
LQG-MP: Optimized Path Planning for Robots

with Motion Uncertainty and Imperfect State

Information

Jur van den Berg

University of North Carolina at Chapel Hill

E-mail: berg@cs.unc.edu

Pieter Abbeel

University of California, Berkeley

E-mail: pabbeel@cs.berkeley.edu

Ken Goldberg

University of California, Berkeley

E-mail: goldberg@berkeley.edu

February 21, 2011

Abstract

This paper presents LQG-MP (linear-quadratic Gaussian motion planning), a
new approach to robot motion planning that takes into account the sensors and
the controller that will be used during execution of the robot’s path. LQG-MP
is based on the linear-quadratic controller with Gaussian models of uncertainty,
and explicitly characterizes in advance (i.e., before execution) the a-priori prob-
ability distributions of the state of the robot along its path. These distributions
can be used to assess the quality of the path, for instance by computing the prob-
ability of avoiding collisions. Many methods can be used to generate the needed
ensemble of candidate paths from which the best path is selected; in this paper
we report results using Rapidly-exploring Random Trees (RRT). We study the
performance of LQG-MP with simulation experiments in three scenarios: A)
a kinodynamic car-like robot, B) multi-robot planning with differential-drive
robots, and C) a 6-DOF serial manipulator. We also present a method that
applies Kalman Smoothing to make paths Ck-continuous and apply LQG-MP
to precomputed roadmaps using a variant of Dijkstra’s algorithm to efficiently
find near-optimal paths.

1

1 Introduction

Motion uncertainty, e.g. due to unmodeled external influences on the motion of
the robot, and imperfect state information due to partial or noisy measurements
of the robot’s state, arise in many real-world robotic tasks ranging from guiding
mobile robots over uneven terrain to performing robotic surgery with high-DOF
manipulators. The amount of motion and sensing uncertainty may depend
on the particular motion that is executed and the state the robot is in, so
different paths for the robot will have different uncertainties associated with
them. Because safety and accuracy are of critical importance for many robotic
tasks, these uncertainties will have significant influence on which path is best for
the task at hand. The challenge we discuss in this paper is to precisely quantify
these uncertainties in advance, such that the best path can be selected for the
robot.

Many traditional path planners assume deterministic motion and full knowl-
edge of the state [19, 14], and leave issues of uncertainty to the control phase
in which the path may be executed using a feedback controller [16]. Planning
and control are related but distinct fields. While recent work on path planning
has addressed motion and/or sensing uncertainty (see Section 2), most planning
methods do not account for control during execution and most control methods
take the path as given. LQG-MP builds a bridge between these disciplines and
draws from results in both.

The key insight of LQG-MP is that the a-priori knowledge of the sensors
and controller that will be used during the execution of the path can be used to
optimize the path in the planning phase. We base our approach on the linear-
quadratic controller (LQG-controller) with Gaussian models of the motion and
sensing uncertainty, as it provides optimal control for guiding a robot along a
planned path [4]. We show that for a given stochastic model of the motion
dynamics, and a stochastic model of the sensor measurements obtained during
execution, it is possible to derive in advance (i.e., before execution) the a-priori
probability distributions of the states and the control inputs of the robot along
a given path (see Fig. 1). These distributions can be used to compute, for
example, the probability that collisions will be avoided, the likelihood that the
robot will arrive at the goal, or any other measure defining the quality of the
path. We can then use any motion planning method to generate a large set
of candidate paths, and select the path that is best with respect to the chosen
planning objective.

Our approach is generally applicable to both holonomic and non-holonomic
robots with state spaces of arbitrary dimension and kinematics and dynamics
constraints. We assume that the stochastic dynamics model of the robot and the
stochastic observation model are given explicitly, and that their stochasticity can
be modeled by Gaussian noise. Our approach is designed for linear models, but
can also be applied to non-linear models if they are locally well approximated
by their linearizations.

We implemented our approach using the RRT motion planning algorithm
[19] for representative path planning problems, and validated our approach using

2

ct

(a) (b)

Figure 1: (a) The maximum factor ct by which the ellipse containing the posi-
tions within one standard deviation can be scaled before it intersects obstacles
gives an indication of the probability that collisions will be avoided (top). ct is
computed as the Euclidean distance to the nearest obstacle in the environment
transformed such that the ellipse becomes a unit disc (bottom). (b) The ellipses
show the a-priori distributions as computed by LQG-MP along the best among
the 1000 candidate paths for Scenario A. The samples result from performing
100 simulations.

3

simulation experiments. We will show that the quality of candidate paths can
differ starkly based on the uncertainty, even if traditional planning criteria such
as path length or clearance from obstacles are similar, and that the type of
sensors used during execution of the path has a significant influence on which
path is best. A path planner that is unaware of the sensors, the controller and
their uncertainties would not be able to make this distinction, and may produce
sub-optimal paths.

Paths obtained with RRT motion planning can be non-smooth. Standard
smoothing techniques tend to short-cut paths or can even result in paths that
are not dynamically feasible (e.g., through the use of splines for smoothing).
We describe a Kalman smoothing approach, which can produce paths that are
Ck continuous and illustrate its performance in conjunction with LQG-MP.

While the LQG-MP approach does not directly lend itself to efficient roadmap
based planning, we describe an approximation similar to the approximations
made in past work on planning in information spaces [29] for the LQG-MP set-
ting. This approximation enables efficient planning over pre-computed roadmaps.

The remainder of this paper is organized as follows. We start by discussing
related work in Section 2. We formally define the problem addressed in this
paper in Section 3. In Section 4 we show how LQG-MP computes the a-priori
probability distributions for a given path. In Section 5 we discuss application
examples and simulation results of LQG-MP for several motion and sensing
models and planning objectives. In Section 6 we discuss a Kalman Smoothing
approach to make paths Ck-continuous while avoiding obstacles. In Section 7
we describe an approximation to the LQG-MP evaluation which enables using
a variant of Dijkstra’s algorithm on a pre-computed roadmap to efficiently find
near-optimal paths. We conclude in Section 8.

2 Related Work

A substantial body of work has addressed uncertainty in motion planning. The
uncertainty typically originates from three sources: (i) motion uncertainty, (ii)
sensing uncertainty and partial observations of the robot’s own state, and (iii)
uncertainty about the environment. Our approach focuses on the first two, but
is also applicable to the latter if distributions of the position of obstacles in the
environment are available a-priori, as we will show in one of our experiments.
Our approach does not explicitly account for sensing of the environment.

Planners that specifically take into account motion uncertainty include [15,
22, 32]. These planners plan paths that avoid rough terrain, but do not consider
partial observability and sensing uncertainty. In [11], the probability of collisions
is minimized for the specific case of a manipulator with base pose uncertainty.
The sensing uncertainty is taken into account in the planner of [31], which aims
to optimize the information content along a path. Planners in [5, 7, 21] assume
that landmark regions exist in the environment where the accumulated motion
uncertainty can be “reset”.

Other approaches blend planning and control by defining a global control

4

policy over the entire environment. MDPs, for instance, can be used with mo-
tion uncertainty to optimize probability of success [1, 33]. However, they require
discretization of the state and control input spaces. The MDP concept can be
extended to POMDPs to also include sensing uncertainty [13, 17, 28]. While
POMDPs suffer from issues of scalability [25], recent advances have shown con-
siderable success in applying approximate sample-based solutions to POMDPs
in reasonable computation times. The method of [18] also provides a global
control policy in case of motion and sensing uncertainty.

Another class of planners considers the uncertainty about the environment
and obstacles, rather than motion and sensing uncertainty [6, 10, 23, 24]. They
typically aim to plan paths for which the probability of collisions is minimal.

Existing planners that are most directly related to LQG-MP take into ac-
count the available sensing capability to maximize the probability of arriving at
the goal or to minimize expected cost [9, 12, 26, 27, 29]. However, these algo-
rithms (implicitly) assume to receive maximum-likelihood measurements from
the sensors, which does not result in the true probability distributions of the
state of the robot, but rather a measure of how well one will be able to infer the
state. Besides the sensors, LQG-MP also takes into account the controller that
will be used for executing the path, and computes the true a-priori probability
distributions of the state of the robot along its future path. Also, in addition to
maximizing the likelihood of arrival at the goal, LQG-MP can also be used to
minimize the probability of collisions with obstacles in order to maximize the
probability of successful execution of the path.

