
IEOR 265 – Lecture 13

Reachability

1 Lyapunov Stability

Consider an autonomous nonlinear dynamical system in discrete time

xn+1 = f(xn), x0 = ξ

with an equilibrium point at x∗ = 0. Some important types of stability that we have covered
are:

• A system is Lyapunov stable if given M2 > 0 there exists M1 > 0 such that ‖x0‖ ≤M1

implies that ‖xn‖ ≤M2 for all n ≥ 0.

• A system is locally asymptotically stable (LAS) if (a) it is Lyapunov stable, and (b)
there exists M3 > 0 such that ‖xn‖ → 0 whenever ‖x0‖ ≤ M3. A system is globally

asymptotically stable (GAS) if M3 =∞.

• A system is exponentially stable if (a) it is asymptotically stable, and (b) there exists
M3 > 0 and α, β > 0 such that ‖xn‖ ≤ α‖x0‖ exp(−βn) whenever ‖x0‖ ≤ M3. A
system is globally exponentially stable if M3 =∞.

2 Lyapunov Function

Our tests for stability have been focused on discrete time LTI systems, and so it is natural
to ask how to show stability for a nonlinear system in discrete time. To do so, we must first
give some abstract definitions

• A function γ : R+ → R+ is type-K if it is continuous, strictly increasing, and γ(0) = 0.

• A function β : R+ × R+ → R+ is type-KL if for each fixed t ≥ 0, the function β(·, t)
is type-K, and for each fixed s ≥ 0 the function β(s, ·) is decreasing and β(s, t)→ 0 as
t→∞.

With these definitions, we can now define a time-varying function that will indirectly
allow us show that a system is stable. The function Vn : X → R is a Lyapunov function for
a discrete time system if the following conditions hold:

1. Vn(0) = 0 and Vn(x) > 0 for all x 6= 0;
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2. α1(‖x‖) ≤ Vn(x) ≤ α2(‖x‖), where α1, α2 are type-K functions;

3. x ∈ int(X ), that is x is in the interior of X ;

4. Vn(xn+1)− Vn(xn) ≤ 0;

The intuition of the first three conditions is that the Lyapunov function Vn is like an energy
function that is zero at the equilibrium x∗ = 0 and increases in value as it gets farther from
the equilibrium. The last condition says that the value of the Lyapunov function evaluated
at the current state of the system is non-increasing, and the intuition is that the energy of
the system does not increase.

3 Lyapunov Theorems

These definitions lead to several theorems. In particular, we have that if an autonomous
nonlinear discrete time system has:

• a Lyapunov function (as defined above with Vn(xn+1)−Vn(xn) ≤ 0), then then system
is Lyapunov stable;

• a Lyapunov function such that Vn(xn+1)− Vn(xn) < 0 (that is strictly decreasing) for
xn 6= 0, then the system is LAS;

• a Lyapunov function such that Vn(xn+1)− Vn(xn) < 0 (that is strictly decreasing) for
xn 6= 0 and the domain of the Lyapunov function is X = R

p, then the system is GAS.

• a Lyapunov function such that Vn(xn+1) − Vn(xn) < −αVn(xn) for xn 6= 0, Vn is such
that α1(‖x‖) = κ1 · ‖x‖ and α2(‖x‖) = κ2 · ‖x‖, for some fixed α, κ1, κ1 > 0, then the
system is exponentially stable.

• a Lyapunov function such that Vn(xn+1) − Vn(xn) < −αVn(xn) for xn 6= 0, Vn is such
that α1(‖x‖) = κ1 · ‖x‖ and α2(‖x‖) = κ2 · ‖x‖, for some fixed α, κ1, κ1 > 0, and the
domain of the Lyapunov function is X = R

p, then the system is globally exponentially
stable.

Note that we cannot use the above theorems to show that a system is unstable. This is
in fact the biggest weakness of Lyapunov theory: There is no systematic way to compute a
Lyapunov function for a system, unless the system is linear (or has polynomial dynamics).

4 Examples

We have already seen some examples of Lyapunov functions, specifically for LTI systems.
Here, we recall the past examples and give a new example:
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• Note that a discrete time system is (exponentially and asymptotically) stable if and
only there exists P > 0 such that A′PA − P < 0, or equivalently given any Q > 0
there exists P > 0 such that A′PA − P = −Q. In this case, a Lyapunov function is
V (x) = x′Px.

• Another example occurs in the infinite horizon LQR case. Consider the value function
of the optimization

V (x0) = min

{

∞
∑

n=0

x′

nQxn + u′

nRun : xn+1 = Axn + Bun; x0 = ξ

}

,

where Q > 0 and R > 0 are positive definite matrices and (A,B) is stabilizable. The
value function is equal to V (x0) = x′

0Px0 where P > 0 is the unique solution to the
discrete time algebraic Riccati equation (DARE)

P = Q+ A′(P − PB(R + B′PB)−1B′P )A.

