state itself, but
rather thedeviation of the state with respect to the path. This is also convefiggnt
dealing with the 3-D orientation in the needle state, whitheg has a redundant
but internally constrained representation (e.g. a quateror rotation matrix) or a
minimal but singularity-prone representation (e.g. Ealegles). Assuming that the
deviation is small, the orientation deviation is “far awdydm any singularities,
and can hence safely be represented by three mutually unagimesl parameters.
Whereas many other works use quaternions to represernibrigtdi 0, 15, 24], we

X =

>
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will linearize for the 4x 4 matrixX € SE(3) (roughly following [4]), and derive a
Kalman filter and LQR controller for the needle.

4.1 Moded Linearization and Discretization

We define the state deviatiofas the transformation between the path skate
and the (unknown) true stalg and the twist deviatiod) as the difference between
the true control input twist and the control input twidt) along the path:

i_['g_ﬂ_xlx_r? F}T(pl‘f’)], J_{[VOWQ_U—U, (12)

where the last equality follows from the fact théat! = [F%T *'Qle’]. The kinematics
of the state deviation, i.e. its evolution over time, is givey

X' = XX+ (XX =X XU +0) ~UX X = (13)
X(U+0)-UX=X(U+U+U0)-UX =
{ W+ W+ W] — [WR §(o+\7+\7)—[w15—\7] B {F? r?]
0 0 )

P

100

where the equalities follow from Egs. (9) and (12), and thet fhat (X 1) =
—UxX-1[21). 3

To get a non-redundant state vector, we represent the atiemideviationR as
a rotation of anglé|r]| about axis™ € R®. Assuming this deviation is sufficiently
small, it is approximated well by the following first-ordeayllor expansion:

R=1+[f]. (14)

By substituting Eq. (14) into Eq. (13), and ignoring all sedeorder error terms,
we get to first order (using the identitiggb = a x b = —[bJa and|a][b] — [b][a] =
[axb]):

p=[V+V+V—[Wp=—[Wp—[Vr+V+7¥, (15)
(] = [F] (W] + [W+ W] — [W][r] = [—[W]r] + [W+W]. (16)

Combining Egs. (15) and (16), we get in matrix form:

Pl (=W =[] [e] (V] [V

M—[o—w Ftwltw| (17)
which we can write as

X =FX+Gu+m, m~ 4 (0,M), (18)

wherex = 2], F = [’gm :[[A\‘;’VH , mis as defined in Eq. (8), andandG are defined
as follows:
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v—V 001004"
U= |w-w|, G=|000001 . (19)
VK — VK 00010

Let us discretize time into stages of duratioand assume that the control inputs
Vv, W, K andv, W, kK and variancé/ are constant for the duration of each stag&he
path/T then consists of a series of states and control input tgtso, . . ., X;, Uy ),
where/ is the number of stages of the path, such that

K1 = Xeexp(tUy). (20)
We can then integrate Eq. (18) to get [15]:
Xkt 1 = AXi+ BrUk + N, N~ A7(0,Ni), (21)

where

Ac=ef, B= [@TURGH, Ne= [T URMEr T (22)
0 0
Eq. (21) is the linearized and discretized motion model efdviation of the needle
state from the path.
The sensor model (see Eq. (11)) is discretized by assumaigrtieach stagk
we obtain a measurement To relate the state deviation vectofas opposed to
the state matriX as in Eq. (11)) to a measurememtve define (note that andr

are part ofk):
) =h(%|' 7o B a). 29

where we use the fact thxt= XX (see Eq. (12)) to reconstruct the state maXix
from the state deviation vectar Linearizinghy around the patiil gives

Zx = HXie+ Wk, Ok ~ 47(0,Q), (24)
where _
dhy

ziﬂmpx\mzﬁa@m. (25)

ox
Eq. (24) is the linearized and discretized sensor modelefigviation of the needle
state from the path.

Zc =2z« —(0,0), Hy

4.2 Kalman Filter and LQR Controller

Egs. (21) and (24) form a standard linear Gaussian model,hi¢hix is the
state,u the control input and the measurement. The Kalman filter keeps track
of the estimat&X and varianceP of the true statex during control. It continually
performs two steps; a process update to propagate the dgpligrol inputu, and a
measurement update to incorporate the obtained measuremen

Process update step:
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X = A-1Xk-1, (26)
Pe = A 1R 1AL+ N1 (27)
Measurement update step:
Ki = Pe H (HiP HY + WQM) 4, (28)
Xk = K(zk— HiXy ), (29)
Ro= (I = KkHi) R (30)

The Kalman-gain matricds, can be computed in advance (i.e. before execution)
given the initial variancé,, without knowledge of the actual control inputsand
measuremenia We refer the reader to [28] for additional details.