3 Problem Definition

Let X = R
n be the state space of the robot, and let U = R

m be the control
input space of the robot. We assume that time is discretized into stages of equal
duration, and that applying a control input ut ∈ U at stage t brings the robot
from state xt ∈ X at stage t to state xt+1 ∈ X at stage t + 1 according to a
given stochastic dynamics model:

xt = f(xt−1,ut−1,mt), mt ∼ N (0,Mt), (1)

where mt is the process noise at stage t drawn from a zero-mean Gaussian dis-
tribution with varianceMt that models the motion uncertainty. We assume that
the function f is either linear or locally well approximated by its linearization.

Let us be given a start state xstart ∈ X where the robot begins and a goal
region X goal ⊂ X where the robot needs to go. A path Π for the robot is defined
as a series of states and control inputs (x⋆

0,u
⋆
0, . . . ,x

⋆
ℓ ,u

⋆
ℓ), such that x⋆

0 = xstart,
x⋆
ℓ ∈ X goal, and x⋆

t = f(x⋆
t−1,u

⋆
t−1,0) for 0 < t ≤ ℓ, where ℓ is the number of

stages of the path. That is, a path connects the start state and the goal region,
and is consistent with the dynamics model if there were no process noise.

During execution of the path, the robot will deviate from the path due to
motion uncertainty. To compensate for unexpected motions, the path will be
executed using a feedback controller that aims to keep the robot close to the

5

path. We assume that noisy sensors provide us with partial information about
the state according to a given stochastic observation model:

zt = h(xt,nt), nt ∼ N (0, Nt), (2)

where zt is the measurement obtained at stage t that relates to state xt through
function h, and nt is the measurement noise drawn from a zero-mean Gaussian
with variance Nt. We assume that the function h is either linear or locally well
approximated by its linearization.

We define our problem in two parts; (i) given the stochastic dynamics model
and the stochastic observation model, compute the a-priori distributions of the
state and control input along a given path, and (ii) given a planning objective
based on the probability distributions, select the best path among a large set of
candidates.

4 A-priori Probability Distributions

In this section we describe how to compute the a-priori probability distributions
of the state and control input of the robot along a given path Π. For this, we
use the fact that we know in advance what controller will be used to execute
the path: for linear dynamics and observation models with Gaussian noise and
a quadratic cost function, the optimal approach for executing the path is to use
an LQR feedback controller in parallel with a Kalman filter for state estima-
tion, which is called linear-quadratic Gaussian (LQG) control [4]. A Kalman
filter provides the optimal estimate of the state given previous state estimates,
measurements and control inputs, and an LQR controller provides the optimal
control input given the estimate of the state.

We will first discuss how to linearize the dynamics and observation model,
and then review the Kalman filter and LQR controller. From these, we compute
the a-priori probability distributions of the states and the control inputs of the
robot along the path.

4.1 Linear(ized) Dynamics and Observation Model

In principle, our approach applies to linear dynamics and observation models f
and h. However, since the robot will be controlled to stay close to the path dur-
ing execution, we can approximate non-linear models with local linearizations
(i.e., first-order Taylor expansions) around the path Π. This gives the following
linear(ized) stochastic dynamics and observation model:

xt = f(x⋆
t−1,u

⋆
t−1,0) + At(xt−1 − x⋆

t−1) +Bt(ut−1 − u⋆
t−1) + Vtmt, (3)

zt = h(x⋆
t ,0) +Ht(xt − x⋆

t) +Wtnt, (4)

6

where

At =
∂f

∂x
(x⋆

t−1,u
⋆
t−1,0), Bt =

∂f

∂u
(x⋆

t−1,u
⋆
t−1,0), Vt =

∂f

∂m
(x⋆

t−1,u
⋆
t−1,0),

Ht =
∂h

∂x
(x⋆

t ,0), Wt =
∂h

∂n
(x⋆

t ,0) (5)

are the Jacobian matrices of f and h along path Π.
It is convenient to express the control problem in terms of the deviation from

the path. By defining

x̄t = xt − x⋆
t , ūt = ut − u⋆

t , z̄t = zt − h(x⋆
t ,0), (6)

as the state deviation, control input deviation, and measurement deviation,
respectively, we can formulate the dynamics and observation model of Equations
(3) and (4) as

x̄t = Atx̄t−1 +Btūt−1 + Vtmt, mt ∼ N (0,Mt), (7)

z̄t = Htx̄t +Wtnt, nt ∼ N (0, Nt). (8)

This is a standard formulation of a model for LQG-control problems.

4.2 Kalman Filter for Optimal State Estimation

The Kalman filter keeps track of the estimate x̃t and variance Pt of the true
state x̄t during the execution of the path. It continually performs two steps; a
process update to propagate the applied control input ūt, and a measurement
update to incorporate the obtained measurement z̄t:

Process update:

x̃−
t = Atx̃t−1 +Btūt−1 (9)

P−
t = AtPt−1A

T
t + VtMtV

T
t , (10)

Measurement update:

Kt = P−
t HT

t (HtP
−
t HT

t +WtNtW
T
t)−1 (11)

x̃t = x̃−
t +Kt(z̄t −Htx̃

−
t) (12)

Pt = (I −KtHt)P
−
t . (13)

These are the standard Kalman filter equations for optimal estimation given the
dynamics and observation model of Equations (7) and (8) [34]. Note that the
Kalman-gain matrices Kt can be computed in advance (i.e., before execution)
given the initial variance P0, without knowledge of the actual control inputs ūt

and measurements z̄t.

7

4.3 LQR for Optimal Control

The control inputs ūt that are optimal to apply during execution of the path
are determined by the control policy that minimizes a quadratic cost function
defined over the execution. As the linearizations of the motion and observation
models are good approximations only when the actual states and control inputs
are close to those along the path, we define the cost function as

E
(

ℓ
∑

t=0

(x̄T
t Cx̄t + ūT

t Dūt)
)

, (14)

such that deviations from the path are quadratically penalized, given positive-
definite weight matrices C and D.

For the dynamics model of Equation (7), the cost function is minimal when
ūt = Lt+1x̄t, where Lt is the feedback matrix, which is computed in advance for
all t ∈ 1, . . . , ℓ using backward recursion:

Sℓ = C (15)

Lt = −(BT
t StBt +D)−1BT

t StAt (16)

St−1 = C +AT
t StAt +AT

t StBtLt. (17)

These are the standard equations for a finite-horizon discrete-time LQR con-
troller [4].

As the true state x̄t is unknown, the estimate x̃t of the state which is obtained
from the Kalman filter is used to determine the control input ūt at each stage
t during execution of the path. Hence, the control policy is:

ūt = Lt+1x̃t. (18)

It follows from the separation theorem, which states that the estimator (Kalman
filter) and the controller can be optimized independently (for linear systems with
quadratic cost) [4], that this control policy is optimal. After application of the
control input, the Kalman filter produces the estimate of the next state from
which in turn a new control input is determined. This cycle repeats until the
execution of the path is complete.

4.4 A-priori Distributions of State and Control Input

Given the LQR control policy and the Kalman filter, we can analyze in advance
how the true state x̄t and the estimated state x̃t will evolve during execution
of the path as functions of each other. The evolution of the true state x̄t is
dependent on the estimated state through the LQR control policy (Equation
(18)) and the evolution of the estimated state x̃t is dependent on the true state
through the measurement obtained in the Kalman filter (Equation (12)). This

8

gives the following equations:

x̄t = Atx̄t−1 +BtLtx̃t−1 + Vtmt, (19)

x̃t = Atx̃t−1 +BtLtx̃t−1 +Kt

(

z̄t −Ht(Atx̃t−1 +BtLtx̃t−1)
)

(20)

= Atx̃t−1 +BtLtx̃t−1 +Kt

(

Htx̄t +Wtnt −Ht(Atx̃t−1 +BtLtx̃t−1)
)

= Atx̃t−1 +BtLtx̃t−1 +Kt

(

Ht(Atx̄t−1 +BtLtx̃t−1 + Vtmt) +Wtnt −

Ht(Atx̃t−1 +BtLtx̃t−1)
)

= Atx̃t−1 +BtLtx̃t−1 +KtHtAtx̄t−1 +KtHtVtmt +KtWtnt −

KtHtAtx̃t−1,

Equation (19) follows from substituting Equation (18) into Equation (7). The
first equality of (20) follows from substituting Equation (18) into Equation (9)
and Equation (9) into Equation (12); the second and third equalities follow
after substituting Equations (8) and (19), respectively, and the fourth equality
follows after expanding the terms.

Combining Equations (19) and (20) gives the matrix form:
[

x̄t

x̃t

]

=

[

At BtLt

KtHtAt At +BtLt −KtHtAt

] [

x̄t−1

x̃t−1

]

+

[

Vt 0
KtHtVt KtWt

] [

mt

nt

]

,

where
[

mt

nt

]

∼ N (0,

[

Mt 0
0 Nt

]

).

