
IEOR 265 – Lecture 18
Inverse Decision-Making

1 Problem Framework

Suppose we have an individual (or system) making decisions by optimizing some utility (or cost)
function that depends on inputs from the environment. In some problems, we have the following
scenario: We get to observe the inputs and the corresponding decisions, and we would like to infer
the utility function of the individual. This problem is actually a type of regression problem, but
there are additional complications which mean that we have to use a more complex formulation
in order to solve the problem.

The first question that needs to be addressed is the model of the individual, and the number of
individuals. There are two cases we will consider.

1.1 Utility Maximizing Agent

Suppose that an agent makes decisions by solving the following optimization problem:

x∗i = arg max{J(x, ui) | x ∈ X (ui)},

where ui ∈ Rq are inputs, x∗i ∈ Rd are decisions, J(x, ui) is the utility function of the agent,
and X (ui) is a bounded feasible set (that depends on ui). In this model, we observe (ui, x

∗
i ) for

i = 1, . . . , n and would like to infer the function J(x, ui).

Note that this same model has an alternative interpretation. Suppose we have an expert (or
controller) that is operating a system by minimizing a cost function, similar to MPC or LBMPC.
And suppose that we observe the control actions and states of the system, but do not know the
cost function. This scenario is captured by the above model by noting that the cost function is
−J(x, ui), ui is the initial condition of the system (corresponding to x0 in MPC), and x∗i is the
control action chosen (corresponding to u0 in MPC).

1.2 Multiple Strategic Agents

Suppose that we have p ≥ 2 agents, and the k-th agent is making decisions x∗,k ∈ X k(ui) to
maximize their utility function while also taking into account the strategic behavior of each other
agent. In this model, we need to also specify our notion of strategic behavior. Perhaps the most
well known notion is that of the Nash equilibrium, in which

x∗,ki ∈ arg max{Jk(x∗,1i , . . . , x∗,k−1i , xk, x∗,k+1
i , . . . , x∗,pi , ui) | xk ∈ X k(ui)}.

1



However, there are other notions of rationality such as correlated equilibria. Similar to the case
of the utility maximizing agent, we observe (ui, x

∗,1
i , . . . , x∗,pi ) for i = 1, . . .n and would like to

infer the utility function of each agent Jk.

1.3 Technical Difficulty

These problems are difficult to solve, and they are special cases of what are known as inverse
optimization problems. To specifically understand the difficulty, consider the utility maximizing
agent. And assume that we have a parametrization of the utility function, that is we have
φ(x, u; β) and a bounded set B such that there exists β0 ∈ B with J(x, u) = φ(x, u; β0). Then,
one way that the inverse decision making problem can be formulated is as

β̂ = arg min
β

0

s.t. x∗i = arg max
x
{φ(x, ui; β) | x ∈ X (ui)}

β ∈ B

This feasibility problem is difficult to solve because it has an atypical constraint: The constraint
that x∗i be the maximizer to some optimization problem cannot be directly handled by nonlinear
programming techniques.

2 Utility Maximizing Agent

Recall the following abstract model: Suppose that an agent makes decisions by solving the
following optimization problem:

x∗i = arg max{J(x, ui) | x ∈ X (ui)},

where ui ∈ Rq are inputs, x∗i ∈ Rd are decisions, J(x, ui) is the utility function of the agent, and
X (ui) is a bounded set (that depends on ui). In this model, we observe (ui, x

∗
i ) for i = 1, . . . , n

and would like to infer the function J(x, ui).

To make this model more concrete, we will specify a specific instantiation of this problem. In
particular, suppose that

• The constraint set is described by linear equality and inequality constraints:

X (u) = {x : Ax+Bui ≤ c, Fx+Gui = h},

where (A, b) and (F, h) are suitably defined matrices and vectors.

• Assume that we have a parametrization of the utility function, that is we have φ(x, u; β)
and a bounded set Γ such that there exists β0 ∈ Γ with J(x, u) = φ(x, u; β0).

Though these two conditions make the problem more specific, we will still impose additional
conditions on the model formulation to make the problem computationally tractable.

2



2.1 Technical Difficulty

Recall the feasibility problem formulation of the inverse decision-making problem for this single
utility maximizing agent model:

β̂ = arg min
β

0

s.t. x∗i ∈ arg max
x
{φ(x, ui; β) | Ax+Bui ≤ c, Fx+Gui = h}

β ∈ Γ.