The LQR controller provides optimal control for a motion neb@f the type
given by Eqg. (21) [5]. The optimal control inputs are found by minimizing the

cost function
¢

mJin( S (XECXic+ JIDJK)) , (31)
K=o
which quadratically penalizes deviations from the péthhrough given positive-
definite weight matrice€ and D. Matrix C specifies the cost for deviating from
the planned path, whilB specifies the cost for deviating from the planned control
input. Penalizing the magnitude ofis reasonable as the linearized motion model is
only valid whenu is small.

Solving Eqg. (31) gives the control poliay = L¢Xy, for feedback matriceky
that are pre-computed using a standard recursive procédun@< k < ¢) [5]. As
the true staty is unknown, the estimatg, of the state which is obtained from
the Kalman filter is used to determine the control inputat each stagk during
execution of the path. Hence, the control policyjis= LiXx. We refer the reader to
[5, 25] for additional details.

The actual control inpute,, wx andky that are applied to the needle are found
using Eq. (19), giveni, and the control inputg,; Wy andky of path/T. After appli-
cation of the control input, the Kalman filter produces thneste of the next state
from which in turn a new control input is determined. Thisleyepeats until the
execution of the path is complete.

5 Optimal Path and Sensor Planning

The first objective is to plan a needle path towards a targedtiong inside a
workspace#” ¢ R3. For simplicity, we assume that the workspace is the rectiang
region[0, Xmax) X [0, Ymax) X [0, Zmax), and that the needle can enter the workspace at
any pointin the plane= 0. Further, the workspace may contain obstacles defined by
a regionO C # that models impenetrable or sensitive tissue. The secojedtole
is to select a placement of the sensor that will provide faelluring control.

The quality measure of a paffi and a sensor placement is the probability that
the needle will intersect obstacles when the path is exdawgang LQG control.

We will first discuss how to compute this probability for a givpath/7T and a
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given sensor model, and then discuss how we plan a set ofd=teddaths and
sensor placements from which we select the pair that mirisnilze probability of
intersecting obstacles during control.

5.1 Obstacle I ntersection Probability Along a Path

Given the LQG controller for a patil and sensor modél (see Section 4), we
can analyze in advance how the true statand the estimated stake will evolve
during control as functions of each other. The evolutiorheftrue state is depen-
dent on the estimated state through the LQR control policytha evolution of the
estimated stat& is dependent on the true state through the measurememedbtai
in the Kalman filter. This gives the following equation in matform (see [25] for
more details):

{ijtl} _ [ Ax BLk } [Zk} n (32)
Ricr1 Kip1Hi 1A A+ Bylk — Kip 1Hk 1A [Rk

| 0 Nk Nk Ny O
~ (0
[Kk+1Hk+1 Kk+1V\4<+l} [QKH}’ [Qk+l} © [0 Qk+1} )

which we write shorthand —for the appropriate definitiong@fYx, Vi, S« andZ,—
as (note tha¥y, Vi« andzy can all be computed in advance for a given a gajh

Vi1 =YYk + Vi, sk~ A7(0,Z). (33)

From this, we can compute the meapand the variancey of yx = [m for any
stagek of the execution of the path:

Vi1 = YiJk, Yo=0, (34)

Po 0]

7ol (35)

Zier1 = YRS VIV So= [
Note that the meaj is zero for all stages Hence,[ﬁ‘ﬂ ~ N(0,5).

Given these a priori distributions of the state deviatioa,ocan compute the prob-
ability that the needle will intersect an obstacle during #xecution of pathil.
Let ZE be the variance of the position deviatipg, which is the upper-left & 3-
submatrix of the 1 12-matrix (note thatk =[?]). Asp = R"(p—p) (see Eq.
(12)), we have thap = p+ Rp, so the a priori distribution of the positiga of the
needle tip at stagk along pathf7 is given by/(ﬁk,ﬁkzlff{;(r). Hence, the prob-
ability px that the needle intersects the obstacle region at #tadeng pathl1 is
computed as:

- [ exp(—3(b— P (RERD (b —Pu) o (36)

S \/8m2det RPPRY)

which is the integral over the obstacle regiorof the probability density function
of Gaussian/t” (px, RPPRY).
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Instead of computing the probabilitigg exactly, we will use an approximation
that can be computed efficiently. To this end, we look at th&imam factor by
which the ellipsoid of one standard deviation of the a prwdbability distribution
can be scaled such that it does not intersect an obstaclehisefactor becy for
stagek along the path. For a multivariate Gaussian distributiodinfensionn, the
probability that a sample is outsidg standard deviations is given by

P=1-T(n/2,¢¢/2), @37)

wherel is the regularized Gamma function [17]. It provides a (covesive) upper
bound of the true probability of intersecting obstaclesagesk.