We write these equations shorthand (for the appropriate definitions of yt, qt,
Ft, Gt and Qt) as:

yt = Ftyt−1 +Gtqt, qt ∼ N (0, Qt). (21)

From this, we can compute the mean ŷt and the variance Rt of yt =
[

x̄t

x̃t

]

for
any stage t of the execution of the path using forward recursion:

ŷt = Ftŷt−1, ŷ0 = 0, (22)

Rt = FtRt−1F
T
t +GtQtG

T
t , R0 =

[

P0 0
0 0

]

. (23)

The upper-left block of Rt provides the unconditional a-priori variance of the
state (deviation) x̄t. In contrast, the matrix Pt computed in the Kalman filter is
the conditional variance of the state deviation x̄t given its estimate x̃t. Since the
estimate x̃0 of the initial state deviation is fully known a-priori, R0 is initialized
with zero variance for the estimate and variance P0 for the true state.

The mean ŷt is zero for all stages t. Hence,
[

x̄t

x̃t

]

∼ N (0, Rt). As it follows
from Equations (18) and (6) that

[

xt

ut

]

=

[

I 0
0 Lt+1

] [

x̄t

x̃t

]

+

[

x⋆
t

u⋆
t

]

, (24)

9

the a-priori distribution of the state xt and the control input ut at stage t of
the execution of the path is:

[

xt

ut

]

∼ N (

[

x⋆
t

u⋆
t

]

,ΛtRtΛ
T
t), Λt =

[

I 0
0 Lt+1

]

. (25)

The covariance between the states and control inputs
[

xi
ui

]

and
[

xj

uj

]

at stages
i and j along the path is given by:

cov(

[

xi

ui

]

,

[

xj

uj

]

) = ΛiRiF
T
i+1F

T
i+2 · · ·F

T
j ΛT

j , i < j. (26)

These a-priori distributions (Equation (25)) and their covariances (Equa-
tion (26)) are correct regardless of the controllability and observability of the
dynamics and observation model of Equations (7) and (8). Even for formally
uncontrollable and/or unobservable systems, the LQR-controller and Kalman
filter provide the optimal control policy and state estimate, respectively. The
controller or observer may not converge in this case, but this will be reflected in
the computed a-priori probability distributions: the a-priori uncertainty in the
state will be larger the further along the path.

Using the a-priori distributions, the quality of path Π can be computed with
respect to the chosen planning objective. We can then use any motion planner
to generate a large set of candidate paths, from which the best one is selected.
In the experiments we present next, we use the a-priori distributions of the
state to approximate the probability of collisions with obstacles. We have not
used the a-priori distributions of the control input, nor the covariances between
the states at different stages along the path, but we envision that the former
can be used to compute the probability that the applied control inputs remain
within their bounds, and the latter to compute the conditional distributions of
the remainder of the path after each application of a control input during the
execution.

5 Example Applications and Results

In this section, we report simulation results for three scenarios in which LQG-
MP is used to select a path. In each of the three scenarios, we use a different
dynamics model, observation model and planning objective, and provide com-
parative analysis with a brute-force approach. We report results for an Intel
P7350 2GHz with 4GB RAM.

For each scenario, we use the random rapidly-exploring tree (RRT) algorithm
[19] to generate a large set of candidate paths. The RRT algorithm is well suited
for our context as it can handle any dynamics model (without process noise) of
the form of Equation (1) well. Even though it only plans a single path between
the start state and the goal region, the path is generated randomly and will
thus be different each time the algorithm is run. Hence, to generate multiple
different paths, we run the RRT algorithm multiple times.

10

x
start

X
goal

x

y (x, y)
θ

v

φ

d

(a) (b)

Figure 2: (a) The environment of Scenario A, in which a car-like robot has to
move between a start state and a goal region without colliding with obstacles.
Sensors can only measure the y-coordinate of the position of the robot. The
best path according to LQG-MP among the 1000 generated by RRT is shown.
(b) The state x of a car-like robot.

5.1 Car-Like Robot

In the first scenario, we apply LQG-MP to a non-holonomic car-like robot with
2nd-order dynamics in a 2-D environment with obstacles. The robot needs to
move from a start state xstart to a goal region X goal without colliding with the
obstacles in the environment (see Fig. 2(a)).

5.1.1 Dynamics model

The state x = (x, y, θ, v) of the robot is a 4-D vector consisting of its position
(x, y), its orientation θ, and its speed v (see Fig. 2(b)). Its control input u =
(a, φ) is a 2-D vector consisting of an acceleration a and the steering wheel

angle φ, corrupted by process noise m = (ã, φ̃) ∼ N (0,
[σ2

a 0

0 σ2

φ

]

). This gives the

following non-linear dynamics model:

f(x,u,m) =









x+ τv cos θ
y + τv sin θ

θ + τv tan(φ+ φ̃)/d
v + τ(a+ ã)









, (27)

where τ is the duration of a stage (time step), and d the distance between the
front and rear axle of the car [20].

11

5.1.2 Observation model

To show the effect of partial sensing, the robot only receives feedback on the
y-coordinate of its position. Hence, the measurement vector z is univariate and
consists of a measurement of the y-coordinate of the robot corrupted by mea-
surement noise n = ỹ ∼ N (0, σ2

y). This gives the following linear observation
model:

h(x,n) = y + ỹ. (28)

Even though the sensor feedback is very partial and renders the system for-
mally unobservable, some information about the other variables is still obtained
through the interplay with the dynamics model.

5.1.3 Planning objective

We aim to find the path for the robot with a minimal probability of colliding
with obstacles. Instead of computing this probability exactly, we will use an ap-
proximation that can be computed efficiently given the probability distributions
along the path. To this end, we look at the number of standard deviations that
one can deviate from the path before the robot may collide with an obstacle.
Let this number be denoted ct for stage t along the path. For a multivariate
Gaussian distribution of dimension n, the probability that a sample is within ct
standard deviations is given by Γ(n/2, c2t/2), where Γ is the regularized Gamma
function [35]. It provides a lower bound of the probability of avoiding colli-
sions at stage t. We now define the quality of a path Π by multiplying these
probabilities at all stages:

ℓ
∏

t=0

Γ(n/2, c2t/2). (29)

Even though this (erroneously) assumes the probabilities to be independent be-
tween stages along the path, the quality measure is indicative of the probability
that collisions will be avoided during execution. It is the planning objective to
find a path for which this measure is maximal.

The value of ct for stage t is computed as follows. For simplicity, we approx-
imate the geometry of the car by a bounding disc, such that its orientation has
no influence on whether or not the car is colliding. Also its speed does not influ-
ence its collision status. Hence, ct is determined by the distribution N (pt,Σt)
of the position of the car (i.e., n = 2), which is the marginal distribution of the

first two variables of N (
[

x
⋆
t

u
⋆
t

]

,ΛtRtΛ
T
t) as computed in Equation (25). Let Ut

be a matrix such that UtU
T
t = Σt. The set of positions within one standard

deviation is then an ellipse centered at the mean pt obtained by transforming a
unit disc by Ut, and ct is the maximum factor by which the ellipse can be scaled
such that it does not intersect with obstacles (see Fig. 1(a)).

Computing ct can efficiently be implemented using a collision-checker that
is capable of performing distance calculations and linear transformations on the

12

Table 1: Results for Scenario A (1000 paths, 10000 simulations per path)
Path Success rate
Best overall 99%
Average overall 61%
Worst overall 13%
LQG-MP 99%
Best upper-left 88%

geometry, for instance SOLID [3]. Transforming the environment (including
the robot) by U−1

t (such that the uncertainty ellipse becomes a unit disc, see
Fig. 1(a)), and calculating the Euclidean distance between the robot and the
nearest obstacle in the transformed environment gives the value of ct for stage
t.

5.1.4 Results

We randomly generated 1000 paths using the RRT algorithm, which took 56.8
seconds. For each of the paths, we computed the a-priori probability distri-
butions and the measure of Equation (29), which took in total 2.67 seconds.
The best path among the 1000 is shown in Fig. 2(a). It can be seen that the
“lower-right” passage is chosen to get to the goal. This can be explained as
the uncertainty will mainly be in the x-coordinate given that the sensors only
provide feedback on the y-coordinate. The geometry of the lower-right passage
allows for more deviation in the x-direction than the upper-left passage. Indeed,
changing the observation model such that only the x-coordinate is measured re-
sults in a path that takes the upper-left passage.