This feasibility problem is difficult to solve because it has an atypical constraint: The constraint
that x∗i be the minimizer to some optimization problem cannot be directly handled by nonlinear
programming techniques. There are two reasons that this constraint presents challenges:

1. Depending on the value of β there may be one or multiple maximizers. This means that in
general we must treat the function

P (ui, β) = arg max
x
{φ(x, ui; β) | Ax+Bui ≤ c, Fx+Gui = h}

as a multi-valued function.

2. The function P (ui, β) has a complex form, because it is defined as a set of maximizers. This
means that in general we cannot even hope for continuity of P (ui, β) (cf. the Berge Maxi-
mum Theorem, which says that for continuous φ we can only expect upper-hemicontinuity
of P (ui, β)), much less differentiablity.

2.2 KKT Reformulation

Since P (ui, β) is a multi-valued function, we can make the problem more tractable by impos-
ing additional conditions on our model so that instead P (ui, β) is a single-valued (and hence
continuous by the Berge Maximum Theorem) function. In particular, suppose that for all fixed
values of β ∈ Γ the function φ(x, ui; β) is strictly concave in (x, ui). Then the corresponding op-
timization problem has a single maximizer, and so this additional condition fixes our first difficulty.

The second difficulty regarding the complex form of P (ui, β) still remains. However, since our
constraints are linear, we have linearity constraint qualification, and so the unique maximizer
x∗i = P (ui, β) satisfies the KKT conditions: There exist row-vectors λi and µi such that

−∇xφ(x∗i , ui; β) + λiA+ µiF = 0

Ax∗i +Bui ≤ c

Fx∗i +Gui = h

λji ≥ 0

λji = 0 if Ajx
∗
i +Bjui < cj,

3



where Aj, Bj, cj denote the j-th row of A,B, c respectively. As a result, we can now pose our
feasibility problem as

β̂ = arg min
β

0

s.t. −∇xφ(x∗i , ui; β) + λiA+ µiF = 0

λji ≥ 0

λji = 0 if Ajx
∗
i +Bjui < cj

β ∈ Γ.

Note that because (ui, x
∗
i ) are measured, they are constant in our feasibility formulation and in

the KKT conditions. Therefore, the conditional statement “if Ajx
∗
i + Bjui < cj” is computed

before we solve the feasibility problem. In other words, we decide to either include or exclude the
constraint λji = 0 in our feasibility problem based on a precomputed conditional.

This problem can still be difficult to solve, because this reformulated problem may not be convex.
Consider the constraint

−∇xφ(x∗i , ui; β) + λiA+ µiF = 0,

and note that it is an equality constraint. However, a standard result is that an equality constraint
Q(β) is convex if and only Q is an affine function (meaning that it can be written as Q = Mβ+k
where M is a matrix and k is a constant vector). As a result, our feasibility problem to estimate
the parameters β of our utility function is convex if and only if Q(β) = −∇xφ(x∗i , ui; β) is an
affine function. Stated in another way, our formulation is convex if and only if the gradient of φ
with respect to x is affine in β when the gradient is evaluated at x∗i and ui.

3 Optimality-Conditions Feasibility Formulation

Recall the feasibility formulation when we can parameterize the utility function by φ(x, u; β),
where this function is strictly concave in (x, u) for every fixed value of β ∈ Γ, with a gradient
that is affine in β for every fixed value of (x, u):

β̂ = arg min
β

0

s.t. −∇xφ(x∗i , ui; β) + λiA+ µiF = 0

λji ≥ 0

λji = 0 if Ajx
∗
i +Bjui < cj

β ∈ Γ.

Note that we will assume that x ∈ Rd and u ∈ Rq.

4



4 Examples

This might seem like a restrictive formulation (in particular the requirement that the gradient is
affine in β), but it can capture many useful situations. A few examples are described here.

