
IEOR 265 – Lecture 13
Linear MPC

1 Optimization Formulation

The issue with using a constant state-feedback controller un = Kxn is that the set Ω for which
this controller is admissible can be quite small. In this sense, using this controller is conservative,
and the relevant question is whether we can design a nonlinear controller un = `(xn) for the LTI
system such that constraints on states xn ∈ X and inputs un ∈ U are satisfied. Model predictive
control (MPC), which is also known as finite horizon control (FHC), is a control technique that
can provide exactly this.

One formulation for linear MPC is

Vn(xn) = min ψn(xn, . . . , xn+N , ǔn, . . . , ǔn+N−1)

s.t. xk+1 = Axk +Bǔk,∀k = n, . . . , n+N − 1

xn = xn

xk ∈ X ,∀k = n+ 1, . . . , n+N − 1

uk ∈ U ,∀k = n, . . . , n+N − 1

xn+N ∈ Ω

where X ,U ,Ω are polytopes, and N > 0 is the horizon. Note that we do not constrain the initial
condition xn, and this reduces the conservativeness of the MPC formulation. We will refer to the
set Ω as a terminal set. The interpretation of the function ψn is a cost function on the states
and inputs of the system.

2 Recursive Properties

Suppose that (A,B) is stabilizable and K is a matrix such that (A + BK) is stable. For this
given system and feedback controller, suppose we have a maximal output invariant set Ω (mean-
ing that this set has constraint satisfaction Ω ⊆ {x : x ∈ X , Kx ∈ U} and control invariance
(A+BK)Ω ⊆ Ω).

Next, note that conceptually our decision variables are ǔk since the xk are then uniquely deter-
mined by the initial condition and equality constraints. As a result, we will talk about solutions
only in terms of the input variables ǔk. In particular, if Mn = {ǔn, . . . , ǔn+N−1} is feasible for
the optimization defining linear MPC with an initial condition xn, then the system that applies
the control value un = ǔn[Mn] results in:

• Recursive Feasibility: there exists feasible Mn+1 for xn+1;
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• Recursive Constraint Satisfaction: xn+1 ∈ X .

We will give a sketch of the proof for these two results.

• Choose Mn+1 = {ǔn+1[Mn], . . . , ǔn+N−1[Mn], Kxn+N [Mn]}. Since Mn is such that
xn+N [Mn] ∈ Ω, then Kxn+N [Mn] ∈ U and xn+N+1[Mn+1] ∈ Ω. Also,

ǔn+1[Mn], . . . , ǔn+N−1[Mn] ∈ U ,

sinceMn is feasible. Lastly xn+1+k[Mn+1] = xn+1+k[Mn+1] for all k = 1, . . . , N −1, and
so state constraint satisfaction holds since Mn is feasible and Ω ⊆ X .

• Since xn+1 = xn+1[Mn] ∈ X , the result follows.

There is an immediate corollary of this theorem: If there exists feasible M0 for x0, then the
system is (a) Lyapunov stable, (b) satisfies all state and input constraints for all time, (c) feasible
for all time.

Lastly, define XF = {xn| there exists feasible Mn}. It must be that Ω ⊆ XF , and in general
XF will be larger. There is in fact a tradeoff between the values of N and the size of the set
XF . Feasibility requires being able to steer the system into Ω at time N . The larger N is, the
more initial conditions can be steered to Ω and so XF will be larger. However, having a larger
N means there are more variables and constraints in our optimization problem, and so we will
require more computation for larger values of N .

3 Asymptotic Stability

There are two interesting results that act as lemmas. First, if ψn is continuous in x, ǔ, then
Vn(xn) is continuous on int(XF ) by the Berge Maximum Theorem. Furthermore, if ψn is strictly
convex, then Vn(xn) is convex and un(xn) = ǔn[Mn] is continuous in xn, by the strictly convex
variant of the Berge Maximum Theorem.

Now suppose we specialize the cost function to

ψn := x′n+NPxn+N +
n+N−1∑
k=n

x′kQxk + ǔ′kRǔk,

where Q > 0, R > 0, and P > 0 such that P solves

(A+BK)′P (A+BK)− P = −(Q+K ′RK).

Recall that if K and P are the respective matrices taken from the solution of the infinite horizon
LQR problem, then this equality condition holds. Also note that this cost function is strictly
convex.
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It turns out that the LTI system using the control law provided by linear MPC is asymptotically
stable, and the proof relies on a similar trick as was used to show recursive feasibility – namely
utilizing the special properties related to xn+N in the linear MPC formulation. We provide a
sketch of the proof here: Note that since Mn+1 as defined earlier is feasible, we must have that
V (xn+1) ≤ V (xn+1)[Mn+1] (i.e., the optimal value is less than or equal to the value for any
given feasible point). Next, observe that some algebra gives

V (xn+1)[Mn+1]− V (xn) = x′n+N+1Pxn+N+1 + x′n+NQxn+N

− x′n+NPxn+N − x′nQxn + ǔ′n+NRǔn+N − ǔ′nRǔn
= x′n+N [(A+BK)′P (A+BK)− P +Q+K ′RK]xn+N

− x′nQxn − ǔ′nRǔn
≤ −x′nQxn − ǔ′nRǔn

This is zero if and only if xn = 0 and un = 0. Thus, the value function of the linear MPC problem
is strictly decreasing except when the system is at the origin. Some additional work shows that
V (xn) satisfies all of the conditions of a Lyapunov function that shows asymptotic stability.

4 Design Variables in Linear MPC

Consider the linear MPC formulation:

Vn(xn) = minx′n+NPxn+N +
n+N−1∑
k=n

x′kQxk + ǔ′kRǔk

s.t. xk+1 = Axk +Bǔk,∀k = n, . . . , n+N − 1

xn = xn

xk ∈ X ,∀k = n+ 1, . . . , n+N − 1

uk ∈ U ,∀k = n, . . . , n+N − 1

xn+N ∈ Ω

Though it looks complex, there are only a few design choices. In particular, we engineer the
following components:

• xk+1 = Axk +Bǔk – We must construct a system model from prior knowledge about the
system and experimental data.

• X – Constraints on the states come from information about the system.

• U – Constraints on the inputs come from information about the system.

• Q > 0, R > 0 – These are tuning parameters that manage the tradeoff between control
effort (higher R penalizes strong control effort) and state deviation (higher Q more strongly
penalizes state deviation from the equilibrium point).
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• N – The horizon length manages the tradeoff between performance of the controller versus
computational effort (higher N requires more computation but the resulting controller has
better performance).

The other elements are algorithmically computed based on the design choices:

• P > 0 – This is computed by the solution to an infinite horizon LQR problem.

• Ω – This set is computed by using the K that solves the infinite horizon LQR problem, in
conjunction with an existing algorithm.

It is worth mentioning that there are more exotic MPC schemes that introduce more design
parameters, in exchange for better performance.
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