To validate our results, we used a brute-force approach to estimate for each
path the “ground-truth” probability that it will be executed without collisions.
We performed 10,000 simulations of executions of the path using the LQR-
controller and an extended Kalman Filter with artificially generated process
and measurement noise, and counted the number of collision-free executions.
This took in total 10440 seconds, which is almost 4000 times as much as the
time needed by LQG-MP to evaluate the paths. The results are summarized in
Table 1. It turns out that the path selected by LQG-MP has a 99% probability
of success. The average probability of success over the 1000 paths is 61%, and
the worst path has a probability of success of 13%. This is an indication of the
typical and worst-case success rate of paths planned by a planner unaware of the
uncertainties. Among the paths taking the upper-left passage, the best one has
a success rate of 88% (versus 99% for the best path overall). This shows that
the type of sensors used during execution has a significant influence on which
path is optimal, even as the environment is symmetric and traditional metrics
such as path length and clearance cannot discriminate between the upper-left
and lower-right passage.

In Fig. 1(b) the samples of 100 simulations are shown for the best among

13

Table 2: Linearization and Gaussian effects (10000 simulations)
Noise factor x KL divergence α KL divergence

1 0.001 0.1 0.007
2 0.002 0.2 0.007
3 0.007 0.3 0.008
4 0.047 0.4 0.008
5 21 0.5 0.03
6 971 0.6 0.007
7 3 ·105 0.7 0.006
8 3 ·104 0.8 0.006
9 3 ·107 0.9 0.007
10 4 ·104 1.0 0.006

the 1000 paths, along with the uncertainty ellipses of the a-priori probability
distributions as computed by LQG-MP. As can be seen, the samples indeed
follow the a-priori distributions computed by LQG-MP.

5.1.5 Analyzing Linearization and Gaussian Effects

To analyze the effect of the linearization on the distributions as computed by
LQG-MP versus the true distributions resulting from performing simulations,
we performed experiments for varying levels of initial, process, and sensing noise.
When these noise levels are high and samples are expected to deviate far from
the path, then they may fall outside the “tube” around the path where the
linearization is valid, which will result in different distributions then the ones
computed by LQG-MP. To measure the “distance” between distributions, we
use the symmetric Kullback-Leibler divergence [36] between the Gaussian distri-
bution computed by LQG-MP and the distribution computed from performing
10,000 simulations. To compute the KL-divergence, we fit a Gaussian to the
distribution of the 10,000 samples by computing their mean and variance. The
symmetric KL-divergence between two Gaussians N (m0,Σ0) and N (m1,Σ1) of
dimension n in nats is then given by:

KL =
1

4
(tr(Σ−1

1 Σ0) + (m1 −m0)
TΣ−1

1 (m1 −m0)− log
det Σ0

det Σ1
− n) +

1

4
(tr(Σ−1

0 Σ1) + (m0 −m1)
TΣ−1

0 (m0 −m1)− log
det Σ1

det Σ0
− n), (30)

which is the average of the asymmetric KL-divergences in either direction.
The results are given in the left two columns of Table 2 for the best path

found by LQG-MP shown in Fig. 1(b). The noise levels are varied by multiplying
the matrices P0, M , and N with a factor x2, and the average KL divergence is
shown of the distributions of each of the stages along the path.

As can be seen, the linearization is valid for all 10,000 simulations for noise
levels up to factor of 4. The distributions computed by LQG-MP closely match

14

the distributions computed from the simulations. For noise factor 5 some of the
simulation samples escape the tube around the path where the linearization is
valid, and then show random behavior. It is to be noted that the vast majority
of the 10,000 simulations follow a distribution according to the one computed
by LQG-MP, but the few that do not significantly changes its variance resulting
in a relatively high divergence. For noise factors 6 and above the controller
cannot be trusted for a significant number of samples, resulting in very high
divergences. In these cases, an LQR-controller computed around the path is
not an adequate control approach to handle the amount of uncertainty. As
a result, LQG-MP does not precompute accurate probability distributions in
these cases.

To study the effect of the Gaussian assumption on the distributions of the
uncertainty in LQG-MP, we perform simulations where the actual noise is in-
creasingly non-Gaussian. To this end, we blend a uniform distribution with
a Gaussian distribution for the initial uncertainty, the motion noise, and the
sensor noise. For each of these, the uniform distribution U has an identical
mean and variance as the Gaussian distribution N (with noise factor 3), and a
parameter 0 ≤ α ≤ 1 gives the weighting factor between the uniform and the
Gaussian distributions. The resulting combined distribution is then given by:

√

1

α2(1− α)2
(αU + (1− α)N), (31)

where the normalizing factor ensures that the variance remains constant. The
right two columns of Table 2 show the average KL divergence between the
distributions computed by LQG-MP (which assumes Gaussian distributed noise)
and the distributions resulting from the 10,000 simulations for increasingly non-
Gaussian noise along the path selected by LQG-MP. The results suggest that
the fact that the noise is actually non-Gaussian has very little effect on the
resulting distributions. The distributions predicted by LQG-MP based on the
assumption that the noise is Gaussian are almost the same, which is reflected
by a low value for the divergence between the distributions for any value of α
(the relatively high divergence for α = 0.5 is due to the randomness among the
10,000 simulations). It should be noted that LQG-MP was aware of the correct
mean and variance of the noise distributions, and it seems that that is more
important than the specific nature of the distribution. Obviously, if LQG-MP
assumes a different mean and variance than the actual noise distributions, it is
not able to predict the correct probability distributions of the state of the robot
along the path.

5.2 Multi-Robot Planning with Differential-Drive Robots

In the second experiment, we apply LQG-MP to multi-robot motion planning
with disc-shaped differential-drive robots (e.g. Roomba vacuum cleaners). Eight
robots need to move simultaneously to their antipodal position in the environ-
ment without mutual collisions (see Fig. 3(a)). We use a prioritized approach

15

1
b1

2

34

5

6
b2

b3

b4

b5

7

8

(x, y)

θ

vl

vr

d

r

(a) (b)

Figure 3: (a) The environment of Scenario B, in which eight robots have to
move to their antipodal position in the environment without mutual collisions.
The numbers indicate the priority rank assigned to each robot. Five beacons
b1, . . . , b5 send out a signal whose strength decays quadratically with distance.
(b) The state x of the differential-drive robot.

to the multi-robot planning problem: the robots are planned for one by one in
order of a priority assigned to them, and aim to avoid collisions with robots of
higher priority, which are treated as moving obstacles [2]. This means that for
each robot we apply LQG-MP to a dynamic environment in which not only the
robot itself is subject to uncertainty, but also the obstacles (i.e., the robots of
higher priority).

5.2.1 Dynamics model

The state x = (x, y, θ) of each robot is a 3-D vector consisting of its position
(x, y) and its orientation θ (see Fig. 3(b)). Its control input u = (vl, vr) is
a 2-D vector consisting of the speeds of the left and right wheel, respectively,
corrupted by process noise m = (ṽl, ṽr) ∼ N (0, σ2

vI). This gives the following
non-linear dynamics model:

f(x,u,m) =





x+ 1
2τ(vl + ṽl + vr + ṽr) cos θ

y + 1
2τ(vl + ṽl + vr + ṽr) sin θ

θ + τ(vr + ṽr − vl − ṽl)/d



 , (32)

where τ is the time step and d the distance between the left and right wheel of
the robot [20].

5.2.2 Observation model

The robots receive feedback on their state from five beacons b1, . . . , b5 scattered
around the environment that each send out an identifiable signal of unit strength

16

that decays quadratically with the distance to the beacon. Each beacon bi has a
known location (x̌i, y̌i, 1). Hence, the measurement vector z consists of five read-
ings of signal strengths, one from each beacon, corrupted by measurement noise
n = (b̃1, . . . , b̃5) ∼ N (0, σ2

bI). This gives the following non-linear observation
model:

h(x,n) =







1/((x− x̌1)
2 + (y − y̌1)

2 + 1) + b̃1
...

