IEOR 265 — Lecture 17
Epi-Convergence

1 Epi-convergence

Recall the setting where we have a sequence of optimization problems

min f,(z)
that are approximating some optimization problem min f(x), where f,,, f are extended real-valued
functions. The question was when the minimizers of f,, converge to minimizers of f, because
then this means that the f,, are indeed good approximaters of f for the purpose of optimization.

As we saw in the counterexample from the previous lecture, point-wise convergence of f, to f is
insufficient. We need a stronger notion of convergence.

1.1 Characterization

It turns out that a better notion of convergence is epi-convergence, and the idea is that the
epigraphs of the f,, converge to the epigraph of f (where convergence is defined in a particular
way). One simpler characterization is that we say the f, epi-converge to f (or f,, — f) if and
only if at each point = one has

{lim inf,, f.(z,) > f(z),for every sequence x,, — x,

limsup,, f(x,) < f(x),for some sequence z, — x.

1.2 Convergence in Minimization

Unfortunately, epi-convergence is not sufficient for convergence in minimization. For instance,
consider the situation where f,,(z) = max{z/n, —1} and f(x) = 0. It is the case that f, = f.
However, min f,, = —1 while min f = 0. Thus, we will need to impose additional conditions
beyond epi-convergence.

In particular, suppose the f,, f satisfy:
o fu—rf
e f. f have bounded and non-empty feasible sets.
Then there is a result that states
o V, — V, where V = min f(z) is finite, and V,, = min f,(z);
e the sets arg min f,(x) are nonempty and form a bounded sequence with

lim sup,, (arg min f,,(z)) C argmin f(z).



2 Epi-convergence of Oracle in LBMPC

The reason these concepts are relevant to LBMPC is that the oracle O, is changing. Conse-
quently, we are not solving a fixed optimization; rather, we are solving a sequence of optimization
problems. And it is natural to ask the question that if the oracle converges to the true model, then
does the solution given by LBMPC converge to a solution that would be given if the optimization
problem a priori knew the true model. This situation is more complicated than above, because
we can have randomness in how we construct the oracle. As a result, the formal results require
stochastic generalizations of the epi-convergence concepts discussed above.

In particular, suppose that there is a true model
Tni1 = Az, + Bu, + g(x,, uy),

where g(x,,u,) € W. There are results for two important cases, corresponding to two classes
of oracles.

2.1 Parametric Oracle

If there exists Ao such that g(z,u) = x(z,u,Ao), then under some technical conditions we
have that the control law of LBMPC with the parametric oracle O,, = x(x,u, ) converges in
probability to the control law of MPC that knows the true model.

2.2 Nonparametric Oracle

If the nonparametric oracle converges uniformly in probability to the true modeling error

sup [|On(z, u) — g(@, u)|| = Op(ry),
X xU

with 7, — 0, then under some technical conditions the control law of LBMPC converges in
probability to the control law of MPC that knows the true model.

3 Using L2NW Estimator as Oracle

Suppose that we use the L2NW estimator as an oracle for LBMPC:
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where K (-) is a kernel function. For notational convenience, we will define
T o ZT;
U U;

Y; = xiy1 — (Az; + Bu,),
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Similarly, we will define
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With this notation, we can write the L2NW estimator in much simpler notation:

n—1 —
O, (i.11) = 2 im0 LK (ui) .

A+2ine K(E)
It turns out that the deterministic properties of the L2NW estimator are well-suited for LBMPC.
In particular, if 0 € W and A > 0, then the L2NW estimator is differentiable and O(%, 1) € W
(meaning that it is bounded). This boundedness condition is important for achieving robust
asymptotic stability (RAS) when using L2ZNW as an oracle, and the differentiability is important
for numerical implementation because optimization software computes faster and more accurately
when given gradients of functions in the objectives and constraints.

3.1 Stochastic Epi-Convergence of L2ZNW in LBMPC

It can be shown that under certain technical conditions (including h, — 0 and A\ = O(h,,)),
the L2NW estimator converges uniformly in probability. As a result, we have that if g(z,u) is
Lipschitz continuous, then the control law of LBMPC with L2NW converges in probability to
the control law of an MPC that knows the true model. In the next subsection, we describe a
simulation of LBMPC with L2NW applied to a nonlinear system. Note that even though the
LBMPC optimization is non-convex in the scenario we present, using local optima gives good
performance.

