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Abstract. Eigentaste is a collaborative filtering algorithm that uses universal queries to elicit real-valued user
ratings on a common set of items and applies principal component analysis (PCA) to the resulting dense subset of
the ratings matrix. PCA facilitates dimensionality reduction for offline clustering of users and rapid computation
of recommendations. For a database of n users, standard nearest-neighbor techniques require O(n) processing
time to compute recommendations, whereas Eigentaste requires O (1) (constant) time. We compare Eigentaste to
alternative algorithms using data from Jester, an online joke recommending system.

Jester has collected approximately 2,500,000 ratings from 57,000 users. We use the Normalized Mean Absolute
Error (NMAE) measure to compare performance of different algorithms. In the Appendix we use Uniform and
Normal distribution models to derive analytic estimates of NMAE when predictions are random. On the Jester
dataset, Eigentaste computes recommendations two orders of magnitude faster with no loss of accuracy. Jester is
online at: http://eigentaste.berkeley.edu
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1. Introduction

The networked world contains a vast amount of data. Visitors face the arduous task of
retrieving information that matches their preferences. The term “Collaborative Filtering”
(CF) describes techniques that use the known preferences of a group of users to predict
the unknown preferences of a new user; recommendations for the new user are based on
these predictions (Pennock and Horvitz 1999b). Other terms that have been proposed are
“social information filtering” (Shardanand and Maes 1995), and “recommender system”
(Resnick et al. 1994). In each case, users collaborate in the sense that each rating improves
the performance of the overall system. The fundamental assumption is that if users A and
B rate k items similarly, they share similar tastes, and hence will rate other items similarly.
Approaches differ in how they define a “rating,” how they define k, and how they define
“similarly.”

A CF algorithm should be both accurate (the recommended objects should subsequently
receive high ratings), and efficient in terms of computational complexity. A CF database
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represents n users and m items available for rating and recommendation. In most existing
CF algorithms, online computation scales linearly with x. In this paper we propose a new
algorithm, Eigentaste, designed to provide accurate and efficient recommendations to users
in constant online time.!

Most CF systems include only user-selected queries: the user chooses which items to rate,
yielding a sparse ratings matrix with many null values. The Eigentaste algorithm profiles
user taste with universal queries: each item is presented with a short unbiased description
(e.g., book summary or film synopsis) so that users can form an opinion and respond to any
query. Using univeral queries, Eigentaste presents each user with the same gauge set of items
to rate during its profiling phase. This has the advantage that the subset of the ratings matrix
containing the gauge set items is dense. Universal ratings also permit the system to collect
immediate feedback on all recommended items. It is often argued that users who have not
seen a film are not able to rate it effectively. The opposite can be argued: the experience of
viewing a film can corrupt taste ratings by extraneous factors (indigestion, a bad seat, ...).
The user’s level of familiarity with each item should properly be treated as a confidence, a
second-order measure notoriously difficult to collect. Consumers implicitly rate unknown
items whenever they shop or make choices. Collecting ratings only of familiar items can
yield a highly-biased and incomplete model of user taste. When properly designed, universal
queries offer the advantage of rapid and consistent profiling of new users.

Eigentaste captures user ratings on a continuous rating scale. To rate items, users are
asked to click their mouse on a horizontal “ratings bar” which returns scalar values. While
technically not continuous (limited by the granularity of HTML image maps), we can
distinguish approximately 200 levels of ratings in the scale. Continuous ratings avoid dis-
cretization effects in matrix computations and may offer measurement (Albaum et al. 1981)
and user-interface advantages as discussed in the conclusion.

Eigentaste splits computations into offline and online phases. Offline, Eigentaste uses
principal component analysis for optimal dimensionality reduction and then clusters users
in the lower dimensional subspace. The online phase uses eigenvectors to project new
users into clusters and a lookup table to recommend appropriate items so that run time is
independent of the number of users in the database.

