
IEOR 265 – Lecture 16
The Oracle

1 Naming

In theoretical computer science, oracles are black boxes that take in inputs and give answers. An
important class of arguments known as relativizing proofs utilize oracles in order to prove results
in complexity theory and computability theory. These proofs proceed by endowing the oracle with
certain generic properties and then studying the resulting consequences.

We have named the functions On oracles in reference to those in computer science. Our reason is
that we proved robustness and stability properties of LBMPC by only assuming generic properties,
such as continuity or boundedness, on the function On. These functions are arbitrary, which can
include worst case behavior, for the purpose of the theorems in the previous section.

Whereas before, we considered the oracles as abstract objects, here we discuss and study specific
forms that the oracle can take. In particular, we can design On to be a statistical tool that
identifies better system models. This leads to two natural questions: First, what are examples
of statistical methods that can be used to construct an oracle for LBMPC? Secondly, when does
the control law of LBMPC converge to the control law of MPC that knows the true model? It
will turn out that the second question is complex, and will be discussed in a later lecture.

2 Parametric Oracles

A parametric oracle is a continuous function On(x, u) = χ(x, u;λn) that is parameterized by
a set of coefficients λn ∈ T ⊆ RL, where T is a set. This class of learning is often used in
adaptive control. In the most general case, the function χ is nonlinear in all its arguments, and it
is customary to use a least-squares cost function with input and trajectory data to estimate the
parameters

λ̂n = arg minλ∈T
∑n

j=0(Yj − χ(xj, uj;λ))2, (1)

where Yi = xi+1 − (Axi + Bui). This can be difficult to compute in real-time because it is
generally a nonlinear optimization problem.

Example: It is common in biochemical networks to have nonlinear terms in the dynamics such as

On(x, u) = λn,1

(
x
λn,2

1

x
λn,2

1 + λn,3

)(
λn,4

u
λn,5

1 + λn,4

)
, (2)

where λn ∈ T ⊂ R5 are the unknown coefficients in this example. Such terms are often called
Hill equation type reactions.

1

2.1 Linear Oracles

An important subclass of parametric oracles are those that are linear in the coefficients: On(x, u) =∑L
i=1 λn,iχi(x, u), where χi ∈ Rp for i = 1, . . . , L are a set of (possibly nonlinear) functions.

The reason for the importance of this subclass is that the least-squares procedure (1) is convex in
this situation, even when the functions χi are nonlinear. This greatly simplifies the computation
required to solve the least-squares problem (1) that gives the unknown coefficients λn.

Example: One special case of linear parametric oracles is when the χi are linear functions.
Here, the oracle can be written as Om(x, u) = Fλmx + Gλmu, where Fλm , Gλm are matrices
whose entries are parameters. The intuition is that this oracle allows for corrections to the
values in the A,B matrices of the nominal model; it was used in conjunction with LBMPC on
a quadrotor helicopter testbed that will be discussed in later lectures, in which LBMPC enabled
high-performance flight.

3 Nonparametric Oracles

Nonparametric regression refers to techniques that estimate a function g(x, u) of input variables
such as x, u, without making a priori assumptions about the mathematical form or structure of the
function g. This class of techniques is interesting because it allows us to integrate non-traditional
forms of adaptation and “learning” into LBMPC. And because LBMPC robustly maintains fea-
sibility and constraint satisfaction as long as Ω can be computed, we can design or choose the
nonparametric regression method without having to worry about stability properties. This is a
specific instantiation of the separation between robustness and performance in LBMPC.

Example: Neural networks are a classic example of a nonparametric method that has been used
in adaptive control, and they can also be used with LBMPC. There are many particular forms of
neural networks, and one specific type is a feedforward neural network with a hidden layer of kn
neurons; it is given by

On(x, u) = c0 +
∑kn

i=1 ciσ(a′i[x
′ u′]′ + bi), (3)

where ai ∈ Rp+m and bi, c0, ci ∈ R for all i ∈ {1, . . . , k} are coefficients, and σ(x) = 1/(1+e−x) :
R → [0, 1] is a sigmoid function. Note that this is considered a nonparametric method because
it does not generally converge unless kn →∞ as n→∞.

Designing a nonparametric oracle for LBMPC is challenging because the tool should ideally be
an estimator that is bounded to ensure robustness of LBMPC and differentiable to allow for
its use with numerical optimization algorithms. Local linear estimators are not guaranteed to
be bounded, and their extensions that remain bounded are generally non-differentiable. On the
other hand, neural networks can be designed to remain bounded and differentiable, but they can
have technical difficulties related to the estimation of its coefficients. In future lectures, we will
discuss one specific type of nonparametric oracle that works well with LBMPC both theoretically
and in simulations.

2

4 Sequence of Optimization Problems

Suppose we have an optimization problem

min f(x),

where f : Rp → R is lsc, level-bounded, and proper. In many applications, we may not be
interested in directly solving this optimization problem. Instead, we will have a sequence of
optimization problems that are meant to approximate this problem, and we instead solve these
approximating optimization problems. This setting is not as abstract as it may seem at first
glance: For example, this is implicitly what is done when using log-barrier functions, which are
common in interior-point methods for numerically solving constrained optimization problems by
converting a constrained problem into a sequence of approximating unconstrained problems. We
will refer to this sequence of optimization problems as

min fn(x).

