
IEOR 265 – Lecture 8
Matrix Completion

1 Model and NP-Hard Formulation

We will use the notation [r] to refer to the set [r] = {1, . . . , r}. Consider a matrix ψ ∈ Rr1×r2 ,
and suppose some small subset of entries are measured. In particular, suppose our measurements
consist of index-pairs x〈i〉 ∈ [r1] × [r2] for i = 1, . . . , n along with noisy measurements of the
corresponding matrix entries y〈i〉 = ψx〈i〉 + εi, where εi is bounded zero-mean noise.

The problem of matrix completion is to estimate the matrix ψ given the measurements (x〈i〉, y〈i〉)
for i = 1, . . . , n. This problem is ill-posed when n � r1 · r2, because a matrix ψ ∈ Rr1×r2 has
r1 · r2 degrees of freedom. Without imposing additional structure, the problem cannot be solved.
One reasonable structure that leads to an identifiable problem is to assume that ψ is low rank.
For instance, if rank(ψ) = k, then ψ has k · (r1 + r2) degrees of freedom. (To intuitively see why,
note that this is the degrees of freedom of the singular value decomposition of a rank-k matrix.)

Given a matrix completion problem with a rank-k constraint, we can pose the estimation problem
as the following M -estimator:

ψ̂ = min
ψ

{ n∑
i=1

(y〈i〉 − ψx〈i〉)2
∣∣∣ rank(ψ) ≤ k

}
.

Unfortunately, including a rank constraint makes this an NP-hard optimization problem. The
question we will examine is how to solve this problem using more tractable approaches.

2 Nuclear Norm Approach

Recall that if rank(ψ) ≤ k, then σ(ψ)j = 0 (i.e., the j-th singular value of ψ is zero) for j > k. If
we collect the singular values into a vector σ(ψ), then rank(ψ) ≤ k is equivalent to a constraint
that ‖σ(ψ)‖0 ≤ k. As in the case of Lasso regression, we can relax this using the `1-norm. Thus,
one possible relaxation for a rank constraint is ‖σ(ψ)‖1 ≤ k · µ, where µ = maxj σ(ψ)j.

By definition, ‖σ(ψ)‖1 is known as the nuclear norm of the matrix ψ. The notation ‖ψ‖∗ =
‖σ(ψ)‖1 is often used to denote the nuclear norm. This means that that constraint ‖σ(ψ)‖1 ≤
k must be convex, since norms are always convex functions. However, the key question is
whether the convex function ‖ψ‖∗ is computable in polynomial time. Interestingly, there are
many functions (including norms) that are convex but NP-hard to compute. Fortunately, the
nuclear norm of a matrix can be computed in polynomial time. In particular, the nuclear norm of
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ψ is given by the solution of a semidefinite program (SDP) with r1·r2+r1·(r1+1)/2+r2·(r2+1)/2
variables:

‖ψ‖∗ = min trace(U) + trace(V )

s.t.

[
U ψ
ψ′ V

]
≥ 0.

As a result, we can formulate a convex relaxation of the rank-constrained matrix completion
problem as the following SDP:

ψ̂ = min
n∑
i=1

(y〈i〉 − ψx〈i〉)2

s.t. trace(U) + trace(V ) ≤ λ[
U ψ
ψ′ V

]
≥ 0.

This problem is often represented in more compact notation as:

ψ̂ = min
ψ

{ n∑
i=1

(y〈i〉 − ψx〈i〉)2
∣∣∣ ‖ψ‖∗ ≤ λ

}
.

This problem is also written in the following form:

ψ̂ = min
ψ

n∑
i=1

(y〈i〉 − ψx〈i〉)2 + λ · ‖ψ‖∗.

Unfortunately, the M∗-bound is not applicable to this setting. And so to show high-dimensional
consistency, we require a different technique. One approach is to use an alternative (but related)
complexity measure.

3 Rademacher Complexity

Let εi be iid Rademacher random variables (i.e., εi has the distribution such that P(±εi) = 1
2
),

and suppose xi ∈ Rd are iid. Then the Rademacher complexity of a set of functions F = {f :
Rd → R} is defined as

Rn(F) = E
(

sup
f∈F

∣∣∣ 2
n

n∑
i=1

εi · f(xi)
∣∣∣)

3.1 Gaussian Complexity

There is a similar complexity notion known as Gaussian compelxity, which is defined as

Gn(F) = E
(

sup
f∈F

∣∣∣ 2
n

n∑
i=1

gi · f(xi)
∣∣∣),
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where gi ∼ N (0, 1) are iid. The notions of Rademacher and Gaussian complexity are equivalent
in the sense that

cRn(F) ≤ Gn(F) ≤ C log
(
nRn(F)

)
.

