
IEOR 265 – Lecture 2
Complexity Measures

1 Metric Entropy

In the previous lecture, we discussed how the majority of volume in a high-dimensional convex
body is concentrated in a small radius. However, this does not completely characterize the
important properties of convex bodies. For instance, consider the unit ℓ1- and ℓ∞-balls, that is

B1 = {x : ∥x∥1 ≤ 1}
B∞ = {x : ∥x∥∞ ≤ 1},

where ∥x∥1 =
∑p

j=1 |xi| is the ℓ1-norm and ∥x∥∞ = maxj |xi| is the ℓ∞-norm. Though these
balls have the same unit radius, the ℓ1-ball B1 has 2p vertices whereas the ℓ∞-ball B∞ has 2p

vertices. In other words, the polytope B∞ is significantly more complex than B1.

Given this large discrepancy in the complexity of these two balls, it is natural to ask whether
it is possible to define some measure of complexity for general convex bodies? In fact, there is
a broader question of whether it is possible to define some measure of complexity for general
subsets of Rp? We cannot simply count the number of vertices of the subsets, because in general
these sets will not be polytopes. It turns out that the answer to the above questions is an
emphatic “yes”. The situation is in fact more complex, because it turns out that there are several
interesting notions of complexity for subsets of Rp.

1.1 Definition of Metric Entropy

One simple notion of complexity is known as the “covering number” or “metric entropy” (they
are related by a logarithm). Given a set T ⊂ Rp and L ⊂ Rp, the covering number N(T ,L) is
the minimum number of translates of L needed to cover T . Then, the metric entropy is defined
as logN(T ,L). An important special case is when L = ϵB2, where B2 = {x : ∥x∥2 ≤ 1} is
the unit ℓ2-ball. Unfortunately, it is difficult to get accurate bounds on the covering number or
metric entropy for a general set T .

1.2 Covering Number Estimate

One approach to bounding the covering number is to compare the volumes of the sets T ,L. In
particular, we have that

vol(T )

vol(L)
≤ N(T ,L) ≤

vol(T ⊕ 1
2
L)

vol(1
2
L)

,
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where U ⊕ V = {u+ v : u ∈ U , v ∈ V} is the Minkowski sum. A useful corollary of this result is
that if T is a symmetric convex set, then for every ϵ > 0 we have(1

ϵ

)p

≤ N(T , ϵT ) ≤
(
2 +

1

ϵ

)p

.

1.3 Example: Covering Number of ℓ2-Ball

Consider the unit ℓ2-ball B2 = {x : ∥x∥2 ≤ 1}. Then the covering number of B2 by ϵ2 is bounded
by (1

ϵ

)p

≤ N(B2, ϵB2) ≤
(
2 +

1

ϵ

)p

.

For the ℓ2-ball with radius λ, which is defined as B2(λ) = {x : ∥x∥2 ≤ λ}, we thus have that
the covering number of B2(λ) by ϵB2 is bounded by

λp ·
(1
ϵ

)p

≤ N(B2, ϵB2) ≤ λp ·
(
2 +

1

ϵ

)p

.

This is exponential in p.

2 Gaussian Average

Another interesting notion of complexity is known as a “Gaussian average” or “Gaussian width”.
Given a set T ⊂ Rp, we define the Gaussian average as

w(T ) = E
(
sup
t∈T

g′t
)
,

where g ∈ Rp is a Gaussian random vector with zero-mean and identity covariance matrix (or
equivalently a random vector where each entry is an iid Gaussian random variable with zero-mean
and unit variance). Unfortunately, computing the Gaussian average for a given set T can be
difficult unless T has some simple structure.