For the state-feedback of un = Kxn where K = −(R + B′PB)−1B′PA, the value
function of this optimization problem is a Lyapunov function for the closed-loop system
xn+1 = (A+ BK)xn. In fact, a straightforward calculation gives

(A+ BK)′P (A+ BK)− P

= (A+ BK)′P (A+BK)− P

= A′PA+K ′B′PA+ A′PBK +K ′B′PBK − P

= A′PA+ A′PBK +K ′B′PA+K ′(R + B′PB)K −K ′RK − P

= A′PA+ A′PBK +K ′B′PA−K ′B′PA−K ′RK

= A′PA+ A′PBK − P −K ′RK

but the DARE can be rewritten as P = Q+ A′PA+ A′PBK, and so we have that

(A+ BK)′P (A+BK)− P = A′PA+ A′PBK − P −K ′RK = −Q−K ′RK < 0.

• As a final example, consider the following autonomous nonlinear system

xn+1 = x2

n,

where xn, xn+1 ∈ R. If we choose V (x) = x2, then we have that

V (xn+1)− V (xn) = x4

n − x2

n = x2

n(x
2

n − 1).

If x2
n − 1 < 0 (or equivalently −1 < xn < 1), then V (xn+1) − V (xn) < 0. This choice

of V satisfies the criterion for being a Lyapunov function for this particular system.
Note that if |xn| > 1 then the system is not stable in any sense.
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5 Polytope Constraints

So far, we have not considered constraints on our input un or states xn, when designing
feedback controllers for LTI systems in discrete-time; however, there are many applications
in which we would like to impose constraints on both the inputs and states. In some sense,
though the constraints often arise from physical or economic limitations on the system being
modeled, we get to design the constraints that we use for engineering. Specifically, we can
choose any representation of constraints that respects the physical or economic limitations
of the system, even if our constraints are more conservative than needed. Such choices can
be necessary for the purpose of efficient computation.

In fact, a fairly broad class of constraints with useful computational and mathematical
properties can be defined by bounded convex polytopes, which can be defined as the convex
hull of the set of points. Note that when we refer to polytopes in the future, we will specifically
mean bounded convex polytopes. The reason that polytopes are an attractive approach to
defining constraints is that they can be represented as the intersection of half-spaces. Recall
that a half-space can be represented by f ′

ix ≤ hi, and so the intersection of half-spaces can
be represented by multiple linear inequalities: Fx ≤ h.

So if we have a polytope X = {x : Fx ≤ h}, then the constraint that xn ∈ X means
that we would like xn such that Fxn ≤ h. We will often refer to constraints on the states
and inputs by referring to the polytopes in which they lie; that is, we will ask that xn ∈ X
and un ∈ U , where X ,U are polytopes.

5.1 Box Constraints

A common type of constraint are box constraints. For a vector xn ∈ R
p, a box constraint is

that there exists ai, bi for i = 1, . . . , p such that ai ≤ xi
n ≤ bi for all i. It turns out that we

can express these constraints as a polytope:

xn ∈ X = {x : xi ≤ bi,−xi ≤ −ai, ∀i}.

5.2 Linear Transform of Polytope

We define the linear transform T of a polytope P = {u : Fu ≤ h} as the polytope

TP = {Tu : u ∈ P}.

6 Maximal Output Invariant Sets

Consider an LTI system in discrete time:

xn+1 = Axn +Bun,

where (A,B) is stabilizable. And assume that we have chosen a K such that using the state-
feedback controller un = Kxn leads to a stable system xn+1 = (A + BK)xn. Now consider
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this same system, and suppose that we have polytopic constraints: In particular, we require
that xn ∈ X and un ∈ U for all n ≥ 0. A natural question to ask is: Does there exist a set Ω
such that if x0 ∈ Ω, then the controller un = Kxn ensures that both constraints are satisfied.
In mathematical terms, we would like this set Ω to achieve (a) constraint satisfaction

Ω ⊆ {x : x ∈ X ;Kx ∈ U},

and (b) control invariance
(A+BK)Ω ⊆ Ω.

It can be shown that if 0 ∈ X and 0 ∈ U , then the set Ω can be represented by a
polytope with a finite number of constraints. There is also an algorithm to compute this set:

input : X = {x : Fxx ≤ hx} and U = {u : Fuu ≤ hu}
input : A,B,K

output: Ω

set t← 0;
set k1 ← rows(hx);
set ku ← rows(hu);
repeat

for j ← 1 to k1 do

set L∗

j ← max{(Fx)j(A+BK)t+1x− (hx)j : (A+ BK)kx ∈

X , K(A+ BK)kx ∈ U , ∀k = 0, . . . , t};

end

for j ← 1 to k2 do

set M∗

j ← max{(Fu)jK(A+ BK)t+1x− (hu)j : (A+ BK)kx ∈

X , K(A+ BK)kx ∈ U , ∀k = 0, . . . , t};

end

set t← t+ 1;

until L∗

i ≤ 0, ∀i = 1, . . . , k1 and M∗

i ≤ 0, ∀i = 1, . . . , k2;
set t∗ ← t− 1;
set Ω = {x : (A+ BK)kx ∈ X , K(A+ BK)kx ∈ U , ∀k = 0, . . . , t∗};

Note that the Ω returned by this algorithm is a polytope, and so we can rearrange terms to
express this set as Ω = {x : Fωx ≤ hω}.
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