3.2 Three Useful Results

We need three results before we are able to use Rademacher complexity to define risk bounds. The
first result is that (i) if U is a symmetric random variable (e.g., its pdf is even fU(−u) = fU(u)),
and (ii) ε is a Rademacher random variable (i.e., P(ε = ±1) = 1

2
) that is independent of U ; then

εU has the same distribution as U . (To see why this is the case, note that if we condition ε · U
on the two possible values ε± 1, then the conditional distribution is the same as the distribution
of U because of the symmetry of U .)

The second result is McDiarmid’s Inquality : Suppose x1, . . . , xn ∈ X are iid random variabes
belonging to set X . If f : X n → R satisfies

sup
u1,...,un,ũj∈X

∣∣∣f(u1, . . . , un)− f(u1, . . . , uj−1, ũj, uj+1, . . . , un)
∣∣∣ ≤ ci,

for all i = 1, . . . , n, then for every t > 0 we have

P
(
f(x1, . . . , xn)− E(f(x1, . . . , xn)) ≥ t

)
≤ exp(−2t2/

n∑
i=1

c2i ).

The third useful result is that if ϕ(·) is a Lipschitz continuous function (with Lipschitz constant
L) with ϕ(0) = 0, then we have

E sup
t∈T

∣∣∣ 1
n

n∑
i=1

εi · ψ(ti)
∣∣∣ ≤ 2L · E sup

t∈T

∣∣∣ 1
n

n∑
i=1

εi · ti
∣∣∣.

If L = 1, then the function ϕ(·) is also known as a contraction, and so this result is sometimes
known as a contraction comparison theorem.

3.3 Risk Bounds

Though an M-estimator of the form

θ̂ = arg min
θ

{ 1

n

n∑
i=1

(yi − g(xi; θ))
2
∣∣∣ θ ∈ Θ

}
.

is typically understood as the minimizer of the above defined optimization problem, it can also
be interpreted as finding a function f ∈ F within the function class F = {g(x, θ) : θ ∈ Θ}:

f̂(x) = arg min
f∈F

1

n

n∑
i=1

(yi − f(xi))
2.
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An alternative interpretation of this estimator is that it is trying to minimize E((y− f(x))2), and
is using the sample average as an approximation to this expectation.

The sample average approximation is interesting. The quantity 1
n

∑n
i=1(yi − f(xi))

2 will con-
verge to E((y − f(x))2); however, because we are picking the f by minimizing over F , the
discrepency between 1

n

∑n
i=1(yi − f(xi))

2 and E((y − f(x))2) can be very large. The intuition
is that we are not just looking for the discrepency between these two quantities for a single f ,
but instead we are looking for the discrepency between these two quantities over the entire set F .

One of the strengths of Rademacher complexity is that it can be used to quantify the discrepency
between these two quantities, which allows us to make conclusions the quality of the estimator.
In particular, we are interested in bounding

E((y − f̂(x))2)− inf
f∈F

E((y − f(x))2.

The quantity E((y− f̂(x))2) is the true error of the estimate f̂(·), and the quantity inff∈F E((y−
f(x))2 is the true error of the best possible estimate taken from F .

Suppose xi, yi are bounded random variables. The approach will be to first bound

E sup
f∈F

∣∣∣ 1
n

n∑
i=1

(yi − f(xi))
2 − E((y − f(x))2)

∣∣∣.
We will achieve this using a symmetrization argument. Specifically, we have

E sup
f∈F

∣∣∣ 1
n

n∑
i=1

(yi − f(xi))
2 − E((y − f(x))2)

∣∣∣ ≤ E sup
f∈F

∣∣∣ 1
n

n∑
i=1

(
(yi − f(xi))

2 − (ỹi − f(x̃i))
2
)∣∣∣

≤ E sup
f∈F

∣∣∣ 1
n

n∑
i=1

εi ·
(

(yi − f(xi))
2 − (ỹi − f(x̃i))

2
)∣∣∣

≤ 2E sup
f∈F

∣∣∣ 1
n

n∑
i=1

εi ·
(

(yi − f(xi))
2
)∣∣∣,

where (i) the first line follows by Jensen’s inequality, (ii) the second line follows by the first useful
result from above, and (iii) the third line follows from the triangle inequality.

Since xi, yi are assumed to be bounded random variables, the functions h(u) = (yi−u)2−y2i are
Lipschitz continuous with some constant L and satisfy h(0) = 0. And so using the third useful
result gives

E sup
f∈F

∣∣∣ 1
n

n∑
i=1

(yi − f(xi))
2 − E((y − f(x))2)

∣∣∣ ≤ 4L · E sup
f∈F

∣∣∣ 1
n

n∑
i=1

εi · f(xi)
∣∣∣+

C

n

≤ 2Rn(F) +
C

n
.
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where C is a constant. A tighter bound is possible, but requires a more careful argument. (Es-
sentially, the C

n
term can be removed.)

