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Abstract This paper presents a technique for planning and controlling bevel-tip
steerable needles towards a target location in 3-D anatomy under the guidance of
partial, noisy sensor feedback. Our approach minimizes theprobability that the nee-
dle intersects obstacles such as bones and sensitive organsby (1) explicitly taking
into account motion uncertainty and sensor types, and (2) allowing for efficient opti-
mization of sensor placement. We allow for needle trajectories of arbitrary curvature
through duty-cycled spinning of the needle, which is believed to make a needle path
small-time locally “trackable” [13]. This enables us to useLQG control to guide
the needle along the path. For a given path and sensor placement, we show that a
priori probability distributions of the needle state can beestimated in advance. Our
approach then plans a set of candidate paths and sensor placements and selects the
pair for which the estimated uncertainty is least likely to cause intersections with
obstacles. We demonstrate the performance of our approach in a modeled prostate
cancer treatment environment.

1 Introduction

We consider the problem of planning, sensing, and controlling a bevel-tip steer-
able needle towards a target in 3-D anatomy with obstacles, such as sensitive and
impenetrable tissue. Needles are used in many forms of medical diagnosis and treat-
ment, and accurately reaching a specific target is required in many procedures such
as tissue biopsies and placement of radioactive seeds for cancer treatment. Bevel-tip
steerable needles are asymmetric-tip, flexible needles that move along trajectories
of constant curvatureκ0 when pushed forward [27]. The direction of motion can be
changed by reorienting the bevel tip through twisting of theneedle at its base. This
allows for steering the needle around anatomical obstaclestowards previously in-
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accessible targets, and allows for significantly reducing patient trauma by avoiding
the puncturing of sensitive tissues.

Planning and controlling the motion of a steerable needle isa challenging prob-
lem. A steerable needle is controlled from its base through only insertion and twist-
ing, and we do not allow retractions and re-insertions as that results in excessive
tissue damage. As such, a steerable needle is a highly underactuated non-holonomic
system. In fact, the needle is not small-time locally controllable, and a natural nee-
dle path (with curvatureκ0) is not small-time locally “trackable” (i.e., the deviation
with respect to the path is not small-time locally controllable) [13]. In addition, the
motion of the needle is subject to uncertainty due to tissue inhomogeneity, tissue
deformation, needle torsion, etc. [7, 23]. To address this issue, we follow the sug-
gestion of Kallem [13] that a path with a smaller curvature 0≤ κ < κ0 is small-time
locally trackable and that this can be achieved using duty-cycled spinning of the
needle during insertion. This would enable us to use feedback control to guide the
needle along a pre-planned path. Our experiments suggest that this is indeed the
case. The sensor feedback, however, may be noisy and partialas current medical
imaging technology does not allow for measuring the full state of the needle tip (the
imaging resolution is often too low to infer its orientation, for instance [12], and
often only provides planar views in real-time feedback situations).

Our objective is to compute a sensor placement and a needle path to the target
location, such that the path’s execution using LQG control has a minimal probability
of intersecting obstacles in the anatomy, given a stochastic model of the motion and
sensing uncertainty. Our approach is as follows. First, we build on work of [16] to
encapsulate the (high-frequency)duty cycled spinning of the needle in a higher-level
kinematic model that allows direct control of the curvatureof the needle motion.
We then derive an LQG controller (consisting of a Kalman filter for state estimation
and an LQR control policy) for the extended kinematic model to optimally guide
the needle along a given path. Based on the sensor placement,we can computein
advance the a priori probability distributions of the state of the needle along the path
[25]. From these distributions and a geometric model of the anatomical obstacles,
we can quickly compute the probability that the needle will intersect obstacles. Our
method then plans a set of candidate paths using a variant of the RRT algorithm [14]
and samples a set of feasible sensor placements, and then selects the pair for which
this probability of obstacle intersection is minimal.

The type and placement of sensor(s) can have a big influence onwhich path is
optimal (see Fig. 1). For example, if a sensor obtains a 2-D projection along the
x-axis of the 3-D position of the needle tip, there will be moreuncertainty in the
x-coordinate of the needle state than in they- andz-coordinates. If we then have to
steer the needle through a passage that is narrow in either the y- or thex-direction,
our path planner will prefer the passage for which the probability of intersecting
obstacles is less, which is the one that is narrower in they-direction. Given a set
of candidate paths and the space of possible sensor placements, our approach will
choose a needle path and find an axis along which a projection is obtained that
minimizes the probability of collisions for the chosen needle path. We demonstrate
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Fig. 1 Two examples of sensor placement, in which (left) only thex- andz-coordinate and (right)
only they- andz-coordinate of the needle-tip are measured by the imaging device (blue). Different
paths will be optimal even as the obstacles (grey) and targetlocation (cross) are the same.

the performance of our approach in modeled prostate cancer treatment environments
with simulated uncertainty for different examples of sensor models.