2.1 Invariance Under Convexification

One of the most important properties (from the standpoint of high-dimensional statistics) of the
Gaussian average is that

w(conv(T )) = w(T ),

where conv(T ) denotes the convex hull of T . The proof of this is quite simple and instructive:
First, note that w(conv(T )) ≥ w(T ), since T ⊆ conv(T ). Second, note that if t ∈ conv(T ) then
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by Carathéodory’s theorem it can be represented as t =
∑p+1

j=1 µjtj where µj ∈ [0, 1],
∑

j µj = 1,
and tj ∈ T . As a result, we have

w(conv(T )) = E
(

sup
µj∈[0,1],

∑
j µj=1,tj∈T

g′(
∑p+1

j=1 µjtj)
)

≤ E
(

sup
µj∈[0,1],

∑
j µj=1,tj∈T

max
j

g′tj

)
= E

(
sup
tj∈T

max
j

g′tj

)
= E

(
sup
t∈T

g′t
)
= w(T ).

Since we have w(conv(T )) ≥ w(T ) and w(conv(T )) ≤ w(T ), it must be the case that
w(conv(T )) = w(T ). Note that this equivalence also follows by noting that the maximum
of a convex function over a closed convex set is attained at an extreme point of the convex set.

2.2 Sudakov’s Minoration

It turns out there is a relationship between the Gaussian average and the metric entropy of a set.
One such relationship is known as Sudakov’s minoration. In particular, if T is a symmetric set
(i.e., if t ∈ T , then −t ∈ T ), then we have√

logN(T , ϵB2) ≤ C · w(T )

ϵ
,

where C is an absolute constant. This is a useful relationship because it allows us to upper bound
the metric entropy of a set if we can compute its Gaussian average.

2.3 Example: Gaussian Average of ℓ2-Balls

Consider the set B2(λ) = {x : ∥x∥2 ≤ λ}. Its Gaussian average is defined as

w(B2(λ)) = E
(

sup
t∈B2(λ)

g′t
)
.

The quantity g′t is maximized whenever t is in the direction of g (i.e., t ∼ g
∥g∥2 ) and has length

∥t∥2 = λ. Thus, the quantity is maximized for t = λ · g
∥g∥2 . As a result, the Gaussian average is

w(B2(λ)) = λ · E(∥g∥2).

Since ∥g∥2 has a chi-distribution, standard results about this distribution give that

cλ
√
p ≤ w(B2(λ)) ≤ λ

√
p,

where c is an absolute positive constant. Finally, we can use Sudakov’s minoration to upper
bound the covering number:

N(B2(λ), ϵB2) ≤ exp
(C2p

ϵ2

)
.

This is exponential in p, just like the previous bound.
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2.4 Example: Gaussian Average of ℓ1-Balls

Consider the set B1(λ) = {x : ∥x∥1 ≤ λ}. Its Gaussian average is defined as

w(B1(λ)) = E
(

sup
t∈B1(λ)

g′t
)
.

By Hölder’s inequality, we know that g′t ≤ |g′t| ≤ ∥g∥∞ ·∥t∥1. Thus, we can bound the Gaussian
average by

w(B1(λ)) = E
(

sup
t∈B1(λ)

g′t
)
≤ E

(
sup

t∈B1(λ)

∥g∥∞ · ∥t∥1
)
= λ · E

(
max

j
|gj|

)
.

Hence, the question is how to upper bound E
(
maxj |gj|

)
.

1. The first observation is that

max
j

|gj| = max
(
max

j
gj,max

j
−gj

)
.

2. The second observation is that if Vi for i = 1, . . . , n are (not necessarily independent)
Gaussian random variables with zero-mean and variance σ2, then we have

exp(uE(max
i

Vi)) ≤ E(exp(u ·max
i

Vi)) =

Emax
i

exp(uVi) ≤
n∑

i=1

E(exp(uVi)) ≤ n exp(u2σ2/2),

where the first inequality follows from Jensen’s inequality and the last equality is an identity
from the definition of the moment generating function of a Gaussian. Rearranging terms
gives

E(max
i

Vi) ≤
log n

u
+

uσ2

2
.

We can tighten this bound by choosing u to minimize the right hand side of the above
equation. The minimizing value makes the derivative equal to zero, meaning

− log n

u2
+

σ2

2
= 0 ⇒ u =

√
2 log n/σ.

Substituting this value of u into the upper bound yields

E(max
i

Vi) ≤ σ
√
2 log n.