Finally, we return to the quantity E((y − f̂(x))2)− inff∈F E((y − f(x))2. Applying the triangle
inequality gives

E((y − f̂(x))2)− inf
f∈F

E((y − f(x))2 ≤

E
∣∣∣E((y − f̂(x))2)− 1

n

n∑
i=1

(yi − f̂(xi))
2
∣∣∣+ E

∣∣∣ 1
n

n∑
i=1

(yi − f̂(xi))
2 − inf

f∈F
E((y − f(x))2

∣∣∣.
To bound the first term, we use the above Rademacher bound:

E
∣∣∣E((y − f̂(x))2)− 1

n

n∑
i=1

(yi − f̂(xi))
2
∣∣∣ ≤ 2Rn(F) +

C

n
.

To bound the second term, note that since f̂ and f ∗ are minimizers of their objective functions
we must have

1

n

n∑
i=1

(yi − f̂(xi))
2 ≤ 1

n

n∑
i=1

(yi − f ∗(xi))2

E((y − f ∗(x))2 ≤ E((y − f̂(x))2,

where f ∗ = arg inff∈F E((y − f(x))2. These two inequalities imply that

1

n

n∑
i=1

(yi − f̂(xi))
2 − E((y − f ∗(x))2 ≤ 1

n

n∑
i=1

(yi − f ∗(xi))2 − E((y − f ∗(x))2

E((y − f ∗(x))2 − 1

n

n∑
i=1

(yi − f̂(xi))
2 ≤ E((y − f̂(x))2 − 1

n

n∑
i=1

(yi − f̂(xi))
2.

Thus, we must have that

E
∣∣∣ 1
n

n∑
i=1

(yi − f̂(xi))
2 − inf

f∈F
E((y − f(x))2

∣∣∣ ≤ 2Rn(F) +
C

n
.

Combining everything, we have

E((y − f̂(x))2)− inf
f∈F

E((y − f(x))2 ≤ 4Rn(F) +
C

n
.

Or rewritten, this gives

E((y − f̂(x))2) ≤ inf
f∈F

E((y − f(x))2 + 4Rn(F) +
C

n
.

A similar result that holds with high probability can be shown by using McDiarmid’s inequality.
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3.4 Nuclear Norm Approach Revisted

It turns out that the Rademacher complexity of the function class F = {ψx : ‖ψ‖∗ ≤ µ} is

R(F) = Cµ

√
(r1 + r2) log3/2(max(r1, r2))

nr1r2
.

This bound can be found in the paper:

N. Srebro and A. Shraibman (2005) “Rank, Trace-Norm and Max-Norm”, in Learning Theory.
Springer, pp. 545–560.

Thus, for the nuclear norm approach to matrix completion we have

E((y − ψ̂x)2) ≤ σ2 + Cµ

√
(r1 + r2) log3/2(max(r1, r2))

nr1r2
+
C

n
,

where σ2 = var(ε).

4 Alternating Least Squares Approach

One major issue with the nuclear norm approach to matrix completion is that it is computationally
difficult. Even though it can be solved in polynomial time, it requires solving a large SDP. And
large SDP’s are often difficult to solve on computers. Given these difficulties, a heuristic is often
used that can provide good solutions but at the cost of lacking theoretical guarantees except in
specific cases.

Alternating least squares (ALS) is a popular heuristic. This approach begins with the observation
that we can represent a rank-k matrix ψ ∈ Rr1×r2 as

ψ =
k∑
j=1

ujvj′ ,

where uj ∈ Rr1 and vj ∈ Rr2 . And the main idea of this approach is that if we look at the matrix
completion optimization problem:

ψ̂ = min
ψ

{ n∑
i=1

(y〈i〉 − ψx〈i〉)2
∣∣∣ rank(ψ) ≤ k

}
= min

ψ

n∑
i=1

(y〈i〉 −
k∑
j=1

ujx〈i〉1v
j′

x〈i〉2)
2,

then this is simply a least squares problem when either the uj (as a group) or the vj (as a group)
are fixed. So the ALS algorithm is to fix uj, solve for vj, fix vj at the minimizer of the previous
optimization problem, solve for uj, fix uj at the minimizer of the previous optimization problem,
etc. until the objective function stops decreasing. The benefit of this heuristic is that solving
large-scale least squares problems is much more tractable on a computer than solving large-scale
SDP’s.
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