1/((x− x̌5)
2 + (y − y̌5)

2 + 1) + b̃5






. (33)

5.2.3 Planning objective

For each robot, we aim to minimize the probability that it will collide with a
robot of higher priority along its path. In this experiment, we approximate this
probability more directly than we did for the first scenario. Let us assume we
are planning for robot j, and that a path has already been planned for robots
1, . . . , j−1. As the robots are disc-shaped, only their position influences whether
or not they collide. Let N (pi

t,Σ
i
t) be the marginal probability distribution of the

position of robot i at stage t along i’s path as computed by LQG-MP. Then, the
distribution of the relative position of robot j and robot i (for i ∈ 1, . . . , j − 1)
at stage t is N (pi

t −p
j
t ,Σ

i
t+Σj

t). The probability Pt(i⊗ j) that robot j collides
with robot i at stage t is then given by:

∫

‖p‖<2r

exp(− 1
2 (p−p

ij
t)

T (Σi
t+Σj

t)
−1(p−p

ij
t))

2π det(Σi
t +Σj

t)
1/2

dp, (34)

where p
ij
t = pi

t − p
j
t . This is the integral over the set of relative positions p

for which the robots collide (that is when ‖p‖ < 2r, where r is the radius of
the robots) of the probability density function of the distribution of relative
positions, and can be evaluated numerically. It follows that the probability that
robot j does not collide with any robot at any stage along its path is:1

ℓ
∏

t=0

j−1
∏

i=1

(1− Pt(i ⊗ j)). (35)

It is the planning objective for robot j to maximize this probability.
As a secondary objective, we aim to minimize the uncertainty around the

robot’s path to leave maximal “space” for the other robots. That is, in case
of equal probabilities of success, we aim to minimize the function

∑ℓ
t=0 tr(Σ

j
t).

This is equivalent to maximizing the likelihood that the robot will exactly follow
the path Π during execution. The robot with the highest priority does not need
to avoid other robots, so it will select its path purely based on the secondary
objective.

1Note that we assume here that the probabilities of avoiding collisions at different stages
along the path are independent. This is not the case, but it will for practical purposes be a
reasonable assumption.

17

Figure 4: The paths resulting from consecutively applying LQG-MP to each of
the robots in Scenario B (snapshots at t = 0, 3, 6, 9, 12, 16, 20, 28). The numbers
in the top-left image indicate the priority rank of the robots. The arrows show
the movement with respect to the previous image. The robots enlarged by the
uncertainty ellipses of their a-priori probability distributions are shown in green.

Table 3: Results for Scenario B (1000 paths per robot)
Computation time Success rate

Robot nr. RRT LQG-MP Best path Avg. path
1 22.3s 0.23s 100% 100%
2 28.2s 0.99s 100% 70.3%
3 29.5s 1.75s 100% 69.2%
4 30.5s 2.79s 100% 60.9%
5 57.0s 2.92s 99.2% 10.6%
6 49.8s 3.90s 99.8% 21.0%
7 39.2s 5.26s 99.9% 24.8%
8 77.8s 6.85s 99.7% 13.0%

Total 334s 24.7s 98.6% 2.13%

18

5.2.4 Results

For each of the robots in turn, we planned 1000 paths using the RRT algorithm
and selected the path that is best according to the planning objective. Note
that the paths were planned such that, if there were no uncertainty, they are
collision-free with respect to the robots of higher priority for which a path has
already been selected. The result is shown in Fig. 4, along with the uncertainty
ellipses of the a-priori probability distributions along the paths. It can be seen
that the robots need to get close to the beacons to be able to estimate their
position accurately. Almost all of the robots move through the region around
the central beacons b3 and b4. At the same time, the robots aim to stay far
away from each other, in order to minimize the probability of collisions. Robot
2, for instance, makes a wide detour around robot 1. Robot 3 first avoids robot
1 and then robot 2, causing its path to have a wide S-shape.

The quantitative results are given in Table 3. The second column shows the
time needed to plan 1000 paths for each robot, and the third column shows the
time needed by LQG-MP to compute the probabilities of success for all paths.
It shows that these probabilities can be computed efficiently. Per path, it takes
an order of magnitude less time than planning the path itself. The third column
shows the probability of success of the best path among the 1000 paths. This
is the path that LQG-MP selects for the particular robot. The fourth column
shows the average probability of success of the 1000 paths. This provides an
indication of what an uncertainty-unaware planner would typically achieve. The
probability that all eight robots successfully reach their goal is the product of
the robot’s individual probabilities of success, and is shown in the bottom row.
This is 98.6% for LQG-MP, whereas an uncertainty-unaware planner would on
average only have a 2.13% probability of success.

5.3 6-DOF Manipulator

In the third experiment, we apply LQG-MP to a holonomic 6-DOF articulated
robot in a 3-D environment. The robot needs to move from its initial state xstart

to a configuration in which the end-effector is inside a goal region on the other
side of the environment.

5.3.1 Dynamics model

The state x = (θ1, . . . , θ6) of the robot is a 6-D vector consisting of the angles of
rotation at each of the joints (see Fig. 5(a)). The control input u = (ω1, . . . , ω6)
is a 6-D vector consisting of the angular speeds at each of the joints, corrupted by
process noise m = (ω̃1, . . . , ω̃6) ∼ N (0, σ2

ωI). Ignoring higher order dynamics,
this results in the following linear dynamics model:

f(x,u,m) =







θ1 + τ(ω1 + ω̃1)
...

θ6 + τ(ω6 + ω̃6)






. (36)

19

θ1θ6

θ5

θ4

θ2

θ3

x
z

y

p = g(x)

(x̌1, y̌1, ž1) (x̌2, y̌2, ž2)

x

z

(a) (b)

Figure 5: (a) The state x of the articulated robot of Scenario C. (b) A stereo
camera pair provides noisy observations of the position p of the end-effector of
the robot. These observations are non-uniform; positions nearer the cameras
can be observed more precisely and motion parallel to the camera planes can
be observed more precisely than motion orthogonal to the camera planes. We
consider how two placements of the cameras affect the resulting plans.

5.3.2 Observation model

The robot receives feedback from a stereo camera that tracks the position of
the end-effector of the robot. Let p = g(x) be the function relating the set
of joint angles of the state x to the position p ∈ R

3 of the end-effector. This
point is projected on the imaging plane of each camera i, which has a unit
focal distance and a known location (x̌i, y̌i, ži) (see Fig. 5(b)). Hence, the
measurement z is a 4-D vector consisting of the pixel coordinates of the end-
effector on the imaging planes of both cameras, corrupted by measurement
noise n ∼ N (0, σ2

nI). Ignoring occlusions, this gives the following non-linear
observation model:

h(x,n) =









(gx(x)− x̌1)/(gz(x)− ž1)
(gy(x) − y̌1)/(gz(x)− ž1)
(gx(x)− x̌2)/(gz(x)− ž2)
(gy(x) − y̌2)/(gz(x)− ž2)









+ n. (37)

5.3.3 Planning objective

We aim to maximize the likelihood that the end-effector arrives at its goal
position. Let N (pℓ,Σℓ) be the distribution of the position of the end-effector at
the last stage of the path, then this likelihood is maximal when tr(Σℓ) is minimal.
Σℓ can be approximated from the varianceXℓ of the state xℓ computed by LQG-
MP as Σℓ = TℓXℓT

T
ℓ , where Tℓ =

∂g
∂x (x

⋆
ℓ), i.e. the Jacobian matrix of function

20

x

z

x

y

x

y

x

z

(a) (b)

Figure 6: Resulting paths for two placements of the cameras. In the left column
(a), the cameras are placed beside the robot and the path is shown from the
top and side views. In the right column (b), the cameras are placed above the
robot and the path is shown from the side and top views.

g at the goal position.

5.3.4 Results

We planned 1000 paths for the robot using the RRT algorithm, and computed
for each the likelihood of arriving at the goal. Constructing the paths took
192 seconds, and evaluating them using LQG-MP took 1.16 seconds. The path
found best is shown in Fig. 6(a). The robot chooses to move in a plane parallel
to the viewing direction of the camera while being fully stretched out. This
brings the end-effector closer to the camera, where it can precisely be positioned.
Interestingly, the worst paths are the ones in the plane perpendicular to the
camera. Indeed, an experiment in which the camera is placed above the robot
results in best (and worst) paths with similar characteristics (see Fig. 6(b)).

6 Path Smoothing

Due to the randomized nature of the RRT algorithm, the paths it produces can
be non-smooth. This is particularly apparent in Scenario C (see Fig. 6) as the
dynamics are of first-order, i.e. the velocity is controlled directly. This can be

21

addressed by smoothing. However, most smoothing techniques in randomized
motion planning repeatedly attempt to reduce path length between two ran-
domly chosen states along the path [8]. These techniques tend to bring the
path closer to obstacles, which can be suboptimal with respect to the planning
objective, for instance when mimimizing the probability of collisions, and tend
to map multiple paths to the same smoothed result, hence they are not ideal
for LQG-MP.

In this section we introduce a technique based on Kalman smoothing that
can produce a path that is Ck-continuous, for any value of k, while staying close
to the original path. The measure of smoothness is the magnitude of the k’th
order difference of the control input u between consecutive stages of the path.
The Kalman smoother places a stochastic constraint on the magnitude of the
k’th order differences, which is set by the user in the form of a variance matrix.