The value ofcy for stagek is efficiently computed by using a collision-checker
capable of performing distance calculations and lineasfiamations on the obsta-
cle geometry, such as SOLID [26]. LE{ be a matrix such thdE, = ZE. The set
of positions within one standard deviation is then an etfligsentered at the mean
Pk obtained by transforming a unit sphereBy Transforming the environment by
Ek*1 (such that the uncertainty ellipsoid becomes a unit sphane) calculating the
Euclidean distance betwe@p and the nearest obstacle in the transformed environ-
ment gives the value aj; for stagek, from which the approximate probability of
intersecting obstacles at stagean be computed using Eq. (37).

Assuming (somewhat opportunistically) that the prob&bgipgy are indepen-
dent, it follows that the probabilitp(/7) that the needle intersects the obstacle re-
gion anywhere along patfi is given byp() = 1 — i_o(1— Px)-

5.2 Planning a Needle Path and Sensor Placement

To plan an optimal pair of a needle path and sensor placemwenfrandomly)
generate large sets of possible needle paths and sensem@ats, and evaluate the
probability of intersecting obstacles for each pair.

To generate a large set of (random) needle paths we use th&&Ribm rapidly-
exploring tree) algorithm [14], as it is known to create sreépaths that uniformly
cover the space and handle kinematically constrained ragstsuch as steerable
needles, well. As the target location is a specific pginand the entry location
can be anywhere in a pre-defined entry zone, it is convengeptan backwards
from the target location. Backward kinematics are idehticdorward kinematics,
except that the (forward) control inpwesw, andk are integrated over a negative
time-step. As the actual path traced out by the needle omgmitts on the ratio//v
and not on the values of the individual terms [8], weset T cm/s and only vary
W € [—~Wmax, Wmax @andk € [0, ko). We will not describe the RRT-planner in detail
here, but refer to [20, 29, 30] for details on RRT implemenotat for steerable
needles. All the paths in the resulting tree that reach the eone are valid.

Let.# be the space of sensor placements, and let the sensor hide|) cor-
responding to a placemest . be denoteds(X,q). We generate a large set of
placements by random sampling fro#i. We iterate over all valid paths contained
in the RRT-tree and all placements sampled fréfmand select the pair for which
the needle has minimal probability of intersecting obstsaels computed above.
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Fig. 3 (a) Given a candidate path (gray) from left to right, we iltate samples (red spheres)
from 100 simulated executions of the LQG controller and reetéel Kalman filter showing conver-
gence to the path. The simulations included artificiallyegated process and measurement noise.
The blue ellipsoids show the a priori distributions complubg the planner along the path. (b) A
simulated example trajectory (shown in ref) using LQG oointr

6 Simulation Results

We experimentally evaluate our approach using simulatiétise computed can-
didate paths using LQG control with simulated process anasorement noise. In
our experiments, we use an anatomical model of the human peale region to
simulate needle insertion in tissue for delivering radiva@cdoses to targets within
the prostate region for cancer treatments. We first showtligaheedle is control-
lable along a candidate path. We then show the effect theoseas have on the
optimal path, and how the sensor placement can be optimizreddiven problem.

We implemented the system in C++ and tested it on a 3.33 GlazethateP i7™
PC. All experiments utilized only a single core for compiataf but our approach
could be parallelized over multiple cores to yield significapeedups. In our ex-
periments, we model the needle motion and noise using thenriolg parameters:
Wiax = 27rrad/s,T = 0.1 s,k = 0.2 cm 1, M is a diagonal matrix with @1 (cm/s§
for the position components andd® (rad/s for the rotational components, aqu
is a diagonal matrix with @5 cn? along the diagonal.

6.1 Needle Controllability

We first demonstrate the controllability of the needle alamgndidate path using
an LQG controller with artificially generated process andasugement noise. We
assume that the sensor can only measure the popitidthe needle tip and not the
orientation. Fig. 3a shows the samples obtained from 100lations of executions
of the path using the LQG controller, demonstrating thattpeiori probability dis-
tributions computed by the planner are close approximatidihe true distribution
of the states along the path and that the needle follows théidate path closely.
For an insertion length of 125 cm, the standard deviation of the distance to the
target was found to be. 07 cm.

To emulate uncertainties arising due to tissue heterotiesewe applied spa-
tially varying process noise sampled from Gaussian digidis with zero mean
and variances up to three times the varialcd-ollowing the same candidate path
of length 1125 cm, the standard deviation of the distance of the final leetiul
position to the target across 1000 simulation runs wag ém.
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Fig. 4 Optimal needle paths in an anatomical environment modéhiadhuman prostate and sur-
rounding tissues. Two examples of a sensor placement, ichwaft) only thex- andy-coordinate
and (right) only thex- and z-coordinate of the needle-tip are measured by an imagingedy
projecting the anatomy on the imaging plane (shown in thewiews). The optimal path predom-
inantly lies in the imaging plane to minimize uncertaintyte viewing direction.