This paper is organized as follows. Section 2 reviews related work. Section 3 introduces
the Figentaste algorithm, PCA, and our recursive rectangular clustering method. Section
4 describes the application of Eigentaste to Jester, a CF system for recommending jokes,
including a description of the bootstrapping process. Section 5 proposes the normalized
Mean Absolute Error (NMAE) metric and compares performance of several algorithms on
the Jester dataset in terms of accuracy and efficiency. Section 7 reviews the results and
discusses future work.

2. Related work

In this section we review only a small sample of the papers on Collaborative Filtering. Rich
(1979) is considered an early reference. There is a long history of patents related to CF,
ranging from Hey (1989) in 1989 to Chislenko et al. (2000) in 2000. In 1992, D. Goldberg
et al. coined the term “collaborative filtering” in the context of a system for filtering email
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using binary category flags (Goldberg et al. 1992). Excellent surveys of research can be
found in Varian and Resnick (1997), Herlocker et al. (1999a), and Delgado (2000).

Shardanand and Maes (1995) designed a collaborative filtering system for music (Ringo)
and experimented with a number of measures of distance between users, including Pearson
correlation, constrained Pearson correlation, and vector cosine. They compare four different
recommendation algorithms based on the Mean Absolute Error of predictions. All of their
neighborhood-based algorithms require time linear in the number of users.

GroupLens is a pioneering and ongoing effort in collaborative filtering (Resnick et al.
1994, Konstan and Bharat 1996, Konstan et al. 1997, Herlocker et al. 1999). The GroupLens
team initially implemented a neighborhood-based CF system for rating Usenet articles. They
used a 1-5 integer rating scale and computed distance using Pearson correlations.

One of the newsgroups that GroupLens considered was rec.humor, an unmoderated
newsgroup that receives hundreds of posts a day, most of them not very funny (not that
rec.humor.funny is much better). This was reflected in the ratings, where 75% of the jokes
received the lowest possible rating of 1 (not funny). The GroupLens team reported corre-
lation values for 500 pairs of users; the relatively high value of these correlations was used
to claim that users generally agree on the ratings of jokes, in contrast to the recipes posted
on rec.food.recipes.

However, the predominance of “not funny” ratings in the data skewed all correlations
dramatically upward. The GroupLens team did note the existence of a substantial number
of low and negative correlations in rec.humor, suggesting that there may be indeed be some
variance in user tastes. To evaluate Eigentaste, we also use humor as a domain but use jokes
with a much higher variance. There are a number of differences between Grouplens and
Eigentaste.

Breese et al. (1998) classify collaborative filtering algorithms into two classes: Memory-
based and Model-based. Memory-based algorithms operate over the entire user database
to make predictions. The most common memory-based model are based on the notion of
nearest-neighbors, using a variety of distance measures. Model-based systems are based on
a compact model inferred from the data. In this framework Eigentaste would be considered
Model-based. Breese et al. compare a number of algorithms including Bayesian clustering
and decision-tree models. They show that Bayesian network and correlation models are the
best-performing but do not discuss computational complexity.

Pennock and Horvitz (1999b) suggest Personality Diagnosis (PD), a latent variable ap-
proach based on computing the probability that a new user is of an underlying “personality
type,” and that user preferences are a manifestation of this personality type. The person-
ality type of a given user is taken to be the vector of “true” ratings for items the user has
seen. A true rating differs from the actual rating given by a user in Gaussian noise. Given
the personality type of a user A, PD finds the probability that the given user is of the same
personality type as other users in the system, and thus the probability that the user will like
some new item. To combat the problem common to memory-based models of increased
computational effort as the set of existing users grow, Pennock and Horvitz explore a Value
of Information (VOI) computation which maximizes predictive value while minimizing
the number of explicit ratings needed from a user. This approach requires the specifica-
tion of utility functions. However, VOI can also be used offline to “prune” the data in the
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system in order to reduce the amount of data stored while maintaining maximum predictive
power.

In a different paper, Pennock and Horvitz (1999a) propose an axiomatic foundation
for collaborative filtering. CF makes preference predictions by combining preferences of
existing users. The authors note that “aggregation” of preferences has been studied in Social
Choice theory since the 1960’s (Arrow 1963). They argue that only a single nearest-neighbor
model will satisfy the axiomatic conditions.

