
IEOR 265 – Lecture 14
(Robust) Linear Tube MPC

1 LTI System with Uncertainty

Suppose we have an LTI system in discrete time with disturbance:

xn+1 = Axn +Bun + dn,

where dn ∈ W for a bounded polytope W . This disturbance can represent, for instance, modeling
error. As an example, suppose that the true system model is given by

xn+1 = Axn +Bun + g(xn, un),

where g(·, ·) is a nonlinear function that obeys g(xn, un) ∈ W for all xn ∈ X and un ∈ U . Note
that this is not restrictive because it can describe a general nonlinear system

xn+1 = f(xn, un)

by choosing g(xn, un) = f(xn, un)−Axn−Bun. An important question for the LTI system with
uncertainty is whether a constant state-feedback controller un = Kxn ensures that all state and
input constraints are satisfied for all time.

2 Polytope Operations

To be able to analyze and do design, we need to define operations on polytopes. Let U ,V,W
by polytopes. The Minkowski sum is U ⊕ V = {u + v : u ∈ U ; v ∈ V}, and the Pontryagin set
difference is U ⊖ V = {u : u⊕V ⊆ U}. Note that this set difference is not symmetric, meaning
that in general U ⊖V ̸= V ⊖U ; however, the Minkowski sum can be seen to be symmetric by its
definition. Some useful properties include

• (U ⊖ V)⊕ V ⊆ U ;

• (U ⊖ (V ⊕W))⊕W ⊆ U ⊖ V ;

• (U ⊖ V)⊖W ⊆ U ⊖ (V ⊕W);

• T (U ⊖ V) ⊆ TU ⊖ TV , where T is a linear transformation.
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3 Maximum Output Admissible Disturbance Invariant Set

We return to the question: Does there exist a set Ω such that if x0 ∈ Ω, then the controller
un = Kxn ensures that both state and input constraints are satised for the LTI system with
bounded disturbance. In mathematical terms, we would like this set Ω to achieve (a) constraint
satisfaction

Ω ⊆ {x : x ∈ X ;Kx ∈ U},
and (b) disturbance invariance

(A+BK)Ω⊕W ⊆ Ω.

It turns out that we can compute such a set under reasonable conditions on the disturbance W
and constraint sets X and U . However, there is no guarantee that this is not the null set: It
may be the case that Ω = ∅. The algorithm for computing this set is more complicated than the
situation without disturbance, and so we will not discuss it in this class.

4 Optimization Formulation

Recall the LTI system with disturbance:

xn+1 = Axn +Bun + dn,

where dn ∈ W . The issue with using a constant state-feedback controller un = Kxn is that
the set Ω for which this controller is admissible and ensures constraint satisfaction subject to
all possible sequences of disturbances (i.e., d0, d1, . . .) can be quite small. In this sense, using
this controller is conservative, and the relevant question is whether we can design a nonlinear
controller un = ℓ(xn) for the LTI system with disturbance such that constraints on states xn ∈ X
and inputs un ∈ U are satisfied. One idea is to use an MPC framework with robustness explicitly
included.
(Robust) linear tube MPC is one approach for this. The idea underlying this approach is to
subtract out the effect of the disturbance from our state and input constraints. One formulation
is

Vn(xn) = minψn(xn, . . . , xn+N , ǔn, . . . , ǔn+N−1)

s.t. xn+1+k = Axn+k +Bǔn+k, ∀k = 0, . . . , N − 1

xn = xn

xn+k ∈ X ⊖Rk,∀k = 1, . . . , N − 1

ǔn+k = Kxn+k + ck,∀k = 0, . . . , N − 1

ǔn+k ∈ U ⊖KRk, ∀k = 0, . . . , N − 1

xn+N ∈ Ω⊖RN

where X ,U ,Ω are polytopes, R0 = {0}, Rk = ⊕k−1
j=0(A + BK)jW is a disturbance tube, and

N > 0 is the horizon. Note that we do not constrain the initial condition xn, and this reduces
the conservativeness of the MPC formulation. We will refer to the set Ω as a terminal set. The
interpretation of the function ψn is a cost function on the states and inputs of the system.
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5 Recursive Properties

Suppose that (A,B) is stabilizable and K is a matrix such that (A + BK) is stable. For this
given system and feedback controller, suppose we have a maximal output admissible disturbance
invariant set Ω (meaning that this set has constraint satisfaction Ω ⊆ {x : x ∈ X , Kx ∈ U} and
disturbance invariance (A+BK)Ω⊕W ⊆ Ω).
Next, note that conceptually our decision variables are ck since the xk, ǔk are then uniquely
determined by the initial condition and equality constraints. As a result, we will talk about
solutions only in terms of the variables ck. In particular, if Mn = {cn, . . . , cn+N−1} is feasible for
the optimization defining linear MPC with an initial condition xn, then the system that applies
the control value un = Kxn + cn[Mn] results in:

• Recursive Feasibility: there exists feasible Mn+1 for xn+1;

• Recursive Constraint Satisfaction: xn+1 ∈ X .

