
IEOR 265 – Lecture 3
Sparse Linear Regression

1 M ∗ Bound

Recall from last lecture that the reason we are interested in complexity measures of sets is
because of the following result, which is known as the M∗ Bound. Suppose (i) T ⊂ Rp is
bounded and symmetric (i.e., T = −T ), and (ii) E is a random subspace of Rp with fixed
codimension n and drawn according to an appropriate distribution. More specifically, suppose
E = nullspace(A) = {x : Ax = 0}, where A ∈ Rn×p has iid N (0, 1) entries, meaning they are
iid Gaussian entries with zero-mean and unit variance. Then we have

E
(

diam(T ∩ E)
)
≤ Cw(T )√

n
.

1.1 Three Useful Results

Before we can prove the M∗ Bound, we need three results. The first result is that (i) if U is a
symmetric random variable (e.g., its pdf is even fU(−u) = fU(u)), and (ii) ε is a Rademacher
random variable (i.e., P(ε = ±1) = 1

2
) that is independent of U ; then εU has the same distri-

bution as U . (To see why this is the case, note that if we condition ε · U on the two possible
values ε± 1, then the conditional distribution is the same as the distribution of U because of the
symmetry of U .)

The second result is that if ϕ(·) is a Lipschitz continuous function (with Lipschitz constant L)
with ϕ(0) = 0, then we have

E sup
t∈T

∣∣∣ 1
n

n∑
i=1

εi · ψ(ti)
∣∣∣ ≤ 2L · E sup

t∈T

∣∣∣ 1
n

n∑
i=1

εi · ti
∣∣∣.

If L = 1, then the function ϕ(·) is also known as a contraction, and so this result is sometimes
known as a contraction comparison theorem.

The third result is a concentration of measure result, and these types of results can be thought
of as finite sample versions of the central limit theorem. In particular, suppose x1, . . . , xn are
iid N (0, 1), and let ϕ : Rn → R be a Lipschitz continuous function with Lipschitz constant L.
Then we have

P(|ϕ(x1, . . . , xn)− Eϕ(x1, . . . , xn)| > t) ≤ exp(−t2/2L2).

1



1.2 Proof of M ∗ Bound

Let a′i be the i-th row of A. We begin by noting that a′it, where t ∈ Rp is an arbitrary vector, is
a Gaussian random variable with E(a′it) = 0 and var(a′it) = ‖t‖22, since the entries of ai are iid
N (0, 1). Thus, |a′it| is a Folded Normal Distribution and has mean

E(|a′it|) =
√

2

π
· ‖t‖2.

Next, we use a common trick known as symmetrization. In particular, observe that

E sup
t∈T ∩E

∣∣∣ 1
n

n∑
i=1

(
|a′it| − E|a′it|

)∣∣∣ ≤ E sup
t∈T ∩E

∣∣∣ 1
n

n∑
i=1

(
|a′it| − |ã′it|

)∣∣∣
≤ E sup

t∈T ∩E

∣∣∣ 1
n

n∑
i=1

(
εi · (|a′it| − |ã′it|)

)∣∣∣
≤ 2E sup

t∈T ∩E

∣∣∣ 1
n

n∑
i=1

(
εi · |a′it|

)∣∣∣,
where (i) the first line follows by Jensen’s inequality, (ii) the second line follows by the first useful
result from above, and (iii) the third line follows from the triangle inequality. Since the absolute
value function is Lipschitz continuous with L = 1 and has |0| = 0, we can apply the second
useful result from above. This gives the bound

E sup
t∈T ∩E

∣∣∣ 1
n

n∑
i=1

(
|a′it| − E|a′it|

)∣∣∣ ≤ 4E sup
t∈T ∩E

∣∣∣ 1
n

n∑
i=1

(
εi · a′it

)∣∣∣ = 4E sup
t∈T ∩E

∣∣∣( 1
n

n∑
i=1

εi · ai
)′
t
∣∣∣.