3.2 Example: Moore-Greitzer Compressor Model

The compression system of a jet engine can exhibit two types of instability: rotating stall and
surge. Rotating stall is a rotating region of reduced air flow, and it degrades the performance
of the engine. Surge is an oscillation of air flow that can damage the engine. Historically, these
instabilities were prevented by operating the engine conservatively. But better performance is
possible through active control schemes.



The Moore-Greitzer model is an ODE model that describes the compressor and predicts surge
instability .
O=—-U+TV,+1+30/2—P*/2

U= (0+1—rVT)/p2,

where ® is mass flow, U is pressure rise, 5 > 0 is a constant, and r is the throttle opening. We
2

assume 1 is controlled by a second order actuator with transfer function r(s) = M"Dﬁu(s)
n n

where ( is the damping coefficient, w? is the resonant frequency, and u is the input.

We conducted simulations of this system with the parameters 3 = 1, ¥, = 0, ¢ = 1/4/2, and
w, = v/1000. We chose state constraints 0 < ® <1 and 1.1875 < ¥ < 2.1875, actuator con-
straints 0.1547 < r < 2.1547 and —20 < 7 < 20, and input constraints 0.1547 < u < 2.1547.
For the controller design, we took the approximate model with state dx = [0 JU dr I7] to
be the exact discretization (with sampling time 7" = 0.01) of the linearization of (??) about the
equilibrium zo = [®g ¥q 79 7] = [0.5000 1.6875 1.1547 0]’; the control is u,, = du,, + ugy, where
g = 1o. |he linearization and approximate model are unstable, and so we picked a nominal feed-
back matrix K = [—3.0741 2.0957 0.1195 — 0.0090] that stabilizes the system by ensuring that
the poles of the closed-loop system x,,.; = (A + BK)x,, were placed at {0.75,0.78,0.98,0.99}.
These particular poles were chosen because they are close to the poles of the open-loop system,
while still being stable.

We need the modeling error set WV, and this set W was chosen to be a hypercube that en-
compasses both a bound on the linearization error, derived using the Taylor remainder theorem
applied to the true nonlinear model, along with a small amount of subjectively-chosen “safety
margin” to provide protection against the effect of numerical errors.

We compared the performance of linear MPC, nonlinear MPC, and LBMPC with L2NW for
regulating the system about the operating point xg, by conducting a simulation starting from
initial condition [®y — 0.35 WUy — 0.40 ry 0]'. The horizon was chosen to be N = 100, and we
used the cost function

o = N — AOI + (2 — A0+ N5 s — AOIE + (s — WO,

with @ =1, R =1, T = 1e3, and P that solves the discrete-time Lyapunov equation. (Note
that the more complicated form of the cost function is due to the use of a reference governor con-
cept that provides improved performance.) The L2NW used a bandwidth of A = 0.5, A = 1e-3
and data measured as the system was controlled by LBMPC (i.e., there was no pre-training).
Also, the L2NW only used three states X; = [®; U, ;] to estimate g(x, u); incorporation of such
prior knowledge improves estimation by reducing dimensionality.

The significance of this setup is that the assumptions of the theorems about robust constraint
satisfaction, feasibility, and robust asymptotic stability (RAS) are satisfied. This means that for
both linear MPC and LBMPC: (a) constraints and feasibility are robustly maintained despite



Figure 1: The states and control of LBMPC (solid blue), linear MPC (dashed red), and nonlinear
MPC (dotted green) are shown. LBMPC converges faster than linear MPC.

modeling errors, (b) closed-loop stability is ensured, and (c) control is input-to-state-stable (ISS)
with respect to modeling error. In the instances we simulated, the controllers demonstrated these
features.

Simulation results are shown in Fig. 1: LBMPC converges faster to the operating point than
linear MPC, but requires increased computation at each step (0.3s for linear MPC vs. 0.9s for
LBMPC). Interestingly, LBMPC performs as well as nonlinear MPC, but nonlinear MPC only
requires 0.4s to compute each step. However, our point is that LBMPC does not require the
control engineer to model nonlinearities, in contrast to nonlinear MPC. Our code was written in
MATLAB and uses the SNOPT solver for optimization.

4 Further Details

More details about the theory of epi-convergence can be found in the book Variational Analysis
by Rockafellar and Wets, from which the material in the first two sections is found. Another
useful reference is the book Optimization: Algorithms and Consistent Approximations by Polak.
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