The remainder of this paper is organized as follows. We discuss previous work
in Section 2, and review the kinematic model of a steerable needle in Section 3. In
Section 4 we derive an LQG controller to optimally guide the needle along a given
path. In Section 5, we show how to estimate the probability ofobstacle intersection
for a given path and sensor placement, and present our path and sensor planner. We
present simulation results in Section 6 and conclude in Section 7.

2 Related Work

A significant body of previous work exists on planning and/orcontrolling bevel-
tip steerable needles. A kinematic model for a steerable needle generalizing a uni-
cycle model was introduced in [27], and has been used by most subsequent work
on needle steering, including this paper. In [16], it was shown that in addition to
the insertion and rotation speed, the curvature of the needle path can be controlled
through duty-cycled spinning of the needle during insertion.

2-D planners that address motion uncertainty have been presented in [2, 3], which
optimize a Markov decision process (MDP) over a discretizedstate space to provide
feedback control assuming full state observation. The approach was extended in [22]
and integrated with imaging feedback. In [12], a feedback controller is presented
to stabilize the needle in a plane. Tissue deformation is taken into account in the
planner of [1], which optimizes a path using 2-D FEM simulation of soft tissue.

Needle path planners for 3-D environments with obstacles have been proposed
in [8, 9], based on optimization and inverse kinematics, respectively. Rapidly-
exploring random trees (RRTs) have been used in [29, 30, 20] to explore the entire
3D space of feasible paths. These approaches do not address issues such as uncer-
tainty in motion and sensing. A diffusion-based planner wasintroduced in [18], but
it does not take into account obstacles or sensor types. A feedback controller for
3-D needle steering was presented in [11], and proved robustagainst motion devia-
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Fig. 2 Local coordinate frame
attached to the needle tip.
Its kinematics are shown
by yellow arrows. Figure
reproduced with permission
from [9].
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tion and sensing noise, even for a greedy control policy. Theapproach is not able to
guide the needle along a prescribed path and does not addressobstacle avoidance.

The approach we present in this paper extends these previousworks and applies
to 3-D environments with obstacles, takes into account motion and sensing uncer-
tainty, and does not require discretization of the state-space. Our approach to needle
steering is the first that specifically addresses the sensingcapabilities and its effect
on optimizing the path.

3 Needle Kinematics

We base our motion model of a bevel-tip steerable needle on the idealized kine-
matic model of [27], using the nomenclature of [8], in which the needle state is
represented by a rigid body transformation. This model assumes that the motion of
the needle is fully determined by the motion of the tip, whichis beveled such that it
follows a perfect arc of curvatureκ0 when pushed forward, independent of insertion
speed and tissue properties. The model further assumes thatthe needle is flexurally
flexible (it bends to follow the needle tip), but axially and torsionally stiff, such that
the insertion and twisting of the needle at its base is directly transmitted to its tip.

The state of the needle tip can be described by a 3-D rigid bodytransformation
relative to a world coordinate frame, which is compactly represented by a 4× 4
transformation matrixX ∈ SE(3);

X =

[

R p
0 1

]

, (1)

whereR ∈ SO(3) is a 3×3 rotation matrix describing the rigid body’s orientation,
andp ∈ R

3 a vector describing the rigid body’s position.
The kinematics of a rigid body, i.e. the evolution of its state over time, can gener-

ally be described a follows. Letv ∈ R
3 andw ∈ R

3 be the vectors of instantaneous
linear and angular velocities, respectively, expressed inthe local coordinate frame
attached to the rigid body. Then (using notation′ to refer to the time derivative):

X ′ = XU, U =

[

[w] v
0 0

]

, (2)

where 4×4 matrixU ∈ se(3) is the twist of the rigid body. The notation[a] for a
vectora = [ax ay az]

T ∈ R
3 refers to the following 3×3 skew-symmetric matrix:
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[a] =





0 −az ay

az 0 −ax

−ay ax 0



 . (3)

When the twistU is constant, the state of the rigid body at timet given the initial
state at time 0 is computed explicitly by integrating Eq. (2), for which a closed form
expression exists [8]:

X(t) = X(0)exp(tU). (4)

For the steerable needle, the local coordinate frame is rigidly attached to the tip
of the needle such that thez-axis points along the forward direction of the needle,
and they-axis points along the bevel direction (see Fig. 2). The motion of the needle
is determined by two control inputs: the linear forward speed (i.e. the speed with
which the needle is inserted), denotedv, and the bevel orientation speed (i.e. the
speed with which the needle is twisted at its base), denotedω . Hence, the linear
and angular velocities of the needle tip given the control inputsv ≥ 0 andω are
v =

[

0 0 v
]T

andw =
[

vκ0 0 ω
]T

, respectively, whereκ0 is the (fixed) curvature
of the arc the needle follows through the tissue.

This needle model is constrained by the fact that the curvature κ0 of the needle
paths is fixed. In recent work, however, Minhas et al. [16] show that by performing
duty cycled spinning of the needle during insertion, any curvatureκ of the needle
motion between 0 andκ0 can be approximated. The greatest degree of curvature
(κ = κ0) is achieved by no spin at all, while a straight trajectory (κ = 0) is cre-
ated by constantly spinning the needle at a high (infinite) rate during insertion. Any
trajectory in between these two extrema can be approximatedby duty cycling the
spinning in a spin-stop-spin-stop fashion. Longer stop intervals create steeper cur-
vature of the needle, and shorter stop intervals create straighter trajectories. To be
precise, the proportion 0≤ α ≤ 1 of the time spent in spin intervals to approximate
a curvature of 0≤ κ ≤ κ0 is given by:

α = 1−κ/κ0. (5)

Let the needle perform a 2π rotation each spin interval, and let the spin intervals
be of a small and constant durationδ . Then, the period of one spin-stop cycle isδ/α.
In order to incorporate the duty cycling into the kinematic model of the needle, the
control inputω(t) (parameterized by timet) is adjusted to:

ω(t) =

{

2π/δ +w if j ≤ t/(δ/α)< j+α (spin)

w if j+α ≤ t/(δ/α)< j+1, (stop)
(6)

for any j ∈ Z, wherew is the higher-level control of the speed with which the needle
is rotated at its base (at the lower level, it is augmented with rapid 2π rotations).

By taking the limitδ → 0, the resulting high-level kinematic model is similar
to the low-level kinematic model described above, with the difference thatω is
replaced byw, and the curvatureκ is added to the set of control inputs. The high-
level twistU given high-level control inputsv, w andκ is then given by:
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U =

[

[w] v
0 1

]

, v =
[

0 0 v
]T
, w =

[

vκ 0 w
]T
. (7)

To account for the uncertainty the motion of the needle is subject to due to tissue
inhomogeneity, tissue deformation, needle torsion, etc.,we augment the model by
assuming that the twist is corrupted by additive noiseŨ drawn from a zero-mean
Gaussian distribution with varianceM:

Ũ =

[

[w̃] ṽ
0 1

]

,

[

ṽ
w̃

]

= m ∼ N (0,M), (8)

The stochastic kinematics of the needle stateX is then given by:

X ′ = X(U +Ũ). (9)

4 LQG Control for Steerable Needles

Let us be given a needle pathΠ consisting of stateŝX and control input twistŝU
formed from control inputs ˆv > 0, ŵ and 0≤ κ̂ < κ0 (see Eq. (7)), such that

X̂ ′ = X̂Û , X̂ =

[

R̂ p̂
0 1

]

, Û =

[

[ŵ] v̂
0 0

]

. (10)

That is, the path is consistent with the needle kinematics without noise, and as con-
jectured in [13], the path is small-time locally trackable since 0≤ κ̂ < κ0.

During control of the needle along the pathΠ , we can assume that we obtain
potentially noisy and partial observations of the state as feedback from sensors, in
order to compensate for unexpected needle motion. We assumethat this feedback
will be according to the following (general) sensor model:

z = h(X ,q), q ∼ N (0,Q), (11)

wherez is a vector of measurements that relates to the stateX through functionh,
andq is the measurement noise drawn from a zero-mean Gaussian with varianceQ.

To control the needle along the needle pathΠ , we use the LQG-controller, since
it provides optimal control for linear Gaussian motion and sensor models with a
quadratic cost function penalizing deviation from the path. The LQG controller uses
a Kalman filter for state estimation in parallel with an LQR control policy. Since our
motion and sensor model are non-linear, we approximate themwith local lineariza-
tions around the path. This is reasonable as the needle is controlled to stay close to
the path during execution.