6.2 Effect of Sensor Placement on Optimal Path

We demonstrate the use of LQG to select plans that minimiggthbability
of failure and also show the effect of sensor placement oroghinal path. We
performed these experiments using an anatomical modegdfitman pelvic region
(see Fig. 4). As an example sensor model, we consider a 2-feiwicthe anatomy
(for example, an x-ray or 2-D ultrasound image). The imagedgected along the
z-axis using an imaging device, from which we can only meases- andy-
coordinate of the positiop = [x,y,Z of the needle tip. This gives the following
observation functioh (note thaf is part ofX):

[+0 a~r0Q 39)

nox.a) = |}

Fig. 4 (left) shows the optimal needle path within the RR3etfor this sensor. The
optimal path predominantly lies in they plane to minimize the uncertainty along
the viewing directionZ-axis). It took 41 seconds to generate a set of 1000 candidate
paths and selecting an optimal path from this set requir6dsdconds. Similarly,

if we instead place the sensor such that it obtains 2-D impggjected along the
y-axis, the optimal path (shown in Fig. 4 (right)) is predoanitly in thex-z plane.

To quantify the effect the sensor location has on the prdibabf success of a
path, we compare the results of two paths assuming senging #hez axis: the
optimal path and a path that lies predominantly in ¥aeplane. For each path,
we estimated the “ground truth” probability of success byfgrening 1000 simu-
lated executions using the LQG controller with artificiaffgnerated process and
measurement noise. The path that is optimal according tonaiinod, which lies
predominantly in the-y plane, has a probability of success of 89%. In contrast, the
path that primarily lies in the-z plane had a probability of success of only 44%,

X



14 J. van den Berg, S. Patil, R. Alterovitz, P. Abbeel, K. (el

Fig. 5 Using an x-ray imager mounted on a rotating C-arm, it is fme$b rotate the sensor about
the horizontal axis along which the patient is positionedt)! The anatomy as viewed from the
computed optimal sensor placement (right). The optimah paedominantly lies in the imaging

plane to minimize uncertainty in the viewing direction.

which is to be expected since there is greater uncertaintg@tle pose along the
viewing direction g-axis).

6.3 Optimizing the Sensor Placement

In many clinical procedures involving bevel-tip steerabédles, the physician
can select where to place an intra-operative sensing désiceal-time feedback.
We consider the case of an x-ray imaging sensor attached tarexCa commonly
used setup in operating rooms that allows the physiciartédethe sensor in a circle
about the patient as shown in Fig. 5. The placement of theimgadgvice can be
parameterized by angrelative to the horizontal axis of the patient. A 2-D image
of the anatomy can be obtained by parallel projection altwegviewing direction
(along the radius of the arm). This gives the following olva@on functionh:

04D = |y osp & zsing| +0 T~ (00 (39)

To optimize sensor placement, we iterate over all paths cbaapby the RRT-
based planner and all sampled sensor placements (obtainedying the angle of
rotation about the horizontal ax&in regular increments), and select the pair for
which the needle has minimal probability of intersectingtalsles. Fig. 5 shows
the optimal sensor placement for a given set of candidatespatd a 2-D view
of the anatomy as visible from the imaging device. For a setGff0 candidate
paths and 36 possible sensor placements (obtained bytilisogeover the interval
[0, in intervals of 5 degrees), our implementation took 185 sdsdo compute
the optimal pair over the set of candidate paths and senaoeiplents. It should
be noted that with modern multi-core processors, this cdatjmn can be trivially
parallelized to bring down the computation time within @milly acceptable limits.
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7 Conclusion and Future Work

In this paper, we presented a technique for planning andatng flexible steer-
able needles towards a target location in 3-D anatomy witttemites such as bones
and sensitive organs. Our approach minimizes the probakilat the needle in-
tersects obstacles by explicitly taking into account bathdie motion uncertainty
and the sensors used to obtain (noisy, partial) feedbackhemeedle state. We
demonstrated how the sensor influences the optimal path@tidize over the set
of candidate paths and feasible sensor placements to seéeptir for which the
estimated uncertainty is least likely to cause intersastigith obstacles.

In our current implementation, the LQR controller does notiriid the control
inputs within permissible limits during feedback. This dama problem when the
control for needle curvature exceeds the attainable curvatf the needle. We plan
to address this issue in future work. We also plan to incafouncertainty intro-
duced by tissue deformation using a physically accurate BEMilator [6].

We also plan to evaluate our new planning and control apjpraaing a robotic
device that steers a needle in phantom tissue as in prior ZsBrienents [22]. We
will utilize the ability of this planner and controller to @aunt for unexpected events
that might occur due to tissue inhomogeneity, tissue dedition, and estimation
errors in motion model parameters, as well as to optimizeagslacement to min-
imize the probability of intersecting an obstacle.
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