Delgado (2000) takes an agent-based approach to CF, developing several algorithms that
combine ratings data with other sources of information such as the geographic location
of the user. Weighted majority voting is used to combine recommendations from different
sources.

In their recent paper, Herlocker et al. (1999) divide neighbor-based CF algorithms into
three steps: 1) weighting possible neighbors, ii) selecting neighborhoods and, iii) producing
a prediction from a weighted combination of neighbors ratings. They explore alternative
methods for each step and propose Spearman (rank-based) correlation weighting as an
alternative to Pearson correlations and a “significance weighting” based on the number of
items two users have rated in common. To compute predictions they find that subtracting
global means improves performance, while conversion to Z-scores does not. To measure
accuracy, they propose Receiver Operator Characteristic (ROC) sensitivity from decision-
support theory.

Many CF researchers have recognized the problem of sparseness: many values in the
ratings matrix are null since all users do not rate all items. Computing distances between
users is complicated by the fact that the number of items users have rated in common is not
constant. An alternative to inserting global means for null values or significance weighting
is Singular Value Decomposition (SVD), which reduces the dimensionality of the ratings
matrix and identifies latent factors in the data.

An application of SVD in the context of document retrieval has been patented and is
widely known as Latent Semantic Indexing (LSI) (Landauer et al. 1994, Deerwester et al.
1990, Ding 1999, Hofmann 1999). In LSI, SVD is applied to factor the non-square term-
document frequency matrix into othogonal factor matrices with corresponding singular
values. The largest singular values correspond to the most significant factor weightings,
which can be used to create a dimension-reducing linear projection of the original data.

Several researchers have applied SVD to CF. Billsus and Pazzani (1998) treat CF as a
classification problem and discretize ratings into a small number of classes (e.g. two: like
vs. dislike). Say there are n users, k items that form the basis for recommendation, and
r items to consider recommending. Let m = k + r. They discretize the n x m original
ratings matrix into a Boolean feature matrix F, with a row for each combination of user and
category. They apply SVD to F to reduce its dimensionality from 2n x m to v x m. The
principal vectors are used to project each item to a point in the v-dimensional space.

Billsus and Pazzani then create n feedforward neural networks, one for each user in the
database. They use backpropagation to train each network using k v-dimensional vectors
(one vector for each item rated by that user). After training, each network will map a
v-dimensional vector representing an unseen item to a predicted rating for that item. Using
the Movielens dataset, they demonstrate that their method yields reasonable prediction
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accuracy but note that it is significantly more computationally expensive than other methods
due to the need to train a neural network for each user.

Pryor (1998) recommends web pages based on Boolean visit patterns and 7-point discrete
ratings. Applying SVD to the visit matrix produces a set of vectors corresponding to features
in the matrix. He found that using only the most significant features (as measured by their
singular values) reduces dimensionality and provides an effective distance metric.

Sarwar et al. (2000) applied SVD to reduce the dimensionality of a ratings matrix.
Using the MovieLens dataset, they selected 943 users to form a 943 x 1682 matrix that is
95.4% sparse (each user on average rates 5% of the 1682 movies). They first fill missing
values using user and movie rating averages, and then apply SVD. For this dataset, 14
dimensions provides optimal accuracy with significantly faster online recommendation
times than nearest neighbor methods.

In Eigentaste we address sparseness using universal queries, which insure that all users
rate a common set of k gauge items. Since the resulting submatrix is dense, we directly
compute the square symmetric correlation matrix and then do a linear projection using
Principle Component Analysis, a closely-related factor analysis technique first described
by Pearson in 1901 (Pearson 1901, Dasarathy 1991, Krishnaiah and Kanal 1982, Jackson
1991). Like SVD, PCA reduces dimensionality by optimally projecting highly correlated
data along a smaller number of orthogonal dimensions.

3. The Eigentaste algorithm

In this section we describe the generic Eigentaste algorithm.