For purposes of linearization, we will not directly controlthe state itself, but
rather thedeviation of the state with respect to the path. This is also convenientfor
dealing with the 3-D orientation in the needle state, which either has a redundant
but internally constrained representation (e.g. a quaternion or rotation matrix) or a
minimal but singularity-prone representation (e.g. Eulerangles). Assuming that the
deviation is small, the orientation deviation is “far away”from any singularities,
and can hence safely be represented by three mutually unconstrained parameters.
Whereas many other works use quaternions to represent rotations [10, 15, 24], we
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will linearize for the 4×4 matrixX ∈ SE(3) (roughly following [4]), and derive a
Kalman filter and LQR controller for the needle.

4.1 Model Linearization and Discretization

We define the state deviation̄X as the transformation between the path stateX̂
and the (unknown) true stateX , and the twist deviation̄U as the difference between
the true control input twistU and the control input twist̂U along the path:

X̄ =

[

R̄ p̄
0 1

]

= X̂−1X =

[

R̂T R R̂T (p− p̂)
0 1

]

, Ū =

[

[w̄] v̄
0 0

]

=U −Û , (12)

where the last equality follows from the fact thatX̂−1 =
[

R̂T −R̂T p̂
0 1

]

. The kinematics
of the state deviation, i.e. its evolution over time, is given by

X̄ ′ = X̂−1X ′+(X̂−1)′X = X̂−1X(U +Ũ)−ÛX̂−1X = (13)

= X̄(U +Ũ)−ÛX̄ = X̄(Û +Ū +Ũ)−ÛX̄ =

=

[

R̄[ŵ+ w̄+ w̃]− [ŵ]R̄ R̄(v̂+ v̄+ ṽ)− [ŵ]p̄− v̂
0 0

]

=

[

R̄′ p̄′

0 0

]

,

where the equalities follow from Eqs. (9) and (12), and the fact that (X̂−1)′ =
−ÛX̂−1 [21].

To get a non-redundant state vector, we represent the orientation deviationR̄ as
a rotation of angle‖r̄‖ about axisr̄ ∈ R

3. Assuming this deviation is sufficiently
small, it is approximated well by the following first-order Taylor expansion:

R̄ = I +[r̄]. (14)

By substituting Eq. (14) into Eq. (13), and ignoring all second-order error terms,
we get to first order (using the identities[a]b = a×b = −[b]a and[a][b]− [b][a] =
[a×b]):

p̄′ = [r̄]v̂+ v̄+ ṽ− [ŵ]p̄ =−[ŵ]p̄− [v̂]r̄+ v̄+ ṽ, (15)

[r̄]′ = [r̄][ŵ]+ [w̄+ w̃]− [ŵ][r̄] = [−[ŵ]r̄]+ [w̄+ w̃]. (16)

Combining Eqs. (15) and (16), we get in matrix form:
[

p̄′

r̄′

]

=

[

−[ŵ] −[v̂]
0 −[ŵ]

][

p̄
r̄

]

+

[

v̄
w̄

]

+

[

ṽ
w̃

]

, (17)

which we can write as

x̄′ = F x̄+Gū+m, m ∼ N (0,M), (18)

wherex̄ =
[ p̄

r̄

]

, F =
[−[ŵ] −[v̂]

0 −[ŵ]

]

, m is as defined in Eq. (8), and̄u andG are defined
as follows:
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ū =





v− v̂
w− ŵ

vκ − v̂κ̂



 , G =





0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0





T

. (19)

Let us discretize time into stages of durationτ and assume that the control inputs
v, w, κ andv̂, ŵ, κ̂ and varianceM are constant for the duration of each stagek. The
pathΠ then consists of a series of states and control input twists(X̂0,Û0, . . . , X̂ℓ,Ûℓ),
whereℓ is the number of stages of the path, such that

X̂k+1 = X̂k exp(τÛk). (20)

We can then integrate Eq. (18) to get [15]:

x̄k+1 = Akx̄k +Bkūk +nk, nk ∼ N (0,Nk), (21)

where

Ak = eτFk , Bk =
∫ τ

0
e(τ−t)FkGdt, Nk =

∫ τ

0
e(τ−t)Fk Mke(τ−t)FT

k dt. (22)

Eq. (21) is the linearized and discretized motion model of the deviation of the needle
state from the path.