Since σ2 = 1 for gj and −gj, combining these two observations gives that

E
(
max

j
|gj|

)
≤

√
2 log 2p ≤

√
2 log 2 + 2 log p ≤

√
4 log p,
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whenever p ≥ 2.

Consequently, we have that the Gaussian average of the ℓ1-ball is

w(B1(λ)) ≤ λ ·
√
4 log p.

whenever p ≥ 2. We can use Sudakov’s minoration to upper bound the covering number:

N(B1(λ), ϵB2) ≤ exp
(C2λ2 · 4 log p

ϵ2

)
= (exp(log p))4C

2λ2/ϵ2 = pcλ
2/ϵ2 ,

where c is an absolute constant. Interestingly, this is polynomial in p, which is in contrast to the
covering number of B2(λ).

2.5 Example: Gaussian Average of ℓ∞-Balls

Consider the set B∞(λ) = {x : ∥x∥∞ ≤ λ}. Its Gaussian average is defined as

w(B∞(λ)) = E
(

sup
t∈B∞(λ)

g′t
)
.

By Hölder’s inequality, we know that g′t ≤ |g′t| ≤ ∥g∥1 ·∥t∥∞. Thus, we can bound the Gaussian
average by

w(B∞(λ)) = E
(

sup
t∈B∞(λ)

g′t
)
≤ E

(
sup

t∈B∞(λ)

∥g∥1 · ∥t∥∞
)
= λ · E

(
∥g∥1

)
.

But note that ∥g∥1 = maxsi∈{−1,1}
∑p

i=1 sigi. Since the gi are iid Gaussians with zero-mean and
unit variance, for fixed si the quantity

∑p
i=1 sigi is a Gaussian with zero mean and variance p.

Thus, using our earlier bound gives

E(∥g∥1) = E( max
si∈{−1,1}

p∑
i=1

sigi) ≤
√

4p log 2p =
√

4 log 2 · p2.

Thus, the Gaussian average is

w(B∞(λ)) ≤
√
4 log 2λ · p.

We can use Sudakov’s minoration to upper bound the covering number:

N(B∞(λ), ϵB2) ≤ exp
(C2λ2 · 4 log 2 · p2

ϵ2

)
,

where c is an absolute constant. This is exponential in p.
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3 Rademacher Average

Another notion of complexity is known as a “Rademacher average” or “Rademacher width”.
Given a set T ⊂ Rp, we define the Rademacher average as

r(T ) = E
(
sup
t∈T

ϵ′t
)
,

where ϵ ∈ Rp is a Rademacher random vector, meaning each component ϵi is independent and

P(ϵi = ±1) =
1

2
.

Similar to the Gaussian average, computing the Rademacher average for a given set T can be
difficult unless T has some simple structure. Though many results for Gaussian averages have
analogs for Rademacher averages, Rademacher averages are more difficult to work with because
many comparison results for Gaussian averages do not have analogs for Rademacher averages.

Furthermore, it is the case that Rademacher and Gaussian averages are equivalent:

c · r(T ) ≤ w(T ) ≤ C · log pr(T ),

where c, C are absolute constants.

4 M∗ Bound

The reason we are interested in complexity measures of sets is because of the following result,
which is known as the M∗ Bound. If (i) T ⊂ Rp is bounded and symmetric (i.e., T = −T ),
and (ii) E is a random subspace of Rp with fixed codimension n and drawn according to an
appropriate distribution, then

E
(
diam(T ∩ E)

)
≤ Cw(T )√

n
.

.

5 More Reading

The material in these sections follows that of

R. Vershynin (2014) Estimation in high dimensions: a geometric perspective, in Sampling Theory,
a Renaissance. Springer. To appear.

R. Vershynin (2009) Lectures in geometric functional analysis. Available online:
http://www-personal.umich.edu/~romanv/papers/GFA-book/GFA-book.pdf.
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M. Ledoux and M. Talagrand (1991) Probability in Banach Spaces. Springer.

More details about these sections can be found in the above references.
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