3.1. Notation and Terminology

set of all users in database
set of all items to be rated and/or recommended
set of items in the gauge set
number of users, |U |
total number of items, |J|
number of items in the gauge set, |G| (thus there are m — k items available for
recommendation)
n X m matrix of raw user ratings
n x k normalized matrix of user ratings of items in G
k x k correlation matrix of the k items in the gauge set
k x k orthogonal matrix of eigenvectors of C
k x k diagonal matrix of eigenvalues of C
raw rating of item j by user i; 7;j € [Fmin, Fmax 1U Y
normalized rating of item j by user i
predicted rating of item j for user i
wj average rating of item j
J; set of items rated by user i
U; setof users having rated item j (Vj € G, |U;| = n)
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3.2.  Normalizing ratings

The n x m matrix of raw ratings from n users and m items is R. We selected k of these
items to form the common gauge set (all valid users rated all items in the gauge set). We
normalize this subset of R to produce A, the n x k submatrix of gauge set ratings.

Each rating is normalized by subtracting its mean rating over all users, and then dividing
by its standard deviation. Since valid users have rated all items in the gauge set, there will
be no null ratings. The mean rating of the jth item in the gauge set is

1 ~

ni=— T

J n z : i
IGUj

and the variance of the jth gauge set item is

1 -
szz Z(rij_lf‘j)z-
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In A, the normalized rating r;; is set to "U—“’
J

3.3.  Pearson’s correlation matrix

If we assume a continuous rating scale and a linear relationship between variables, we can
define the global correlation matrix C(= [cj;]) over all users.

1
n—1

C = ATA.

C is symmetric and positive definite.

3.4.  Principal component analysis

Principal Component Analysis was first introduced in 1901 by Karl Pearson (Pearson 1901).
Hotelling generalized it to random variables in 1933 (Hotelling 1933). We apply eigen-
analysis to solve for matrices E and A such that

C=ETAE,
and
ECET = A.

Let B = AET be alinear transform of A such that the transformed points are uncorrelated
(its correlation matrix is diagonal):

1
Cp = 1BTB = ECET = A.

n—
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Figure 1. Scree curve: Percentage of variance unexplained as eigenvectors are included. The largest amount of
variance is explained by the first eigenvector. The combination of the first and second eigenvectors explains half
of the variance in the data.

Each column j of B has variance A;. After sorting by eigenvalue, figure 1 shows the
variance in B left unaccounted for by each successive column of E in a typical dataset.

The idea is to keep only the “principal” eigenvectors. The number of eigenvectors to
retain depends on the variances (eigenvalues) but is typically small. If v eigenvectors are
retained, data is projected along the first v principal eigenvectors:

x = RE!

On popular choice is to set v = 2, so that data are projected onto the “eigen-plane”
for human visualization. PCA and the Eigentaste algorithm generalize easily to higher
dimensions.

3.5.  Recursive rectangular clustering

There are many ways to cluster the projected data. For the data in Section 4, after plotting
in two dimensions we discovered a high concentration around the origin. We implemented
a recursive rectangular clustering where cell size decreases near the origin. This can be
generalized to higher dimensions and a variety of alternate clustering methods can be used
with Eigentaste.

Clustering

1. Start with the minimal rectangular cell that encloses all the points (user projections) in
the eigenplane. This forms the outermost rectangular subdivision.

2. Bisect this cell along the x and y axes to yield 4 rectangular sub-cells.

3. For each new sub-cell that has the origin as one of its vertices, perform the operation in
step 2 to generate sub-cells at the next hierarchical level.

4. Repeat Step 3 for each level until a desired depth is reached.
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Figure 2. 4 levels of recursion, forming a total of 40 clusters.

Figure 2 is an illustration of recursive rectangular clustering in 2 dimensions after 4 levels
of recursion.

We treat each cell as a cluster of neighbors in the eigen plane. For each cluster, we
compute the mean for each non-gauge item, based on the number of users who have
rated that item. Sorting the non-gauge items in order of decreasing mean ratings yields a
lookup table of recommendations for that cluster. All of this occurs offline and

periodically.