The sensor model (see Eq. (11)) is discretized by assuming that in each stagek
we obtain a measurementzk. To relate the state deviation vectorx̄ (as opposed to
the state matrixX as in Eq. (11)) to a measurementz, we define (note that̄p andr̄
are part of̄x):

h̄k(x̄,q) = h
(

X̂k

[

I+[r̄] p̄
0 1

]

,q
)

, (23)

where we use the fact thatX = X̂ X̄ (see Eq. (12)) to reconstruct the state matrixX
from the state deviation vector̄x. Linearizingh̄k around the pathΠ gives

z̄k = Hkx̄k +Wkqk, qk ∼ N (0,Qk), (24)

where

z̄k = zk − h̄k(0,0), Hk =
∂ h̄k

∂ x̄
(0,0), Wk =

∂ h̄k

∂q
(0,0). (25)

Eq. (24) is the linearized and discretized sensor model of the deviation of the needle
state from the path.

4.2 Kalman Filter and LQR Controller

Eqs. (21) and (24) form a standard linear Gaussian model, of which x̄ is the
state,ū the control input and̄z the measurement. The Kalman filter keeps track
of the estimatêx and varianceP of the true statēx during control. It continually
performs two steps; a process update to propagate the applied control inputū, and a
measurement update to incorporate the obtained measurement z̄:

Process update step:
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x̂−k = Ak−1x̂k−1, (26)

P−
k = Ak−1Pk−1AT

k−1+Nk−1. (27)

Measurement update step:

Kk = P−
k HT

k (HkP−
k HT

k +WkQkW
T
k )−1, (28)

x̂k = Kk(z̄k −Hkx̂−k ), (29)

Pk = (I−KkHk)P
−
k . (30)

The Kalman-gain matricesKk can be computed in advance (i.e. before execution)
given the initial varianceP0, without knowledge of the actual control inputsū and
measurements̄z. We refer the reader to [28] for additional details.

The LQR controller provides optimal control for a motion model of the type
given by Eq. (21) [5]. The optimal control inputs̄uk are found by minimizing the
cost function

min
ū

( ℓ

∑
k=0

(x̄T
k Cx̄k + ūT

k Dūk)
)

, (31)

which quadratically penalizes deviations from the pathΠ through given positive-
definite weight matricesC andD. Matrix C specifies the cost for deviating from
the planned path, whileD specifies the cost for deviating from the planned control
input. Penalizing the magnitude ofū is reasonable as the linearized motion model is
only valid whenū is small.

Solving Eq. (31) gives the control policȳuk = Lkx̄k, for feedback matricesLk

that are pre-computed using a standard recursive procedure(for 0≤ k < ℓ) [5]. As
the true statēxk is unknown, the estimatêxk of the state which is obtained from
the Kalman filter is used to determine the control inputūk at each stagek during
execution of the path. Hence, the control policy isūk = Lkx̂k. We refer the reader to
[5, 25] for additional details.

The actual control inputsvk, wk andκk that are applied to the needle are found
using Eq. (19), given̄uk and the control inputs ˆvk, ŵk andκ̂k of pathΠ . After appli-
cation of the control input, the Kalman filter produces the estimate of the next state
from which in turn a new control input is determined. This cycle repeats until the
execution of the path is complete.

5 Optimal Path and Sensor Planning

The first objective is to plan a needle path towards a target locationg inside a
workspaceW ⊂R

3. For simplicity, we assume that the workspace is the rectangular
region[0,xmax)× [0,ymax)× [0,zmax), and that the needle can enter the workspace at
any point in the planez= 0. Further, the workspace may contain obstacles defined by
a regionO ⊂ W that models impenetrable or sensitive tissue. The second objective
is to select a placement of the sensor that will provide feedback during control.

The quality measure of a pathΠ and a sensor placement is the probability that
the needle will intersect obstacles when the path is executed using LQG control.
We will first discuss how to compute this probability for a given pathΠ and a
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given sensor model, and then discuss how we plan a set of candidate paths and
sensor placements from which we select the pair that minimizes the probability of
intersecting obstacles during control.

