
IEOR 265 – Lecture 15
Learning-Based MPC

1 Robustness in Tube Linear MPC

1.1 Continuity of Value Function

In addition to the recursive feasibility and constraint satisfaction properties of tube MPC, in the
presence of disturbance, there are other types of robustness that this method has. These are in
fact related to continuity of the minimizers and value function. In fact, if ψn is continuous and
strictly convex, then the strictly convex variant of the Berge maximum theorem tells us that the
minimizer is continuous and the value function is convex and continuous.

1.2 Robust Asymptotic Stability

Recall the following two definitions:

• A function γ : R+ → R+ is type-K if it is continuous, strictly increasing, and γ(0) = 0.

• A function β : R+ × R+ → R+ is type-KL if for each fixed t ≥ 0, the function β(·, t)
is type-K, and for each fixed s ≥ 0 the function β(s, ·) is decreasing and β(s, t) → 0 as
t→ ∞.

We can now give our main definition for this section: A system is robustly asymptotically stable
(RAS) if there exists a type-KL function β and for each ϵ > 0 there exists δ > 0, such that for
all dn satisfying maxn ∥dn∥ < δ it holds that xn ∈ X and ∥xn∥ ≤ β(∥x0∥, n) + ϵ for all n ≥ 0.
It turns out that the tube MPC formulation has RAS when the objective is given by

ψn = x′n+NPxn+N +
N−1∑
k=0

x′n+kQxn+k + ǔn+kRǔn+k,

where (A+BK)′P (A+BK)−P = −(Q+K ′RK). The proof is somewhat technical and will
not be covered here. The key feature of the proof is that there is a continuous Lyapunov function
for the nominal system, because the value function is continuous. And because the Lyapunov
function shows sufficient descent, small perturbations will not remove descent except for some
region about the origin.

2 Optimization Formulation of Learning-Based MPC

Recall the LTI system with modeling error

xn+1 = Axn +Bun + g(xn, un),
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where g(xn, un) ∈ W for all xn ∈ X ,un ∈ U . Previously, we have treated this modeling error as
disturbance; however, this can be overly conservative because as we control the system, we get
more information about the system that we can use to update our model of the system. This is
the purpose of learning-based MPC (LBMPC).
The main technical challenge of incorporating adaptation or machine learning into control and
optimization frameworks is that of ensuring robustness, and the key insight of LBMPC is that this
can be achieved by maintaining two distinct models of the system; this leads to a novel formulation
as well as a novel approach for designing general robust adaptive optimization methods. We define
the LBMPC optimization formulation as

Vn(xn) = minc ψn(x̃n, . . . , x̃n+N , ǔn, . . . , ǔn+N−1) (1)

subject to:

x̃n = xn, xn = xn (2)

x̃n+i+1 = Ax̃n+i +Bǔn+i +On(x̃n+i, ǔn+i) (3)

xn+i+1 = Axn+i +Bǔn+i

ǔn+i = Kxn+i + cn+i

xn+i+1 ∈ X ⊖Ri+1, ǔn+i ∈ U ⊖KRi

xn+N ∈ Ω⊖RN

 (4)

for all i = 0, . . . , N − 1 in the constraints; K is the feedback gain used to compute Ω; R0 = {0}
and Ri =

⊕i−1
j=0(A + BK)jW ; On is the oracle; and ψn are non-negative functions that are

Lipschitz continuous in their arguments. The idea of the oracle On is that it is a function that
given a new value of xn and un it returns an estimate of the modeling error (and potentially a
gradient of this estimate).

3 Recursive Properties

Suppose that (A,B) is stabilizable and K is a matrix such that (A + BK) is stable. For this
given system and feedback controller, suppose we have a maximal output admissible disturbance
invariant set Ω (meaning that this set has constraint satisfaction Ω ⊆ {x : x ∈ X , Kx ∈ U} and
disturbance invariance (A+BK)Ω⊕W ⊆ Ω.
Next, note that conceptually our decision variables are cn+i since the xk,x̃k,ǔk are then uniquely
determined by the initial condition and equality constraints. As a result, we will talk about
solutions only in terms of the variables ck. In particular, if Mn = {cn, ..., cn+N1} is feasible for
the optimization defining LBMPC with an initial condition xn, then the system that applies the
control value un = Kxn + cn[Mn] results in:

• Recursive Feasibility: there exists feasible Mn+1 for xn+1;

• Recursive Constraint Satisfaction: xn+1 ∈ X .

The proof is actually identical to that for linear tube MPC, because the learned model with oracle
are not constrained by X or U . There is the same collorary of this theorem: If there exists feasible
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M0 for x0, then the system is (a) Lyapunov stable, (b) satisfies all state and input constraints
for all time, (c) feasible for all time.

4 Continuity of Value Function

In addition to the recursive feasibility and constraint satisfaction properties of LBMPC, in the
presence of disturbance, there are other types of robustness that this method has. These are in
fact related to continuity of the minimizers and value function. In fact, if ψn and On continuous,
then the Berge maximum theorem tells us that the value function is continuous.

5 Robust Asymptotic Stability

Recall the following definition: A system is robustly asymptotically stable (RAS) if there exists
a type-KL function β and for each ϵ > 0 there exists δ > 0, such that for all dn satisfying
maxn ∥dn∥ < δ it holds that xn ∈ X and ∥xn∥ ≤ β(∥x0∥, n) + ϵ for all n ≥ 0.
Suppose Ω is a maximal output admissible disturbance invariant set, M0 is feasible for x0, and
the cost function is

ψn = x̃′n+NPx̃n+N +
N−1∑
k=0

(x̃′n+kQx̃n+k + ǔ′n+kRǔn+k),

where (A+BK)′P (A+BK)−P = −(Q+K ′RK), and lastly that On is a continuous function
satisfying maxn,X×U ∥On∥ ≤ δ. Under these conditions, LBMPC is also RAS. The proof is
technical, and the basic idea is that we compare the solution of LBMPC to the solution of linear
MPC (i.e., On ≡ 0). Interestingly, the proof makes use of the continuity of the minimizer for
linear MPC.
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