3.6.  Online computation of recommendations

When a new user enters the system,

1. Collect ratings for all items in the gauge set.

2. Use the principal components to project this k vector onto the eigen plane.

3. Find the representative cluster.

4. Look up appropriate recommendations, present them to the new user, and collect ratings.
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4. Experimental implementation: Jester

We use humor as a domain for evaluating Eigentaste. Can an automated system recommend
a funny joke? Since the criteria for humor are difficult to formalize, this is a non-trivial
information retrieval problem. There have been a number of psychological studies on the
human sense of humor. Ziv (1984) attempted to categorize taste in humor based on social,
emotional, and intellectual characteristics. These characteristics in turn depend on factors
such as gender, age, social upbringing, etc. Our approach avoids such semantic categories
and relies solely on numerical ratings: We treat each user and each joke as a black box. See
Nilsen (2000) for research on humor.

We refer to the implemented CF system based on Eigentaste as Jester. Jester includes an
HTML client interface that allows Internet users to rate jokes.> We chose only jokes that
can fit on 1-2 screens to minimize evaluation time. We present jokes and collect real-valued
ratings as users click on a rating bar implemented using the image map control provided
in HTML. After the user rates each joke, another is presented. After all jokes in the gauge
set are rated, Jester recommends jokes to the user and continues to collect ratings on each
recommended joke. The communication between the interface and the server scripts takes
place through a CGI script written in C. Figure 3 illustrates the interface.

All collaborative filtering systems experience the “cold start” problem (Maltz and Ehlrich
1995). One needs ratings to predict ratings. To address this, we started with a simple website
to collect joke ratings. We chose the initial set of 40 jokes from friends and newsgroups,
doing our best to avoid highly offensive jokes. We then asked 80 friends and students to
rate all 40 jokes by visiting the website. We selected half of these jokes (k = 20) for the
gauge set based on a combination of their correlations and variances. Herlocker et al. (2000)
hypothesize that giving high variance items more influence in determining a correlation will
improve prediction effectiveness. How to choose the gauge set will be a subject of a future
paper.

We next implemented Jester 1.0, a naive recommender system based only on the single
nearest neighbor in Euclidean space. We added 30 new jokes to the system (m = 70).
New users were asked to rate each joke in the gauge set and 5 non-gauge jokes selected
at random to seed future recommendations. For each user, the single nearest neighbor was
used to generate recommendations from the remaining jokes. Figure 2 is an illustration of
the recursive rectangular clustering scheme in 2 dimensions, using 4 levels.

We registered the Jester site with a number of search engines. By the end of November
1998, about a month and a half of the system inception, we had around 150 registered
users. On 2 December, at 9:25 am, Jester was featured in the Culture section of Wired News
(www.wired.com/news/news/culture/story/.16567.html). Online news site like Yahoo, Ex-
cite, and Netscape News went up with the same story. This produced a sudden influx of
41350 page requests. Since system process time grew linearly with the number of users,
Jester 1.0 was quickly overwhelmed. It crashed and was offline for several days.

Our experience with this traffic overload motivated us to develop a more scalable algo-
rithm, Eigentaste. Jester 2.0 was released on March 1st, 1999. Its graphics were redesigned,
we added 30 new jokes to the system so that m = 100, and the gauge set was reduced to 10
jokes.
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5. Results
5.1. Normalized mean absolute error (NMAE)

The error metric used most often in the CF literature is the Mean Absolute Error (MAE)
(Shardanand and Maes 1995, Breese et al. 1998, Pennock and Horvitz 1999b). If p;; is the
prediction for how user i will rate item j, the MAE for user i is defined as

1 C
MAE = - E Fii — Dii
cj:1 |rj Pj|

where c is the number of items user i has rated. MAE for a set of users is the average MAE
over all members of that set.

Since our numerical rating scale gives ratings over the range [—10, +10], we normalize
to express errors as percentages of full scale: Normalized Mean Absolute Error, is:

MAE
NMAE = - _

Fmax — F'min

Herlocker et al. (1999) discusses a variety of other error measures. In the Appendix, we
consider NMAE from a theoretical perspective.

5.2.  The Jester dataset

Since March 1999, Jester has collected approximately 2,500,000 ratings from 57,000 users.
There are 10 jokes in the gauge set and 90 non-gauge jokes. The average number of ratings
per user is 46. We based our experiments on 18,000 random users from this sample. The
Jester Dataset, including anonymous ratings from these users, is available upon request.’