We will give a sketch of the proof for these two results.

• Choose Mn+1 = {c1[Mn], . . . , cN−1[Mn], 0}. Some algebra gives that xn+1+k[Mn+1] =
xn+1+k[Mn]+(A+BK)kdn ∈ xn+1+k[Mn]⊕ (A+BK)kW . But because Mn is feasible,
it must be that xn+1+k[Mn] ∈ X ⊖Rk+1. Combining this gives

xn+1+k[Mn+1] ∈ xn+1+k[Mn]⊕ (A+BK)kW
⊆ X ⊖ (Rk ⊕ (A+BK)kW)⊕ (A+BK)kW
⊆ X ⊖Rk.

This shows feasibility for the states; a similar argument can be applied to the inputs.

The final state needs to be considered separately. The argument above gives

xn+1+N−1[Mn+1] ∈ Ω⊖RN−1.

Observe that the constraint satisfaction property of Ω leads to

ǔn+1+N−1[Mn+1] = Kxn+1+N−1[Mn+1] ⊆ KΩ⊖KRN−1 ⊆ U ⊖KRN−1.

Lastly, note that the disturbance invariance property of Ω gives

xn+1+N [Mn+1] ∈(A+BK)Ω⊖ (A+BK)RN−1

⊆ (Ω⊖W)⊖ (A+BK)RN−1 = Ω⊖RN .

• Since xn+1 = xn+1[Mn] + dn ∈ (X ⊖W)⊕W ⊆ X , the result follows.

There is an immediate corollary of this theorem: If there exists feasible M0 for x0, then the
system is (a) Lyapunov stable, (b) satisfies all state and input constraints for all time, (c) feasible
for all time.
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Lastly, define XF = {xn| there exists feasible Mn}. It must be that Ω ⊆ XF , and in general
XF will be larger. There is in fact a tradeoff between the values of N and the size of the set
XF . Feasibility requires being able to steer the system into Ω at time N . The larger N is, the
more initial conditions can be steered to Ω and so XF will be larger. However, having a larger
N means there are more variables and constraints in our optimization problem, and so we will
require more computation for larger values of N .

6 Design Variables in Linear Tube MPC

Consider the linear tube MPC formulation:

Vn(xn) = minψn(xn, . . . , xn+N , ǔn, . . . , ǔn+N−1)

s.t. xn+1+k = Axn+k +Bǔn+k, ∀k = 0, . . . , N − 1

xn = xn

xn+k ∈ X ⊖Rk,∀k = 1, . . . , N − 1

ǔn+k = Kxn+k + ck,∀k = 0, . . . , N − 1

ǔn+k ∈ U ⊖KRk, ∀k = 0, . . . , N − 1

xn+N ∈ Ω⊖RN

where X ,U ,Ω are polytopes, R0 = {0}, Rk = ⊕k−1
j=0(A + BK)jW is a disturbance tube, and

N > 0 is the horizon. Though it looks complex, there are only a few design choices. In particular,
we engineer the following components:

• xk+1 = Axk +Bǔk – We must construct a system model from prior knowledge about the
system and experimental data.

• X – Constraints on the states come from information about the system.

• U – Constraints on the inputs come from information about the system.

• W – Disturbance bounds come from information about the system.

• Q > 0, R > 0 – These are tuning parameters that manage the tradeoff between control
effort (higher R penalizes strong control effort) and state deviation (higher Q more strongly
penalizes state deviation from the equilibrium point).

• N – The horizon length manages the tradeoff between performance of the controller versus
computational effort (higher N requires more computation but the resulting controller has
better performance).

The other elements are algorithmically computed based on the design choices:

• K – This is computed by the solution to an infinite horizon LQR problem.
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• P > 0 – This is computed by the solution to an infinite horizon LQR problem.

• Ω – This set is computed by using the K that solves the infinite horizon LQR problem, in
conjunction with an existing algorithm.

• Rk – These sets are computed using standard polytope algorithms for linear transformations
and Minkowski sums of polytopes.

It is worth mentioning that there are more exotic MPC schemes that introduce more design
parameters, in exchange for better performance.
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