6.1 Kalman Smoothing

In general, the Kalman smoother is able to infer the optimal estimate of the
state at any stage of a dynamics system given all past and all ”future” mea-
surements of the state. Whereas the Kalman filter produces a real-time esti-
mate of the current state given all measurements so far, the Kalman smoother
is typically used offline to infer the most likely trajectory of the robotic sys-
tem in hindsight given all measurements along the trajectory. Here, we use the
Kalman smoother to smooth a path produced by the RRT-algorithm by defining
a pseudo-dynamics model that enforces smoothness on the path by stochasti-
cally constraining the magnitude of the k’th order difference of the control input,
and a pseudo-observation model that lets the states and control inputs along
the unsmooth RRT path be “noisy observations” of the smooth path.

Let the dynamics model f(x,u) be linear and deterministic and given by:

xt = f(xt−1,ut−1) = Atxt−1 +Btut−1. (38)

In Scenario C for example, A = I and B = τI (see Section 5.3.1). Let Π =
(x⋆

0,u
⋆
0, . . . ,x

⋆
ℓ ,u

⋆
ℓ) be the original unsmoothed path generated by the RRT-

algorithm. We now smooth the path by generating a new path Π′ using a
Kalman smoother that complies with a higher-order pseudo-dynamics model
f ′, and uses the states and control inputs along the original path Π as noisy
observations of the new smoothed path Π′. The pseudo-dynamics model is given
by:

x′
t = f ′(x′

t,m
′
t) = A′

tx
′
t−1 + V ′

t m
′
t, m′

t ∼ N (0,M ′), (39)

where a pseudo-state x′ is defined as the concatenation of the state x, the
control input u, and differences ∆u,∆2u, ...,∆k−1u of the control input up to
order k−1. The process matrix A′

t integrates all of the control input differences,

22

and assumes the k − 1’th order difference ∆k−1u stays the same:

x′
t =



















xt

ut

∆ut

...
∆k−2ut

∆k−1ut



















, A′
t =

























At Bt
1
2!Bt · · · 1

(k−1)!Bt
1
k!Bt

0 I 1
1!I · · · 1

(k−2)! I
1

(k−1)! I

0 0 I
. . . 1

(k−2)! I
...

...
. . .

. . .
. . .

...

0
...

. . . I 1
1!I

0 0 · · · · · · 0 I

























(40)

The only change allowed in the k− 1’th order difference ∆k−1u comes from
the zero-mean random variable m′

t = ∆kut with variance matrix M ′
t, which is

the k’th order difference of the control input, which is also integrated into the
other state variables:

V ′
t =



















1
(k+1)!Bt

1
k!I
1

(k−1)! I
...
1
2!I
I



















, m′
t = ∆kut, ∆kut ∼ N (0,M ′). (41)

The pseudo-observation model h′(x′,n′) is given by:

z′t = h′(x′
t,n

′
t) = H ′

tx
′
t + n′

t, n′
t ∼ N (0, N ′

t), (42)

where the pseudo-observation z′t at stage t consists of the state and control input
of the original path produced by the RRT-algorithm:

z′t =

[

x⋆
t

u⋆
t

]

, H ′
t =

[

I 0 0 · · · 0
0 I 0 · · · 0

]

. (43)

The variance matrix N ′
t is constant and equal to N ′ for all t except for t = 0

and t = ℓ, when its upper-left portion is 0 to ensure that the smoothed path Π′

precisely begins and ends in the start and goal state.
The kalman smoother produces the most “likely” path given the stochastic

constraint defined by the pseudo-dynamics model f ′ and the stochastic con-
straint defined by the “noisy observations”. The pseudo-dynamics model en-
forces the path to be k-order smooth, while the observation model ensures that
the path follows the original unsmoothed path Π. The smoothed path Π′ can be
generated by applying the Rauch-Tung-Striebel two-pass filter to the pseudo-
dynamics and -observation model. The forward pass is similar to the Kalman
filter. The backward pass incorporates the “future” measurements into the es-
timate of the pseudo-state:

23

Forward pass: 0 < t ≤ ℓ

x̂′
t|t−1 = A′

tx̂
′
t−1|t−1 (44)

P ′
t|t−1 = A′

tP
′
t−1|t−1A

′T
t + V ′

tM
′
tV

′T
t , (45)

K ′
t = P ′

t|t−1H
′T
t (H ′

tP
′
t|t−1H

′T
t +N ′

t)
−1 (46)

x̂t|t = x̂t|t−1 +K ′
t(z

′
t −H ′

tx̂t|t−1) (47)

P ′
t|t = (I −K ′

tH
′
t)Pt|t−1. (48)

Backward pass: ℓ > t ≥ 0

L′
t = P ′

t|tA
′T
t P ′

t+1|t (49)

x̂′
t|ℓ = x̂′

t|t + L′
t(x̂

′
t+1|ℓ − x̂′

t+1|t) (50)

P ′
t|ℓ = P ′

t|t + L′
t(P

′
t+1|ℓ − P ′

t+1|t)L
′T
t , (51)

where x̂′
s|t and P ′

s|t are the mean and variance of the pseudo-state at stage s

given “measurements” up to time t. The pseudo-states x̂′
t|ℓ are the final pseudo-

states along the smoothed path Π′.
The order k, the process noise M ′, and the observation noise N ′ are pa-

rameters of this smoothing technique. It ensures that the state x along path
Π′ is k − 1 times differentiable. Varying the relative magnitude of M ′ and N ′

provides a trade-off between smoothness in the k’th order and closeness to the
original path.

6.2 Results

We implemented a first-order smoother (i.e., k = 1) and experimented with it
on Scenario C. Prior to evaluating each of the 1000 paths that were randomly
generated by the RRT algorithm, we first smoothed them using various relative
magnitudes of M ′ = I and N ′ = σ′2I. The results are given in Table 6.2.2 The
first row (σ′ = 0) shows results for the unsmoothed path. The subsequent rows
show results for increasingly smoother paths.

For the setup where the cameras are placed next to the robot (second col-
umn), the same path turned out to be best for increasing degrees of smoothing
(labeled path 1 in the table). Interestingly though, the quality of the path as
defined by the likelihood of arriving at the goal position decreases slightly as
the path gets smoother (the trace gets larger). Apparently, the smoother pulls
the path away from the (local) optimum. In Fig. 7, the smoothed path is shown
for σ′ = 1 and σ′ = 10 (note that the non-smoothed path is shown in Fig. 6(a)).

For the setup where the cameras are placed above robot (third and fourth
column), different paths are best for different degrees of smoothing. These paths
showed the same global characteristics, though. Also in this case the quality
of the path that is best when no smoothing takes place (labeled path 2 in the

2Not too much should be read into the higher quality for the setup with the camera above
the robot; the end-effector is able to come closer to the cameras in this case.

24

x

z

x

z

x

y

x

y

(a) (b)

Figure 7: The best path among the candidates for Scenario C when the cameras
(blue squares) are placed next to the robot after smoothing with σ′ = 1 (a) and
σ′ = 10 (b). Each path is shown from two angles. Greater noise in the pseudo-
observation model allows a looser fit to the nominal path.

Table 4: Kalman Smoothing of paths in Fig 6. Quality of paths with varying
noise in the pseudo-observation matrix (σ′); the trace of the variance of the
end-effector position (tr(TℓXℓT

T
ℓ)) at the goal state is shown (lower is better).

Cameras next to robot Cameras above robot
σ′ path 1 path 2 path 3
0 4.00 2.37 2.73
1 4.10 2.43 2.63
10 4.21 2.55 2.35
100 4.28 2.56 2.38

25

table) decreases for increasing degrees of smoothness. The quality of path that
is best when the paths are maximally smoothed (labeled path 3 in the table)
increases with the degree of smoothing, on the other hand. For this particular
path the smoother pulls the path towards a local optimum. For σ′ = 10, it has
a higher quality than the non-smoothed best path.

7 LQG-MP on Roadmaps

In the LQG-MP technique as presented so far, we have created a large set of
candidate paths and evaluated each of them to find a good path. A limita-
tion of this approach is that it takes a significant amount of computation time
to construct all the candidate paths. This limitation can be partly overcome
by considering paths contained in a roadmap that is pre-constructed for the
environment.