For the experiments below, we randomly divide the users into two disjoint sets: training
and test. We use data from the training set to compute predictions using each algorithm
(i.e., to “train” the system). Data from the test set is then used to evaluate efficiency and
accuracy.

5.3.  POP algorithm

The simplest recommendation algorithm is to treat all users as coming from the same
global cluster and to base recommendations for all users on global mean ratings. We used
this “POP” algorithm as our control case. (Note: The name “POP” is taken from Breese
et al. (1998).)

POP predicts ratings for every joke based on its global average. We use the training set to
compute the global average and the test set to evaluate the predictions. POP yields NMAE
of 0.203.
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5.4. Nearest neighbor algorithms

The nearest neighbor algorithm and its variants are the ones most widely referenced in the
literature. The formula generally used to find the predicted rating p;; for user i and item j
is
1 n
pij =Fit = wli, p)Fpy = 7p)
k=1

where 7; is the average joke rating for user i, and « is a normalizing factor ensuring that
the absolute value of the weights sum to 1. The weights w(i, p) can reflect distances,
correlations, or similarities between user i and other users that have rated the same items.
Most commonly, w(i, p) is the Pearson correlation coefficient between users i and p:

> F =) Fpy —Tp)
\/Zj(;ij _fi)ZZj(ij —7p)?

w(i, p) =

where the summations over j include items that both user i and user p have rated in common
(Breese et al. 1998, Shardanand and Maes 1995).

We also implemented a weighted nearest neighbor algorithm. We used a function of
Euclidean distance from user i to user p as the weight w(i, p), and k = > ,w(, p).
Specifically, if we are interested in ¢ nearest neighbors, w(i, p) = d(i,q + 1) — d(, p).
This ensures that i’s closest neighbor has the largest weight.

Using only one nearest neighbor (1-NN) proved to be a less accurate predictor than the
global average joke rating (POP). For nearest neighbor calculations, the predicted rating for
a given test user was the actual rating of his/her nearest neighbor in the training set. Using
one nearest neighbor, the normalized MAE was 0.238, an increase over POP.

In addition to finding the prediction error for one nearest neighbor, we calculated errors
when recommendations were based on g or more nearest neighbors (g-NN). In these cases,
the predicted rating for a user in the test set was the (unweighted) average of the ratings of his
q nearest neighbors (one can view this as a special case of the similarity-based weighting,
where w(i, k) = 1/d for all d < g neighbors that have rated the item). For g = 2, there is
sharp improvement: NMAE = (0.224. In addition, the error monotonically decreases until
q = 80. After this point, the error increases again, and asymptotically approaches the POP
value as expected. See figures 4 and 5.

As visible in figure 4, the lowest NMAE is 0.187, for approximately 80 nearest neighbors.

5.5. Eigentaste

For the Jester dataset, the first two eigenvectors accounted for nearly 50% of all the variance
(see figure 1). We took the first two principal components (v = 2) and projected the data
onto the eigenplane:

x = AE]
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Figure 4. NMAE as a function of the number of nearest neighbors used, for 1 < g < 150.
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Figure 5. NMAE as a function of the number of nearest neighbors used, for 1 < g < 1700. The error decreases

sharply, then steadily increases for g > 90.

Each user represents a point in this two-dimensional eigenplane. We could not find an
intuitive interpretation for these dimensions in terms of user humor preferences. After
computing predictions using the training set and comparing with actual ratings in the test

set, the NMAE for Eigentaste is 0.187.
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6. Computational Complexity

Recall that the ratings database contains n users and m items for rating and recommendation.
In Eigentaste there are k << m items in the gauge set.

6.1. POP algorithm

The computational complexity for the POP algorithm is O (nm) to compute global means
and O (1), constant time, to provide recommendations.