However, note that conditioned on εi the random variable 1√
n

∑n
i=1 εi ·ai has distribution N (0, 1)

since the entries of ai are iid N (0, 1). Since this holds conditioned on all possible values of εi,
we have that unconditionally the random variable 1√

n

∑n
i=1 εi · ai has distribution N (0, 1). Thus,

we can make the variable substitution g = 1√
n

∑n
i=1 εi · ai, which gives

E sup
t∈T ∩E

∣∣∣ 1
n

n∑
i=1

(
|a′it| − E|a′it|

)∣∣∣ ≤ 4√
n
E sup
t∈T ∩E

∣∣∣g′t∣∣∣ = 4√
n
E
(

sup
t∈T ∩E

g′t
)
,

where the last equality follows since T ∩ E is symmetric (since T is assumed to be symmetric,
and since E is symmetric because it is defined as a nullspace).

The last step is to make substitutions. First, recall that w(T ∩ E) = E
(
supt∈T ∩E g

′t
)

by

definition. Second, recall we showed above that E(|a′it|) =
√

2
π
· ‖t‖2. Third, note that a′it = 0

whenever t ∈ E by definition of E as the nullspace of the matrix A. Making these substitutions
into the last inequality above, we have

E sup
t∈T ∩E

(√
2
π
· ‖t‖2

)
≤ 4 · w(T ∩ E)√

n
.
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Since (i) diam(T ∩ E) = supt∈T ∩E ‖t‖2, and (ii) w(T ∩ E) ≤ w(T ) because T ∩ E ⊆ T , this
proves the M∗ Bound.

1.3 High Probability Version

The M∗ Bound has a version that holds with high probability, which can be proved using the third
useful result from above. In particular, assume that (i) T ⊂ Rp is bounded and symmetric (i.e.,
T = −T ), and (ii) E is a random subspace of Rp with fixed codimension n and drawn according to
an appropriate distribution. More specifically, suppose E = nullspace(A) = {x : Ax = 0}, where
A ∈ Rn×p has iid N (0, 1) entries. Then with probability at least 1− 2 exp(−nt2/2diam(T )2) we
have

diam(T ∩ E) ≤ Cw(T )√
n

+ Ct.

The benefit of this version is that allows us to state that the diameter of T ∩E is small with high
probability, as opposed to merely stating that the expected diameter is small.

2 High-Dimensional Linear Regression

Recall the setting of a linear model with noiseless measurements: We have pairs of independent
measurements (xi, yi) for i = 1, . . . , n, where xi ∈ Rp and yi ∈ R, and the system is described
by a linear model

yi =

p∑
j=1

βjx
j
i + εi = x′iβ.

In the case where p is large relative to n, the OLS estimator has high estimation error. We now
return to the original question posed in the first lecture:

How can we estimate β when p is large relative to n? In general, this problem is ill-posed.
However, suppose we know that the majority of entries of β are exactly equal to zero. We can
imagine that our chances of estimating β are improved in this specific setting. Intuitively, the
reason is that if we knew which coefficients were zero beforehand, then we could have used a
simple OLS estimator to estimate the nonzero coefficients of β. However, the situation is more
complicated in our present case. Specifically, we do not know a priori which coefficients of β are
nonzero. Fortunately, it turns out that this is not a major impediment.

2.1 Estimator for Sparse Linear Models

Assume that the true value of β has at most s nonzero components and has |βj| ≤ µ. Now
suppose we solve the feasibility problem

β̂ = find
{
β : Y = Xβ, β ∈ {t ∈ Rp : ‖t‖0 ≤ s, |tj| ≤ µ}

}
,
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where ‖t‖0 =
∑p

j=1 1(tj 6= 0) counts the number of nonzero coefficients of t. By the M∗ bound
we know that if the entries of xi are iid N (0, 1), then we have

E
(
‖β̂ − β‖2

)
≤ C · w(T )√

n
,

where T = {t ∈ Rp : ‖t‖0 ≤ s, |tj| ≤ µ}. The final question is: What is the value of w(T )?

