
IEOR 265 – Lecture 12
Reachability

1 Lyapunov Stability

Consider an autonomous nonlinear dynamical system in discrete time

xn+1 = f(xn), x0 = ξ

with an equilibrium point at x∗ = 0. Some important types of stability that we have covered are:

• A system is Lyapunov stable if given M2 > 0 there exists M1 > 0 such that ‖x0‖ ≤ M1

implies that ‖xn‖ ≤M2 for all n ≥ 0.

• A system is locally asymptotically stable (LAS) if (a) it is Lyapunov stable, and (b) there ex-
ists M3 > 0 such that ‖xn‖ → 0 whenever ‖x0‖ ≤M3. A system is globally asymptotically
stable (GAS) if M3 =∞.

• A system is exponentially stable if (a) it is asymptotically stable, and (b) there exists
M3 > 0 and α, β > 0 such that ‖xn‖ ≤ α‖x0‖ exp(−βn) whenever ‖x0‖ ≤M3. A system
is globally exponentially stable if M3 =∞.

2 Lyapunov Function

Our tests for stability have been focused on discrete time LTI systems, and so it is natural to ask
how to show stability for a nonlinear system in discrete time. To do so, we must first give some
abstract definitions

• A function γ : R+ → R+ is type-K if it is continuous, strictly increasing, and γ(0) = 0.

• A function β : R+ × R+ → R+ is type-KL if for each fixed t ≥ 0, the function β(·, t)
is type-K, and for each fixed s ≥ 0 the function β(s, ·) is decreasing and β(s, t) → 0 as
t→∞.

With these definitions, we can now define a time-varying function that will indirectly allow us
show that a system is stable. The function Vn : X → R is a Lyapunov function for a discrete
time system if the following conditions hold:

1. Vn(0) = 0 and Vn(x) > 0 for all x 6= 0;

2. α1(‖x‖) ≤ Vn(x) ≤ α2(‖x‖), where α1, α2 are type-K functions;

3. x ∈ int(X ), that is x is in the interior of X ;
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4. Vn(xn+1)− Vn(xn) ≤ 0;

The intuition of the first three conditions is that the Lyapunov function Vn is like an energy
function that is zero at the equilibrium x∗ = 0 and increases in value as it gets farther from the
equilibrium. The last condition says that the value of the Lyapunov function evaluated at the
current state of the system is non-increasing, and the intuition is that the energy of the system
does not increase.

3 Lyapunov Theorems

These definitions lead to several theorems. In particular, we have that if an autonomous nonlinear
discrete time system has:

• a Lyapunov function (as defined above with Vn(xn + 1)− Vn(xn) ≤ 0), then then system
is Lyapunov stable;

• a Lyapunov function such that Vn(xn+1) − Vn(xn) < 0 (that is strictly decreasing) for
xn 6= 0, then the system is LAS;

• a Lyapunov function such that Vn(xn+1) − Vn(xn) < 0 (that is strictly decreasing) for
xn 6= 0 and the domain of the Lyapunov function is X = Rp, then the system is GAS.

• a Lyapunov function such that Vn(xn+1) − Vn(xn) < −αVn(xn) for xn 6= 0, Vn is such
that α1(‖x‖) = κ1 · ‖x‖ and α2(‖x‖) = κ2 · ‖x‖, for some fixed α, κ1, κ1 > 0, then the
system is exponentially stable.

• a Lyapunov function such that Vn(xn+1)−Vn(xn) < −αVn(xn) for xn 6= 0, Vn is such that
α1(‖x‖) = κ1 · ‖x‖ and α2(‖x‖) = κ2 · ‖x‖, for some fixed α, κ1, κ1 > 0, and the domain
of the Lyapunov function is X = Rp, then the system is globally exponentially stable.

Note that we cannot use the above theorems to show that a system is unstable. This is in fact
the biggest weakness of Lyapunov theory: There is no systematic way to compute a Lyapunov
function for a system, unless the system is linear (or has polynomial dynamics).

4 Examples

We have already seen some examples of Lyapunov functions, specifically for LTI systems. Here,
we recall the past examples and give a new example:

• Note that a discrete time system is (exponentially and asymptotically) stable if and only
there exists P > 0 such that A′PA− P < 0, or equivalently given any Q > 0 there exists
P > 0 such that A′PA− P = −Q. In this case, a Lyapunov function is V (x) = x′Px.
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• Another example occurs in the infinite horizon LQR case. Consider the value function of
the optimization

V (x0) = min

{
∞∑
n=0

x′nQxn + u′nRun : xn+1 = Axn +Bun;x0 = ξ

}
,

where Q > 0 and R > 0 are positive definite matrices and (A,B) is stabilizable. The value
function is equal to V (x0) = x′0Px0 where P > 0 is the unique solution to the discrete
time algebraic Riccati equation (DARE)

P = Q+ A′(P − PB(R +B′PB)−1B′P )A.