5.1 Obstacle Intersection Probability Along a Path

Given the LQG controller for a pathΠ and sensor modelh (see Section 4), we
can analyze in advance how the true statex̄t and the estimated statex̂t will evolve
during control as functions of each other. The evolution of the true statēxt is depen-
dent on the estimated state through the LQR control policy and the evolution of the
estimated statêxt is dependent on the true state through the measurement obtained
in the Kalman filter. This gives the following equation in matrix form (see [25] for
more details):

[

x̄k+1

x̂k+1

]

=

[

Ak BkLk

Kk+1Hk+1Ak Ak +BkLk −Kk+1Hk+1Ak

][

x̄k

x̂k

]

+ (32)
[

I 0
Kk+1Hk+1 Kk+1Wk+1

][

nk

qk+1

]

,

[

nk

qk+1

]

∼ N (0,
[

Nk 0
0 Qk+1

]

),

which we write shorthand –for the appropriate definitions ofyk, Yk, Vk, sk andZk–
as (note thatYk, Vk andZk can all be computed in advance for a given a pathΠ ):

yk+1 = Ykyk +Vksk, sk ∼ N (0,Zk). (33)

From this, we can compute the meanŷk and the varianceΣk of yk =
[ x̄t

x̂t

]

for any
stagek of the execution of the path:

ŷk+1 = Ykŷk, ŷ0 = 0, (34)

Σk+1 = YkΣkY
T
k +VkZkV

T
k , Σ0 =

[

P0 0
0 0

]

. (35)

Note that the mean̂yk is zero for all stagest. Hence,
[ x̄k

x̂k

]

∼ N (0,Σk).
Given these a priori distributions of the state deviation, we can compute the prob-

ability that the needle will intersect an obstacle during the execution of pathΠ .
Let Σp

k be the variance of the position deviation̄pk, which is the upper-left 3× 3-
submatrix of the 12×12-matrixΣk (note that̄x =

[ p̄
r̄

]

). As p̄ = R̂T (p− p̂) (see Eq.
(12)), we have thatp = p̂+ R̂p̄, so the a priori distribution of the positionpk of the
needle tip at stagek along pathΠ is given byN (p̂k, R̂kΣp

k R̂T
k ). Hence, the prob-

ability pk that the needle intersects the obstacle region at stagek along pathΠ is
computed as:

pk =

∫

O

exp(− 1
2(b− p̂k)

T (R̂kPp
k R̂T

k )
−1(b− p̂k))

√

8π3det(R̂kPp
k R̂T

k )
db, (36)

which is the integral over the obstacle regionO of the probability density function
of GaussianN (p̂k, R̂kPp

k R̂T
k ).
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Instead of computing the probabilitiespk exactly, we will use an approximation
that can be computed efficiently. To this end, we look at the maximum factor by
which the ellipsoid of one standard deviation of the a prioriprobability distribution
can be scaled such that it does not intersect an obstacle. Letthis factor beck for
stagek along the path. For a multivariate Gaussian distribution ofdimensionn, the
probability that a sample is outsideck standard deviations is given by

p̂k = 1−Γ (n/2,c2
k/2), (37)

whereΓ is the regularized Gamma function [17]. It provides a (conservative) upper
bound of the true probability of intersecting obstacles at stagek.

The value ofck for stagek is efficiently computed by using a collision-checker
capable of performing distance calculations and linear transformations on the obsta-
cle geometry, such as SOLID [26]. LetEk be a matrix such thatEkET

k = Σp
k . The set

of positions within one standard deviation is then an ellipsoid centered at the mean
p̂k obtained by transforming a unit sphere byEk. Transforming the environment by
E−1

k (such that the uncertainty ellipsoid becomes a unit sphere), and calculating the
Euclidean distance betweenp̂k and the nearest obstacle in the transformed environ-
ment gives the value ofck for stagek, from which the approximate probability ˆpk of
intersecting obstacles at stagek can be computed using Eq. (37).

Assuming (somewhat opportunistically) that the probabilities p̂k are indepen-
dent, it follows that the probabilityp(Π) that the needle intersects the obstacle re-
gion anywhere along pathΠ is given byp(Π) = 1−∏ℓ

k=0(1− p̂k).

5.2 Planning a Needle Path and Sensor Placement

To plan an optimal pair of a needle path and sensor placement,we (randomly)
generate large sets of possible needle paths and sensor placements, and evaluate the
probability of intersecting obstacles for each pair.

To generate a large set of (random) needle paths we use the RRT(random rapidly-
exploring tree) algorithm [14], as it is known to create trees of paths that uniformly
cover the space and handle kinematically constrained systems, such as steerable
needles, well. As the target location is a specific pointg, and the entry location
can be anywhere in a pre-defined entry zone, it is convenient to plan backwards
from the target location. Backward kinematics are identical to forward kinematics,
except that the (forward) control inputs ˆv, ŵ, andκ̂ are integrated over a negative
time-step. As the actual path traced out by the needle only depends on the ratiow/v
and not on the values of the individual terms [8], we set ˆv = 1 cm/s and only vary
ŵ ∈ [−wmax,wmax] andκ̂ ∈ [0,κ0). We will not describe the RRT-planner in detail
here, but refer to [20, 29, 30] for details on RRT implementations for steerable
needles. All the paths in the resulting tree that reach the entry zone are valid.