6.2. Nearest neighbor algorithms

For 1-NN, the online time needed to find recommendations for a new user is O(n). In
an implementation of finding the nearest neighbor, all training set users are scanned into
memory, and then traversed for each test set user. The time required to scan all 8853 training
set users was 31.64 seconds. To find the nearest neighbor and generate the predictions for
one test user took 438 msec. It is important to note that the overriding factor is scanning
in the training set users. For a user online, it would take over 32 seconds to get his/her
recommendations—assuming there are no other processes running on the system. It may
also become necessary to scan training set users from a file if their number grows larger
than is reasonable to have in memory. This would significantly increase the time necessary
to find predictions.

For ¢g-NN (where g > 1) the time required will slightly increase as ¢ grows, but the time
to find the g nearest neighbors remains O (n).

6.3. FEigentaste algorithm

For the offline phase, finding the correlation matrix, calculating the eigenvectors, projecting
users into the eigen plane, and clustering them takes O (k*n) time. Note that k is small (in
our case k = 10), so this phase is not too demanding. Using a similar implementation to
the one used for the nearest neighbor algorithm above, it took 27.85 seconds to scan all
8853 training set users, 444 msec to generate the eigenvectors/eigenvalues, and 298 msec
to generate the clusters and the predictions for each cluster. The total offline time needed
for 8853 training set users was 29.59 seconds.

Online, however, recommendations can be made in constant time: O (k). Thus, there is
no increase in time required to find a recommendation as the number of users in the system
increases. For Jester, the time to project the ratings from the gauge set and to look up the
recommendations is 3.22 msec per user. The Eigentaste algorithm provides a significant
decrease in online computation time.

7. Discussion

In this paper we describe Eigentaste, a new CF algorithm that applies PCA to a dense subset
of the ratings matrix. Eigentaste uses universal queries to elicit real-valued user ratings on a
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common set of items. PCA facilitates dimensionality reduction for offline clustering of user
and rapid online cluster assignment. Accuracy and efficiency results on the Jester dataset
are summarized in the table below.

Accuracy Online time
Algorithm (NMAE) Offline  Online per user

POP 0.203 O(nm) o) -
1-NN 0.237 - O (nk) 350 msec
80-NN 0.187 O (nk) 350 msec

Eigentaste 0.187 oOk%n)  O(k) 3.2 msec

The Normalized Mean Absolute Error (NMAE) for 80-NN and Eigentaste were very
close: 0.18661 and 0.18706 respectively. These values indicate that the algorithms predict
joke ratings within roughly 20% of the true ratings. This implies that items with predicted
ratings well above the mean for a new user will in many cases correspond to desireable
items for that user.

It is interesting to note that these accuracies are comparable with those reported for a
completely different data set (movies); the algorithms in Herlocker et al. (1999), when
normalized to the 4 unit rating scale (1-5), yield NMAE from 0.192 to 0.207.

The POP (global mean) algorithm offers a useful baseline for accuracy (see Appendix on
other baseline comparisons). In terms of NMAE the POP algorithm performs reasonably
well, as other researchers have found (Herlocker et al. 1999). It is computationally efficient
but completely ignores differences between users.

Nearest-neighbor methods offer improved accuracy, unless not enough neighbors are
considered (e.g. 1-NN), which makes individual recommendations highly susceptible to to
noise. If the 80 nearest neighbors are considered (80-NN), noise is reduced and accuracy
improves about 8% over POP, but at the cost of considerable online computational as the
number of users grows. Of course it may be possible to pre-process the user group to select
or create a small number of representative users ( “mentors” ) to keep n small.

For this dataset and implementation, Eigentaste’s accuracy with two dimensions is as
good as 80-NN but its online computation is faster by two orders of magnitude. These
results suggest that speedup can be achieved without compromising prediction accuracy.
Testing FEigentaste with additional dimensions is a subject for future research.

We are experimenting with a number of variations, such as offline k-means clustering
with cosine distance measures, and hybrid approaches with adaptive online weighting to
further improve accuracy without altering online computation time.