For the state-feedback of un = Kxn where K = −(R+B′PB)−1B′PA, the value function
of this optimization problem is a Lyapunov function for the closed-loop system xn+1 =
(A+BK)xn. In fact, a straightforward calculation gives

(A+BK)′P (A+BK)− P
= (A+BK)′P (A+BK)− P
= A′PA+K ′B′PA+ A′PBK +K ′B′PBK − P
= A′PA+ A′PBK +K ′B′PA+K ′(R +B′PB)K −K ′RK − P
= A′PA+ A′PBK +K ′B′PA−K ′B′PA−K ′RK
= A′PA+ A′PBK − P −K ′RK

but the DARE can be rewritten as P = Q+ A′PA+ A′PBK, and so we have that

(A+BK)′P (A+BK)− P = A′PA+ A′PBK − P −K ′RK = −Q−K ′RK < 0.

• As a final example, consider the following autonomous nonlinear system

xn+1 = x2n,

where xn, xn+1 ∈ R. If we choose V (x) = x2, then we have that

V (xn+1)− V (xn) = x4n − x2n = x2n(x2n − 1).

If x2n − 1 < 0 (or equivalently −1 < xn < 1), then V (xn+1) − V (xn) < 0. This choice
of V satisfies the criterion for being a Lyapunov function for this particular system. Note
that if |xn| > 1 then the system is not stable in any sense.

5 Polytope Constraints

So far, we have not considered constraints on our input un or states xn, when designing feedback
controllers for LTI systems in discrete-time; however, there are many applications in which we
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would like to impose constraints on both the inputs and states. In some sense, though the con-
straints often arise from physical or economic limitations on the system being modeled, we get
to design the constraints that we use for engineering. Specifically, we can choose any represen-
tation of constraints that respects the physical or economic limitations of the system, even if our
constraints are more conservative than needed. Such choices can be necessary for the purpose of
efficient computation.

In fact, a fairly broad class of constraints with useful computational and mathematical properties
can be defined by bounded convex polytopes, which can be defined as the convex hull of the set
of points. Note that when we refer to polytopes in the future, we will specifically mean bounded
convex polytopes. The reason that polytopes are an attractive approach to defining constraints
is that they can be represented as the intersection of half-spaces. Recall that a half-space can be
represented by f ′ix ≤ hi, and so the intersection of half-spaces can be represented by multiple
linear inequalities: Fx ≤ h.

So if we have a polytope X = {x : Fx ≤ h}, then the constraint that xn ∈ X means that we
would like xn such that Fxn ≤ h. We will often refer to constraints on the states and inputs by
referring to the polytopes in which they lie; that is, we will ask that xn ∈ X and un ∈ U , where
X ,U are polytopes.

5.1 Box Constraints

A common type of constraint are box constraints. For a vector xn ∈ Rp, a box constraint is that
there exists ai, bi for i = 1, . . . , p such that ai ≤ xin ≤ bi for all i. It turns out that we can
express these constraints as a polytope:

xn ∈ X = {x : xi ≤ bi,−xi ≤ −ai,∀i}.

5.2 Linear Transform of Polytope

We define the linear transform T of a polytope P = {u : Fu ≤ h} as the polytope

TP = {Tu : u ∈ P}.

6 Maximal Output Invariant Sets

Consider an LTI system in discrete time:

xn+1 = Axn +Bun,

where (A,B) is stabilizable. And assume that we have chosen a K such that using the state-
feedback controller un = Kxn leads to a stable system xn+1 = (A + BK)xn. Now consider
this same system, and suppose that we have polytopic constraints: In particular, we require that
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xn ∈ X and un ∈ U for all n ≥ 0. A natural question to ask is: Does there exist a set Ω such
that if x0 ∈ Ω, then the controller un = Kxn ensures that both constraints are satisfied. In
mathematical terms, we would like this set Ω to achieve (a) constraint satisfaction

Ω ⊆ {x : x ∈ X ;Kx ∈ U},

and (b) control invariance
(A+BK)Ω ⊆ Ω.

It can be shown that if 0 ∈ X and 0 ∈ U , then the set Ω can be represented by a polytope with
a finite number of constraints. There is also an algorithm to compute this set:

input : X = {x : Fxx ≤ hx} and U = {u : Fuu ≤ hu}
input : A,B,K

output: Ω

set t← 0;
set k1 ← rows(hx);
set ku ← rows(hu);
repeat

for j ← 1 to k1 do
set L∗j ← max{(Fx)j(A+BK)t+1x− (hx)j : (A+BK)kx ∈ X , K(A+BK)kx ∈
U ,∀k = 0, . . . , t};

end
for j ← 1 to k2 do

set M∗
j ← max{(Fu)jK(A+BK)t+1x− (hu)j : (A+BK)kx ∈ X , K(A+BK)kx ∈

U , ∀k = 0, . . . , t};
end
set t← t+ 1;

until L∗i ≤ 0,∀i = 1, . . . , k1 and M∗
i ≤ 0,∀i = 1, . . . , k2;

set t∗ ← t− 1;
set Ω = {x : (A+BK)kx ∈ X , K(A+BK)kx ∈ U ,∀k = 0, . . . , t∗};

Note that the Ω returned by this algorithm is a polytope, and so we can rearrange terms to
express this set as Ω = {x : Fωx ≤ hω}.
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