
IEOR 265 – Lecture 6

Lasso Regression

1 Lasso Regression

The M-estimator which had the Bayesian interpretation of a linear model with Laplacian
prior

β̂ = argmin
β

‖Y −Xβ‖22 + λ‖β‖1,

has multiple names: Lasso regression and L1-penalized regression.

1.1 Soft Thresholding

The Lasso regression estimate has an important interpretation in the bias-variance context.
For simplicity, consider the special case where X ′X = Ip. In this case, the objective of the
Lasso regression decouples

‖Y −Xβ‖22 + λ‖β‖1 = Y ′Y + β′X ′Xβ − 2Y ′Xβ + λ‖β‖1
= Y ′Y +

∑p
j=1

(

β2
j − 2Y ′Xjβj + λ|βj|

)

,

where Xj is the j-th column of the matrix X. And because it decouples we can solve the
optimization problem separately for each term in the summation.

Note that even though each term in the objective is not differentiable, we can break the
problem into three cases. In the first case, βj > 0 and so setting the derivative equal to zero
gives

2β̂j − 2Y ′Xj + λ = 0 ⇒ β̂j = Y ′Xj − λ/2.

In the second case, βj < 0 and so setting the derivative equal to zero gives

2β̂j − 2Y ′Xj − λ = 0 ⇒ β̂j = Y ′Xj + λ/2.

In the third case, βj = 0.

For reference, we also compute the OLS solution in this special case. If we define β̂0
j to

be the OLS solution, then a similar calculation to the one shown above gives that β̂0
j = Y ′Xj .

And so comparing to OLS solution to the Lasso regression solution, we have that

β̂j =











β̂0
j + λ/2, if β̂j = β̂0

j + λ/2 < 0

β̂0
j − λ/2, if β̂j = β̂0

j − λ/2 > 0

0, otherwise

This can be interpreted as a soft thresholding phenomenon, and it is another approach to
balancing the bias-variance tradeoff.
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2 Dual of Penalized Regression

Consider the following M-estimator

β̂ = argmin
β

{‖Y −Xβ‖22 : φ(β) ≤ t},

where φ : Rp → R is a penalty function with the properties that it is convex, continuous,
φ(0) = 0, and φ(u) > 0 for u 6= 0. It turns out that there exists λ such that the minimizer
to the above optimization is identical to the minimizer of the following optimization

β̂λ = argmin
β

‖Y −Xβ‖22 + λφ(β).

To show this, consider the first optimization problem for t > 0. Slater’s condition holds,
and so the Langrange dual problem has zero optimality gap. This dual problem is given by

max
ν≥0

min
β

‖Y −Xβ‖22 + ν(φ(β)− t)

⇒max
ν

{‖Y −Xβ̂ν‖22 + νφ(β̂ν)− νt : ν ≥ 0}.

Let the optimizer be ν∗ and define λ = ν∗, then β̂λ is identical to β̂.
This result is useful because it has a graphical interpretation that provides additional

insight. Visualizing the constrained form of the estimator provides intuition into why the
L2-norm does not lead to sparsity, whereas the L1-norm does.

3 Variants of Lasso

There are numerous variants and extensions of Lasso regression. The key idea is that because
Lasso is defined as an M-estimator, it can be combined with other ideas and variants of M-
estimators. Some examples are given below:

3.1 Group Lasso

Recall the group sparsity model: Suppose we partition the coefficients into blocks β′ =
[

β1′ . . . βm′
]′
, where the blocks are given by:

β1′ =
[

β1 . . . βk

]

β2′ =
[

βk+1 . . . β2k

]

...

βm′

=
[

β(m−1)k+1 . . . βmk

]

.

Then the idea of group sparsity is that most blocks of coefficients are zero.
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We can define the following M-estimator to achieve group sparsity in our resulting esti-
mate:

β̂ = argmin
β

‖Y −Xβ‖22 + λ

m
∑

j=1

‖βj‖2.

However, this estimator will not achieve sparsity within individual blocks βj. As a result,
we define the sparse group lasso as

β̂ = argmin
β

‖Y −Xβ‖22 + λ
m
∑

j=1

‖βj‖2 + µ‖β‖1.

3.2 Collinearity and Sparsity

In some models, one might have both collinearity and sparsity. One approach to this situation
is the elastic net, which is

β̂ = argmin
β

‖Y −Xβ‖22 + λ‖β‖22 + µ‖β‖1.

An alternative approach might be the Lasso Exterior Derivative Estimator (LEDE) estimator

β̂ = argmin
β

‖Y −Xβ‖22 + λ‖Πβ‖22 + µ‖β‖1,

where Π is a projection matrix that projects onto the (p − d) smallest eigenvectors of the
sample covariance matrix 1

n
X ′X.

A further generalization of this idea is when there is manifold structure and sparsity:
The Nonparametric Lasso Exterior Derivative Estimator (NLEDE) estimator is

[

β̂0[x0]

β̂[x0]

]

= argmin
β0,β

∥

∥

∥

∥

W
1/2
h

(

Y −
[

1n X0

]

[

β0

β

])∥

∥

∥

∥

2

2

+ λ‖Πβ‖22 + µ‖β‖1,

where X0 = X − x′
01n, Π is a projection matrix that projects onto the (p − d) smallest

eigenvectors of the sample local covariance matrix 1
nhd+2X

′
0WhX0, and

Wh = diag (K(‖x1 − x0‖/h), . . . , K(‖xn − x0‖/h)) .

4 High-Dimensional Convergence

One important feature of Lasso regression is consistency in the high-dimensional setting.
Assume that Xj is column-normalized, meaning that

Xj√
n
≤ 1, ∀j = 1, . . . , p.

We have two results regarding sparse models.
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1. If some technical conditions hold for the s-sparse model, then with probability at least
1− c1 exp(−c2 log p) we have for the s-sparse model that

‖β̂ − β‖2 ≤ c3
√
s

√

log p

n
,

where c1, c2, c3 are positive constants.

2. If some technical conditions hold for the approximately-sq-sparse model (recall that
q ∈ [0, 1]) and β belongs to a ball of radius sq such that

√
sq(

log p
n

)1/2−q/4 ≤ 1, then
with probability at least 1− c1 exp(−c2 log p) we have for the approximately-sq-sparse
model that

‖β̂ − β‖2 ≤ c3
√
sq

(

log p

n

)1/2−q/4

,

where c1, c2, c3 are positive constants.

Compare this to the classical (fixed p) setting in which the convergence rate is Op(
√

p/n).
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