Let S be the space of sensor placements, and let the sensor modelh(X ,q) cor-
responding to a placements ∈ S be denotedhs(X ,q). We generate a large set of
placements by random sampling fromS . We iterate over all valid paths contained
in the RRT-tree and all placements sampled fromS , and select the pair for which
the needle has minimal probability of intersecting obstacles as computed above.
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(a) (b)

Fig. 3 (a) Given a candidate path (gray) from left to right, we illustrate samples (red spheres)
from 100 simulated executions of the LQG controller and extended Kalman filter showing conver-
gence to the path. The simulations included artificially generated process and measurement noise.
The blue ellipsoids show the a priori distributions computed by the planner along the path. (b) A
simulated example trajectory (shown in ref) using LQG control.

6 Simulation Results

We experimentally evaluate our approach using simulationsof the computed can-
didate paths using LQG control with simulated process and measurement noise. In
our experiments, we use an anatomical model of the human malepelvic region to
simulate needle insertion in tissue for delivering radioactive doses to targets within
the prostate region for cancer treatments. We first show thatthe needle is control-
lable along a candidate path. We then show the effect the sensor can have on the
optimal path, and how the sensor placement can be optimized for a given problem.

We implemented the system in C++ and tested it on a 3.33 Ghz 4-core IntelR© i7TM

PC. All experiments utilized only a single core for computation, but our approach
could be parallelized over multiple cores to yield significant speedups. In our ex-
periments, we model the needle motion and noise using the following parameters:
wmax= 2π rad/s,τ = 0.1 s,κ = 0.2 cm−1, M is a diagonal matrix with 0.01 (cm/s)2

for the position components and 0.05 (rad/s)2 for the rotational components, andQ
is a diagonal matrix with 0.05 cm2 along the diagonal.

6.1 Needle Controllability

We first demonstrate the controllability of the needle alonga candidate path using
an LQG controller with artificially generated process and measurement noise. We
assume that the sensor can only measure the positionp of the needle tip and not the
orientation. Fig. 3a shows the samples obtained from 100 simulations of executions
of the path using the LQG controller, demonstrating that thea priori probability dis-
tributions computed by the planner are close approximations of the true distribution
of the states along the path and that the needle follows the candidate path closely.
For an insertion length of 11.25 cm, the standard deviation of the distance to the
target was found to be 0.17 cm.

To emulate uncertainties arising due to tissue heterogeneities, we applied spa-
tially varying process noise sampled from Gaussian distributions with zero mean
and variances up to three times the varianceM. Following the same candidate path
of length 11.25 cm, the standard deviation of the distance of the final needle-tip
position to the target across 1000 simulation runs was 0.24 cm.
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Fig. 4 Optimal needle paths in an anatomical environment modelingthe human prostate and sur-
rounding tissues. Two examples of a sensor placement, in which (left) only thex- andy-coordinate
and (right) only thex- andz-coordinate of the needle-tip are measured by an imaging device by
projecting the anatomy on the imaging plane (shown in the twoviews). The optimal path predom-
inantly lies in the imaging plane to minimize uncertainty inthe viewing direction.

6.2 Effect of Sensor Placement on Optimal Path

We demonstrate the use of LQG to select plans that minimize the probability
of failure and also show the effect of sensor placement on theoptimal path. We
performed these experiments using an anatomical model of the human pelvic region
(see Fig. 4). As an example sensor model, we consider a 2-D image of the anatomy
(for example, an x-ray or 2-D ultrasound image). The image isprojected along the
z-axis using an imaging device, from which we can only measurethe x- and y-
coordinate of the positionp = [x,y,z] of the needle tip. This gives the following
observation functionh (note thatp is part ofX):

h(X ,q) =
[

x
y

]

+q, q ∼ N (0,Q) (38)

Fig. 4 (left) shows the optimal needle path within the RRT-tree for this sensor. The
optimal path predominantly lies in thex-y plane to minimize the uncertainty along
the viewing direction (z-axis). It took 41 seconds to generate a set of 1000 candidate
paths and selecting an optimal path from this set required 4.6 seconds. Similarly,
if we instead place the sensor such that it obtains 2-D imagesprojected along the
y-axis, the optimal path (shown in Fig. 4 (right)) is predominantly in thex-z plane.