Eigentaste addresses the sparseness problem with universal queries instead of user-
selected queries; each query contains a short unbiased description (e.g., book summary
or film synopsis) so that users can form an immediate opinion. Using univeral queries,
Eigentaste presents each user with the same gauge set of items to rate during its profiling
phase. The resulting subset of the ratings matrix is dense. As discussed in Section 1, it can
be argued that universal queries are less effective than user-selected queries. But universal
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queries are particularly appropriate for some domains, such as jokes, images, music clips,
books, and voter initiatives, where a brief sample is available to be evaluated by all users.
Although we applied universal queries in the domain of jokes (where the query is simply
the joke itself), we are in the process of testing Eigentaste in other domains including
books. We plan to write another paper on the design of universal queries and the choice of
which items to include in the gauge set. When properly designed, universal queries offer
the advantage of rapid and consistent profiling and the ability to collect immediate feeback
on all recommended items. The effectiveness of universal queries, confidence queries, and
the potential for hybrid query models depends on the domain and is a subject for future
study.

Eigentaste captures user ratings on a continuous rating scale using the HTML image map
protocol. Continuous ratings have three advantages: 1) they avoid discretization effects in
matrix computations 2) they capture taste with finer granularity (Albaum et al. 1981), and
3) users report that they find the continuous rating bar easier to use. Users often report
a desire to choose a value “between” two discrete options. The etymology of the word
“taste” suggests the digestive system: a user’s rating is literally a “gut reaction”. If so, the
continuous rating bar may offer a more visceral interface. Last, users may provide more
data if the interface feels more like navigating a video game than answering a questionnaire.
More research on this issue is needed.

In the Appendix, we consider the accuracy metric from a theoretical perspective. We have
reported Normalized Mean Absolute Error values for our experiments and noted that these
values compare surprisingly well to values reported in other domains and experiments. How
significant is a NMAE of 20%? To compare the CF performance to random guessing, we use
Uniform and Normal noise distribution models to derive analytic estimates of NMAE. We
find that if user ratings are uniformly distributed, random predictions yield NMAE = 33%.
This suggests that there is room for improved accuracy for all current CF algorithms.

Appendix: NMAE for random predictions

To compare the CF performance to random guessing, we use Uniform and Normal distri-
bution models to estimate Normalized Mean Absolute Error (NMAE) analytically. Let X
be the user’s rating and Y be the predicted rating. Let X and Y be independent random
variables.

Uniform distribution

Let X and Y be uniform random variables on the interval [—10, 10]. The probability dis-
tribution of the error, X — Y, is a triangular function over the range (—20, 20). Taking the
absolute value folds this function onto the positive axis. Normalizing to integrate to 1, the
MAE density function, |[X — Y|, is f(x) = 0.1 —0.005x, 0 < x < 20. The expected value
for the MAE x_y) is

20

E[MAE] = (0.1 — 0.005x)xdx = 6.667
0
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Normalizing over the range of values, NMAE = 0.333. That is, if actual and predicted
values are uniformly distributed, we’d expect the random predictions, on average, to be off
by a third of full scale.

To confirm, we performed a Monte Carlo experiment where the actual and predicted
ratings are random numbers uniformly distributed between —10 to +10. The NMAE we
found was 0.320, very close to the analytic prediction.

Normal distribution

Assume now that both the measured and predicted ratings are Normally distributed random
variables with the same mean, u, and variances 012 and 022, respectively, X and Y are, again,
independent. From the moment-generating function of random variables,

1.2.2 1.2.2
Mx_y(t) = Mx(t)M_y (1) = e271" TH g2 71
— O +o? 2+ (-t

Therefore, X — Y is also Normally distributed, with mean 0 and variance (012 + 022).
For the Jester dataset, the average standard deviation is o ~ 5. Assume both the actual
and predicted ratings have o = 5, the density function for | X — Y| is

f(.x) — 2 e—xz/IOO'

V2no

The expected MAE, then, is:

1
N

The expected NMAE is 0.282. That is, if actual and predicted values are normally dis-
tributed, we’d expect random predictions, on average, to be off by 28%.

E[MAE] = f e 10y gy = 5.642.
0
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Notes

1. An initial summary of the algorithm appeared in Gupta and Goldberg (1999). The UC Regents have applied
for a patent on core elements of this algorithm.

2. See http://eigentaste.berkeley.edu.

3. To request this data, please email your contact information and a description of intended research to the first
author.
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