To bound w(T ), observe that that w(T ) ≤ w(S) if T ⊆ S. Define the `1-ball with radius s · µ
to be S = {t : ‖t‖1 ≤ s · µ}, and note that by construction T ⊆ S. Thus, we have that

w(T ) ≤ s · µ
√
4 log p,

where we have used the Gaussian average of an `1-ball from last lecture. This allows us to
conclude that

E
(
‖β̂ − β‖2

)
≤ Cµ · s

√
log p

n
.

Thus, solving the above feasibility problem is able to estimate the β vector in high dimensions
because the dependence on dimensionality is logarithmic. However, this feasibility problem is
nonconvex, and so an alternative solution approach is needed.

2.2 Convex Estimators

Instead, consider the convex feasibility problem

β̂ = find
{
β : Y = Xβ, β ∈ {t ∈ Rp : ‖t‖1 ≤ s · µ}

}
.

By the same reasoning as above, when xi has iid N (0, 1) entries we have that

E
(
‖β̂ − β‖2

)
≤ Cµ · s

√
log p

n
.

Note that we can reformulate the convex feasibility problem as

β̂ = argmin
β
{‖β‖1 | Xβ = Y }.

It turns out that a solution of this optimization problem gives a solution to the convex feasibility
problem. The reason is that the true value of β and the estimated value β̂ are both feasible (to
Xβ = Y ) when there is no noise, and so we have ‖β̂‖1 ≤ ‖β‖1 ≤ s ·µ. Thus, β̂ is also a solution
to the convex feasibility problem.

Another reformulation of the convex feasibility problem is

β̂ = argmin
β
{‖Y −Xβ‖22 | ‖β‖1 ≤ s · µ}.

Note that the true value of β is feasible (to this convex optimization problem) by assumption, and
provides a minimum of ‖Y −Xβ‖22 = 0. Hence, any minimizer to this second convex optimization
problem provides a solution with ‖Y −Xβ̂‖22 = 0, which implies that Y = Xβ̂. As a result, any
solution to this optimization problem is also a solution to the convex feasibility problem.
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3 Lasso Regression

We have so far developed an estimator for high-dimensional linear models when our measurements
yi have no noise. However, suppose we have noisy measurements

yi = x′iβ + εi,

where εi are iid zero-mean and bounded random variables. A common approach to estimating
the parameters is known as lasso regression, and is given by

β̂ = argmin
β
{‖Y −Xβ‖22 | ‖β‖1 ≤ λ}.

This estimator is often written as

β̂ = argmin
β
‖Y −Xβ‖22 + µ‖β‖1,

and the reason is that the minimizer to the two above optimization problems are identical for an
appropriate choice of the value µ.

To see why, consider the first optimization problem for λ > 0. Slater’s condition holds, and so
the Langrange dual problem has zero optimality gap. This dual problem is given by

max
ν≥0

min
β
‖Y −Xβ‖22 + ν(‖β‖1 − λ)

⇒max
ν
{‖Y −Xβ̂ν‖22 + ν‖β̂ν‖1 − νλ : ν ≥ 0}.

Let the optimizer be ν∗, and set µ = ν∗. Then the solution β̂µ minimizes ‖Y −Xβ‖22 + µ‖β‖1
and is identical to β̂ = argminβ{‖Y −Xβ‖22 | ‖β‖1 ≤ λ}.

This result is useful because it has a graphical interpretation that provides additional insight.
Visualizing the constrained form of the estimator provides intuition into why using the `1-norm
provide sparsity in the estimated coefficients β̂.

4 More Reading

The material in these sections follows that of

R. Vershynin (2014) Estimation in high dimensions: a geometric perspective, in Sampling Theory,
a Renaissance. Springer. To appear.

R. Vershynin (2009) Lectures in geometric functional analysis. Available online:
http://www-personal.umich.edu/~romanv/papers/GFA-book/GFA-book.pdf.

M. Ledoux and M. Talagrand (1991) Probability in Banach Spaces. Springer.

More details about these sections can be found in the above references.
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