4.1 Quadratic Utilities

Consider a quadratic utility given by

φ(x, u; β) = −x′Qx+ u′F ′x+ k′x,

where Q ∈ Rd×d : Q � 0, F ∈ Rd×q are matrices, and k ∈ Rd is a vector. Note that its gradient

∇xφ(x, u; β) = −2Qx+ Fu+ k.

is an affine function of the parameters Q,F, k.
The first thing to note is that this utility is equivalent to the following:

φ̃(x, u; β̃) = −
[
x
u

]′ [
Q11 Q12

Q′12 Q22

] [
x
u

]
+

[
k1
k2

]′ [
x
u

]
,

where

[
Q11 Q12

Q′12 Q22

]
� 0 is a block matrix that is appropriately sized, and

[
k1
k2

]
is an appropriately

sized block vector. The equivalence of this utility can be seen by noting that

φ̃(x, u; β̃) = −
[
x
u

]′ [
Q11 Q12

Q′12 Q22

] [
x
u

]
+

[
k1
k2

]′ [
x
u

]
= −x′Q11x− u′Q22u+ 2u′Q′12x+ k′1x+ k′2u.

Since the utility maximizing agent optimizes over x for a fixed value of u, this means that the
minimizer of this second problem will be equivalent to the first if Q = Q11, F = 2Q′12, and
k = k1.
The second thing to note is that there is a problem with the corresponding feasibility formulation

β̂ = arg inf
β

0

s.t. 2Qx∗i − Fui − k + λiA+ µiF = 0

λji ≥ 0

λji = 0 if Ajx
∗
i +Bjui < cj

Q � 0.

The following β is a feasible point of the above problem: Q = 0, F = 0, k = 0,λi = 0,and
µi = 0. This problem is a manifestation of the fact that there are an infinite number of utility

5



functions that can lead to an observed set of decisions. To fix this problem, we must ensure that
the formulation is properly normalized. One approach is to change the formulation to

β̂ = arg min
β

0

s.t. 2Qx∗i − Fui − k + λiA+ µiF = 0

λji ≥ 0

λji = 0 if Ajx
∗
i +Bjui < cj

Q � I.

4.2 Nonparametric Utilities

Instead of a parametric form of the utility, we can also define a nonparametric utility (essentially
meaning an infinite number of parameters). For instance, we could have

φ(x, u; β) =
∞∑
i=0

kifi(x, u),

where fi(x, u) : Rd × Rq → R is a differentiable nonlinear function, and the β are the ki
parameters. In this case, the gradient is given by

φ(x, u; β) =
∞∑
i=0

ki∇xfi(x, u),

which is affine in the β. Note that in general we will face a normalization issue, and so we would
have to include an appropriate constraint in our feasibility problem to deal with this.
An example of the above is a finite polynomial expansion:

φ(x, u; β) = k1x+ k2x
2 + k3xu+ k4x

2u+ k5xu
2,

where we the inputs are such that u > 0. In this case, the feasibility problem with (one-potential)
normalization is given by

β̂ = arg min
β

0

s.t. − k1 − 2k2x
∗
i − k3ui − 2k4x

∗
iui − k5u∗i 2 + λiA+ µiF = 0

λji ≥ 0

λji = 0 if Ajx
∗
i +Bjui < cj

k2 ≥ 0, k4 ≥ 0

k2 ≥ 1.

Here, we have chosen the normalization k2 ≥ 1. Note that we could have chosen other normal-
ization constraints, such as k1 ≥ 1.

6



5 Suboptimal or Noisy Points

So far, we have assumed that the points (ui, x
∗
i ) are measured without noise. Suppose instead

that we measure (ui, x
∗
i + εi) where εi is some i.i.d. noise. (An alternative model is that the

measured points (ui, xi) are suboptimal, meaning that they are close to the optimal values.) This
introduces a new problem because now our optimality conditions will not be true. To overcome
this difficulty, we define the new feasibility problem:

β̂ = arg min
β

∑
i

‖ri,s‖22 + ‖ri,c‖22

s.t. −∇xφ(x∗i , ui; β) + λiA+ µiF = ri,s

λji ≥ 0

λji = rji,c if Ajx
∗
i +Bjui < cj

β ∈ Γ.

The idea is that we allow for residuals in the equality constraints that would be identically zero
for optimal points, to take into account that a measured point may be suboptimal.

7


	Problem Framework
	Utility Maximizing Agent
	Multiple Strategic Agents
	Technical Difficulty

	Utility Maximizing Agent
	Technical Difficulty
	KKT Reformulation