To quantify the effect the sensor location has on the probability of success of a
path, we compare the results of two paths assuming sensing along thez axis: the
optimal path and a path that lies predominantly in thex-z plane. For each path,
we estimated the “ground truth” probability of success by performing 1000 simu-
lated executions using the LQG controller with artificiallygenerated process and
measurement noise. The path that is optimal according to ourmethod, which lies
predominantly in thex-y plane, has a probability of success of 89%. In contrast, the
path that primarily lies in thex-z plane had a probability of success of only 44%,
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Fig. 5 Using an x-ray imager mounted on a rotating C-arm, it is possible to rotate the sensor about
the horizontal axis along which the patient is positioned (left). The anatomy as viewed from the
computed optimal sensor placement (right). The optimal path predominantly lies in the imaging
plane to minimize uncertainty in the viewing direction.

which is to be expected since there is greater uncertainty inneedle pose along the
viewing direction (z-axis).

6.3 Optimizing the Sensor Placement

In many clinical procedures involving bevel-tip steerableneedles, the physician
can select where to place an intra-operative sensing devicefor real-time feedback.
We consider the case of an x-ray imaging sensor attached to a C-arm, a commonly
used setup in operating rooms that allows the physician to rotate the sensor in a circle
about the patient as shown in Fig. 5. The placement of the imaging device can be
parameterized by angleθ relative to the horizontal axis of the patient. A 2-D image
of the anatomy can be obtained by parallel projection along the viewing direction
(along the radius of the arm). This gives the following observation functionh:

h(X ,q) =
[

x
ycosθ + zsinθ

]

+q, q ∼ N (0,Q) (39)

To optimize sensor placement, we iterate over all paths computed by the RRT-
based planner and all sampled sensor placements (obtained by varying the angle of
rotation about the horizontal axisθ in regular increments), and select the pair for
which the needle has minimal probability of intersecting obstacles. Fig. 5 shows
the optimal sensor placement for a given set of candidate paths and a 2-D view
of the anatomy as visible from the imaging device. For a set of1000 candidate
paths and 36 possible sensor placements (obtained by discretizing over the interval
[0,π ] in intervals of 5 degrees), our implementation took 185 seconds to compute
the optimal pair over the set of candidate paths and sensor placements. It should
be noted that with modern multi-core processors, this computation can be trivially
parallelized to bring down the computation time within clinically acceptable limits.
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7 Conclusion and Future Work

In this paper, we presented a technique for planning and controlling flexible steer-
able needles towards a target location in 3-D anatomy with obstacles such as bones
and sensitive organs. Our approach minimizes the probability that the needle in-
tersects obstacles by explicitly taking into account both needle motion uncertainty
and the sensors used to obtain (noisy, partial) feedback on the needle state. We
demonstrated how the sensor influences the optimal path and optimize over the set
of candidate paths and feasible sensor placements to selectthe pair for which the
estimated uncertainty is least likely to cause intersections with obstacles.

In our current implementation, the LQR controller does not bound the control
inputs within permissible limits during feedback. This canbe a problem when the
control for needle curvature exceeds the attainable curvature of the needle. We plan
to address this issue in future work. We also plan to incorporate uncertainty intro-
duced by tissue deformation using a physically accurate FEMsimulator [6].

We also plan to evaluate our new planning and control approach using a robotic
device that steers a needle in phantom tissue as in prior 2-D experiments [22]. We
will utilize the ability of this planner and controller to account for unexpected events
that might occur due to tissue inhomogeneity, tissue deformation, and estimation
errors in motion model parameters, as well as to optimize sensor placement to min-
imize the probability of intersecting an obstacle.

Acknowledgments

This research was supported in part by the National Science Foundation (NSF)
under grants IIS-0905344 and IIS-0904672 and by the National Institute of Health
(NIH) under grants R01-EB006435 and R21-EB011628. The authors also thank
members of the needle steering community for their valuableinput.

References

1. R. Alterovitz, K. Goldberg, A. Okamura. Planning for steerable bevel-tip needle insertion
through 2D soft tissue with obstacles.IEEE Int. Conf. on Robotics and Automation, 2005.

2. R. Alterovitz, M. Branicky, K. Goldberg. Motion planningunder uncertainty for image-
guided medical needle steering. Int. J. Robotics Research,27(11-12): 1361-1374, 2008.
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