Since the Kalman gain matrices Kt along a path are computed using forward
recursion (from the start state – see Section 4.2), and the LQR feedback matrices
Lt using backward recursion (from the goal state – see Section 4.3), the entire
path needs to be given in order to compute the a priori probability distributions
along the path using LQG-MP. As a general roadmap contains an exponential
number of paths between any pair of start and goal vertices, iterating over all
of them is typically infeasible. By defining a separate controller for each edge in
the roadmap, we can use a variant of Dijkstra’s algorithm to find a near-optimal
path within the roadmap nearly instantaneously.

7.1 Finding a near-optimal path within a roadmap

Let the roadmap be defined by a set of vertices V , of which each vertex v is
associated with a state xv ∈ X , and a set of edges E ⊂ V×V , of which each edge
e = (u, v) is associated with a path Πe = (xe

0,u
e
0, . . . ,x

e
ℓ ,u

e
ℓ) such that xe

0 = xu,
xe
ℓ = xv, and xe

t = f(xe
t−1,u

e
t−1,0) for all t ∈ 1, . . . , ℓ. That is, the path starts

in vertex u, ends in vertex v, and complies with the dynamics model f .
Given a start vertex s and the variance matrix P0 of the initial uncertainty

about the state of the robot, we can use the LQG-MP method without adap-
tation to evaluate the quality of the paths associated with each of the outgoing
edges e = (s, v) of s. The LQG-MP method computes the variance matrices
Re

t of the uncertainty of the true state and estimated state along each of these

paths (see Equation (23)). The variance R
(s,v)
ℓ at the last state of a path be-

tween the start vertex s and a neighboring vertex v is used as the initial variance

R
(v,w)
0 of any path outgoing from v that is evaluated. To compute the Kalman

gain matrices K
(v,w)
t along this outgoing path, the initial uncertainty P

(v,w)
0 of

the state in the Kalman filter needs to be given. Note that this uncertainty is

not contained directly in the R
(v,w)
0 matrix; the R matrix contains the a-priori

variance of the true state and the a-priori variance of the estimated state. The
P -matrices in the Kalman filter signify the variance of the true state conditioned

26

on the fact that the estimated state is known. Therefore, P
(v,w)
0 is computed as

follows:

P
(v,w)
0 = Rx̄ −Rx̃x̄R

−1
x̃

Rx̄x̃, R
(v,w)
0 =

[

Rx̄ Rx̃x̄

Rx̄x̃ Rx̃

]

, (52)

which is the standard equation for conditional variance of Gaussians. With
these adaptations, the quality of an edge e can be evaluated using LQG-MP for
any initial variance matrix Re

0.
A variant of Dijkstra’s algorithm to find a near optimal path within the

roadmap to a goal vertex g can be implemented as shown in Algorithm 1. It
takes as input the start vertex s, the initial state uncertainty P0 and the roadmap
defined by V and E . The algorithm calls a function LqgMp(e,Re

0) that computes
all covariance matrices Re

t along edge e given the initial variance Re
0 using LQG-

MP (see Equation (23)). The function pe = ComputeProbability(Re
0, . . . , R

e
ℓ−1)

computes the probability that the execution of edge e will be collision-free based
on the variance matrices along the edge. Hence, the probability that the exe-
cution of an entire path is collision-free is the product of the probabilities along
each of the constituent edges, which should be maximized. To fit this within
the additive non-negative cost-minimizing framework of Dijkstra’s algorithm,
the additive cost of each edge is − log pe. Note that this cost is non-negative,
and that a path with minimal accumulated cost has a maximal probability of
collision-free execution:

argmax
Π=(e0,...,en)

{
n
∏

i=0

p(ei)} = argmin
Π=(e0,...,en)

{
n
∑

i=0

− log p(ei)} (53)

Algorithm 1 Dijkstra(s, P0,V , E)

1: for all vertices v ∈ V do

2: v.cost ←∞
3: s.R←

[

P0 0
0 0

]

.
4: s.cost← 0
5: Q ← {s}
6: while not priority queue Q is empty do

7: Pop vertex u from Q with minimal u.cost.
8: for all edges (u, v) in E do

9: R
(u,v)
0 , . . . , R

(u,v)
ℓ ← LqgMp((u, v), u.R)

10: c← − logComputeProbability(R
(u,v)
0 , . . . , R

(u,v)
ℓ−1)

11: if u.cost + c < v.cost then
12: v.cost ← u.cost + c

13: v.R← R
(u,v)
ℓ

14: v.backpointer← u

15: if v 6∈ Q then

16: Q ← Q∪ {v}

The near-optimal path can then be extracted by following backpointers from
the goal back to the start vertex.

27

7.2 Discussion

The above algorithm is an approximation to finding an optimal path in two ways.
Firstly, the a-priori probability distributions are based on an LQR-controller
that is split up into multiple controllers; one for each edge. This means that the
distributions are based on a controller that does not take into account future
expected cost beyond the end of each edge. Normally, the LQR-controller is
defined over an entire path, which would result in (slightly) different a-priori
probability distributions.

Second, for Dijkstra’s algorithm to return an optimal path, the cost of any
subpath should be independent of what succeeds or precedes it. This is not
the case in our setup: the cost incurred when traversing an edge along a path
depends on the initial covariance matrix when starting to traverse this edge.
This initial covariance matrix in turn depends on the entire history leading
up to that point. This breaks the basic dynamic programming assumption of
“optimal substructure” of paths.

In most practical cases, this suboptimality is likely to be negligible, and Di-
jkstra’s algorithm will provide a good approximation. We note this assumption
is also made (implicitly) in Prentice and Roy’s work on Belief Roadmaps [29].
There, the likelihood of arriving at the goal is maximized, and their variant of
Dijkstra’s algorithm evaluates paths based on the trace of the covariance matrix
at intermediate nodes. Similar to the cost function in our algorithm, the trace of
the covariance does not observe the optimal substructure property. A potential
advantage of our approach compared to [29] is that we do not assume maximum
likelihood observations along the path, and can therefore infer the true a-priori
probability distributions along the path.

7.3 Experiment

We experimented with the roadmap approach of LQG-MP on a “hovercraft”-
type robot with 2nd-order dynamics in a 2-D environment with obstacles. The
robot needs to move from a start state xstart to a goal state xgoal without
colliding with the obstacles in the environment (see Fig. 8(a)).

7.3.1 Dynamics model

The state x = (x, y, vx, vy) of the robot is a 4-D vector consisting of its position
(x, y) and its velocity (vx, vy). Its control input u = (ax, ay) is a 2-D acceleration
vector corrupted by process noise m = (ãx, ãy) ∼ N (0, σ2

aI). This gives the
following linear dynamics model:

f(x,u,m) =









x+ τvx + τ2(ax + ãx)/2
y + τvy + τ2(ay + ãy)/2

vx + τ(ax + ãx)
vy + τ(ay + ãy)









, (54)

where τ is the duration of a stage (time step).

28

7.3.2 Observation model

The robot receives feedback on its position from 10 sensors in the environment.
Each sensor has a known location (x̌i, y̌i, 1). Hence, the measurement vector z
is 20-dimensional and consists of 10 measurements of the robot’s position. The
noise n = (x̃1, ỹ1, . . . , x̃10, ỹ10) in the measurement increases quadratically with
the distance from the sensor. This gives the following observation model:

h(x,n) =















x+ ((x− x̌1)
2 + (y − y̌1)

2 + 1)x̃1

y + ((x − x̌1)
2 + (y − y̌1)

2 + 1)ỹ1
...

x+ ((x− x̌10)
2 + (y − y̌10)

2 + 1)x̃10

y + ((x − x̌10)
2 + (y − y̌10)

2 + 1)ỹ10















. (55)

7.3.3 Planning objective

We aim to find the path for the robot with a minimal probability of colliding
with obstacles. This probability is approximated in the same way as for Scenario
A (see Section 5.1.3).

7.3.4 Results

We constructed a roadmap (by hand) for the environment consisting of 80 ver-
tices and edges corresponding to unit-speed paths between neighboring vertices
(see Fig. 8(a)). We ran our algorithm for various placements of the sensors.
The results are shown in Figs. 8(b)-(d). Not suprisingly, the robot chooses a
path close to the sensors to minimize the uncertainty about its position, which
in turn enables it to avoid collisions with the obstacles with high probability.
For the sensor placement of Fig. 8(c), the robot chose to not precisely follow
the sensors, as this allows for a shorter path with less narrow passages. In Fig.
8(d), the sensors were randomly placed. On average, it took 0.48 seconds to
compute the near-optimal path within the roadmap.