This is also the situation in LBMPC, where we have an optimization problem that changes as
we get more data about the system being controlled. For LBMPC, the relevant question is ulti-
mately: What is a good oracle to use? This is more difficult than may initially be seen because
we would ideally like the oracle to be designed such that the minimizers of LBMPC converge to
the minimizers of an MPC that knows the true system model.

The central question with such sequences of approximating optimization problems is whether
they provide a good approximation to the solution of the original optimization problem. That is,
ideally we would like for Vn → V , where

Vn = min fn(x)

V = min f(x),

and we would also like for lim supnX ∗n ⊆ X ∗ where

X ∗n = arg min fn(x)

X ∗ = arg min f(x).

This last statement means that if x is any point such that there exists a subsequence x∗ν ∈ X ∗ν
such that x∗ν → x, then x ∈ X ∗. The reason for this condition is that it may be the case that
the limiting optimization problem has more minimizers than each individual optimization in the
sequence. Note that when there is only a single minimizer, we must have that x∗n → x∗.

At its surface, this might seem like an easy exercise; however, certain pathologies can occur, as
evidenced by the following example: Consider a sequence of optimization problems

min min{1− x, 1, 2n|x+ 1/n| − 1}
s.t. x ∈ [−1, 1].

3

The objectives fn(x) = min{1−x, 1, 2n|x+1/n|−1} converge pointwise to f(x) = min{1−x, 1}
(recall that the definition of pointwise convergence is that limn→∞ fn(x) = f(x) for all x ∈
domf). Next we turn our attention to the minimizers of the sequence, which are x∗n = −1/n and
converge to zero. However, the minimizer of the optimization problem that we are approximating
by the sequence is x∗ = 1. The minimizers of the sequence do not converge to the minimizer of
the limiting optimization problem.

Convergence of local minimizers to the local minimizers of a limiting optimization problem is
more difficult because additional pathologies can occur. For instance, it is possible for local
minimizers of a sequence of approximating problems to converge to the global maximizer of the
limiting problem. Proving such pathologies does not occur requires the use of more sophisticated
arguments, such as those using optimality functions.

5 Uniform Convergence

This problem of approximating optimization problems has actually already been encountered in
this class. Specifically, we constructed a number of M -estimators and proved that the minimizer
of the M -estimator converged to the true parameter value. For instance, for ordinary least squares
(OLS) we solve

β̂ = arg min
u

1

n

n∑
i=1

(yi − x′iu)2

In fact, the OLS problem is really a sample average approximation of the following problem:

β = arg min
u

E((y − x′u)2).

And so when proving the statistical consistency of OLS, we are actually showing that the mini-
mizer to the first problem converges in probability to the minimizer of the second problem.

5.1 Uniform Law of Large Numbers

In statistics, the two major proof techniques for showing such convergence are essentially uniform
convergence arguments. For nonlinear least squares problems, a uniform law of large numbers
(ULLN) can be proven: This states that if g(x, y; β) is continuous in its arguments, then we have

sup
u∈Ω

∣∣∣∣∣ 1n
n∑
i=1

g(xi, yi;u)− E(g(x, y;u))

∣∣∣∣∣ p→ 0,

when Ω is bounded and closed and some technical regularity conditions hold. And so this ULLN
implies that

arg min
u∈Ω

1

n

n∑
i=1

g(xi, yi;u)
p→ arg min

u∈Ω
E(g(x, y;u)),

when arg minu∈Ω E(g(x, y;u)) consists of a single point.

4

5.2 Wald’s Proof Technique

A related proof technique due to Wald (1949) applies to situations where weaker continuity
properties hold. In particular, if g(x, y; β) is lower semicontinuous, then the ULLN does not
generally hold. However, it can still be shown that

distance(β̂, arg min
u∈Ω

E(g(x, y;u)))
p→ 0,

where β̂ = arg minu∈Ω
1
n

∑n
i=1 g(xi, yi;u). The idea of the Wald approach is to find a finite

subcover of the set Π = {u ∈ Ω : distance(u, arg minu∈Ω E(g(x, y;u))) > ε)} and then apply
the weak law of large numbers (WLLN) to the centers of the covering balls to show that almost
surely we have that

min
u∈Π

1

n

n∑
i=1

g(xi, yi;u) > arg min
u∈Ω

E(g(x, y;u)).

The result follows since this can be done for any ε > 0.

5.3 Rademacher Complexity

The proof techniques underlying Rademacher complexity and the M∗-bound are essentially uni-
form arguments. For instance, we showed that

E((y − f̂(x))2) ≤ inf
f∈F

E((y − f(x))2 + 4Rn(F) +
C

n
,

where C > 0 is a constant and Rn(F) is the Rademacher complexity of the function class F .

5.4 Stochastic Equicontinuity

Another uniform convergence argument is to show stochastic equicontinuity of the optimization
problem, meaning show that for every ε > 0 and η > 0 there exists δ > 0 such that

lim supP

(
sup
u∈Ω

sup
u′∈B(θ,δ)

∣∣∣∣∣ 1n
n∑
i=1

g(xi, yi;u)− 1

n

n∑
i=1

g(xi, yi;u
′)

∣∣∣∣∣ > ε

)
< η.

6 Further Details

The counterexample above is from Variational Analysis by Rockafellar and Wets.

5

	Naming
	Parametric Oracles
	Linear Oracles

	Nonparametric Oracles
	Sequence of Optimization Problems
	Uniform Convergence
	Uniform Law of Large Numbers
	Wald's Proof Technique
	Rademacher Complexity
	Stochastic Equicontinuity