8 Conclusion and Future Work

We have presented LQG-MP, a new approach to evaluate paths in motion plan-
ning for robots subject to motion and sensing uncertainty. LQG-MP precisely
characterizes the a-priori probability distributions of the state of the robot along
a given path, based on which the path can be optimized for the particular task.
We have shown that this considerably increases the probability of a successful
execution when compared to uncertainty-unaware planners. The key of LQG-
MP is that it takes into account the a-priori knowledge of both the sensors and
controller in the planning phase.

In the experiments we performed, we have not used the a-priori distributions
of the control input that LQG-MP also computes, nor the covariances between
the states at different stages along the path. We envision that these could be

29

(a) (b)

(c) (d)

Figure 8: (a) The environment with obstacles (light red), and the roadmap cre-
ated for the environment. (b, c, d) Paths between two vertices of the roadmap.
Sensors (green spheres) measure the position of the robot with noise increasing
quadratically with the distance to the sensor. The best path in the roadmap
according to LQG-MP is shown.

30

used to compute the conditional distributions of the remainder of the path after
each application of a control input during the execution. If the new distribu-
tions indicate that the quality has dropped below a threshold, we might opt to
replan. Current planning times, though, do not permit real-time application of
LQG-MP. Even though using roadmaps partly addresses this issue, it is a major
objective of future work to bring planning times down, for instance by devis-
ing a focused planner such that planning a large set of candidate paths is not
required. Ideally, a smoother that directly optimizes the chosen planning objec-
tive is integrated into this planner. Other limitations, such as the fact that the
candidate paths may not constitute a representative sample in high-dimensional
state spaces might then also be resolved.

In the experiments we have performed, we have not included sensor models
that are conditional in the sense that they only provide measurements in case
there is no occlusion or the robot is within a field of view. Our approach
naturally handles spatially varying sensor models, but the linearized observation
model is based on the mean state of the robot on the path: it would assume
that a measurement is obtained if the mean is within the field of view, and
no measurement if the mean is outside the field of view, even if part of the
distribution brings the robot outside (or inside) the field of view. This may be
an appropriate approximation in many cases, but our approach does not handle
such discontinuities in general since the assumption that the observation model
is “well-linearizable” is locally violated.

We applied Kalman Smoothing to make paths Ck-continuous while avoiding
obstacles and in future work will explore and apply this technique to other
contexts. We also applied LQG-MP to precomputed roadmaps using a variant
of Dijkstra’s algorithm to efficiently find near-optimal paths and will continue
to refine this approach. We will also apply LQG-MP to optimizing accuracy
and safety in challenging robotic applications, such as autonomous helicopter
flight, needle steering for prostate brachytherapy, and robotic-assisted surgery.

References

[1] R. Alterovitz, T. Siméon, K. Goldberg. The stochastic motion road-map:
a sampling framework for planning with Markov motion uncertainty. Proc.
Robotics: Science and Systems, 2007.

[2] J. van den Berg, M. Overmars. Prioritized motion planning for multiple
robots. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
2005.

[3] G. van den Bergen. Collision detection in interactive 3D environments.
Morgan Kaufmann Publishers, 2004.

[4] D. Bertsekas. Dynamic programming and optimal control. Athena Scientific,
2001.

31

[5] B. Bouilly, T. Simeon, R. Alami. A numerical technique for planning motion
strategies of a mobile robot in presence of uncertainty. Proc. IEEE Int.
Conf. on Robotics and Automation, 1995.

[6] B. Burns, O. Brock. Sampling-based motion planning with sensing uncer-
tainty. Proc. IEEE Int. Conf. on Robotics and Automation, 2007.

[7] T. Fraichard, R. Mermond. Path planning with uncertainty for car-like
robots. Proc. IEEE Int. Conf. on Robotics and Automation, 1998.

[8] R. Geraerts, M. Overmars. Creating high-quality paths for motion plan-
ning. Int. Journal of Robotics Research, 26:845-863, 2007.

[9] J. Gonzalez, A. Stentz. Using linear landmarks for path planning with
uncertainty in outdoor environments. Proc. IEEE/RSJ Int. Conf. on In-
telligent Robots and Systems, 2009.

[10] L. Guibas, D. Hsu, H. Kurniawati, E. Rehman. Bounded uncertainty
roadmaps for path planning. Proc. Workshop on Algorithmic Foundations
of Robotics, 2008.

[11] Y. Huang, K. Gupta. Collision-probability constrained PRM for a manipu-
lator with base pose uncertainty. Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2009.

[12] V. Huynh, N. Roy. icLQG: combining local and global optimization for
control in information space. Proc. IEEE Int. Conf. on Robotics and Au-
tomation, 2009.

[13] L. Kaelbling, M. Littman, A. Cassandra. Planning and acting in par-
tially observable stochastic domains.Artificial Intelligence 101(1-2):99–134,
1998.

[14] L. Kavraki, P. Svestka, J.-C. Latombe, M. Overmars. Probabilistic
roadmaps for path planning in high dimensional configuration spaces. IEEE
Trans. on Robotics and Automation 12:4(566–580), 1996.

[15] G. Kewlani, G. Ishigami, K. Iagnemma. Stochastic mobility-based path
planning in uncertain environments. Proc. IEEE/RSJ Int. Conf. on Intel-
ligent Robots and Systems, 2009.

[16] Y. Kuwata, J. Teo, S. Karaman, G. Fiore, E. Frazzoli, J. How. Motion plan-
ning in complex environments using closed-loop prediction. Proc. AIAA
Guidance, Navigation, and Control Conf. and Exhibit, 2008.

[17] H. Kurniawati, D. Hsu, W. Lee. SARSOP: Efficient point-based POMDP
planning by approximating optimally reachable belief spaces. Proc.
Robotics: Science and Systems, 2008.

32

[18] S. LaValle, S. Hutchinson. An objective-based framework for motion plan-
ning under sensing and control uncertainties. Int. J. of Robotics Research
17(1):19–42, 1998.

[19] S. LaValle, J. Kuffner. Randomized kinodynamic planning. Int. Journal of
Robotics Research 20(5):378–400, 2001.

[20] S. LaValle. Planning algorithms. Cambridge University Press, 2006.

[21] A. Lazanas, J. Latombe. Motion planning with uncertainty: a landmark
approach. Artificial Intelligence, 76(1-2):285–317, 1995.

[22] N. Melchior, R. Simmons. Particle RRT for path planning with uncertainty.
Proc. IEEE Int. Conf. on Robotics and Automation, 2007.

[23] P. Missiuro, N. Roy. Adapting probabilistic roadmaps to handle uncertain
maps. Proc. IEEE Int. Conf. on Robotics and Automation, 2006.

[24] A. Nakhaei, F. Lamiraux. A framework for planning motions in stochastic
maps. Proc. Int Conf. on Control, Automation, Robotics and Vision, 2008.

[25] C. Papadimitriou, J. Tsisiklis. The complexity of Markov decision pro-
cesses. Mathematics of Operations Research, 12(3):441–450, 1987.

[26] R. Pepy, A. Lambert. Safe path planning in an uncertain-configuration
space using RRT. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, 2006.

[27] R. Platt, R. Tedrake, L. Kaelbling, T. Lozano-Perez. Belief space planning
assuming maximum likelihood observations. Proc. Robotics: Science and
Systems, 2010.

[28] J. Porta, N. Vlassis, M. Spaan, P. Poupart. Point-based value iteration for
continuous POMDPs. Journal of Machine Learning Research 7:2329?2367,
2006.

[29] S. Prentice, N. Roy. The belief roadmap: efficient planning in belief space by
factoring the covariance. Int. Journal of Robotics Research 28(11-12):1448–
1465, 2009.

[30] H. Rauch, F. Tung, C. Striebel. Maximum likelihood estimates of linear
dynamic systems. AIAA Journal 3:1445?1450, 1965.

[31] N. Roy, W. Burgard, D. Fox, S. Thrun. Coastal navigation - mobile robot
navigation with uncertainty in dynamic environments. Proc. IEEE Int.
Conf. on Robotics and Automation, 1999.

[32] R. Tedrake. LQR-trees: Feedback motion planning on sparse randomized
trees. Proc. Robotics: Science and Systems, 2009.

[33] S. Thrun, W. Burgard, D. Fox. Probabilistic Robotics, MIT Press, 2005.

33

[34] G. Welch, G. Bishop. An introduction to the Kalman filter. Tech. Report
TR 95-041, University of North Carolina at Chapel Hill, 2006.

[35] Wikipedia. Chi-square distribution. http://en.wikipedia.org/wiki/Chi
square, 2010.

[36] Wikipedia. Kullback-Leibler divergence. http://en.wikipedia.org/wiki/Kullback-
Leibler divergence, 2011.

34

