IEOR 265 - Lecture 11 Observability

1 Definitions

Consider a discrete time LTI system:

$$
x_{n+1}=A x_{n}+B u_{n}, \quad x_{0}=\xi .
$$

Now suppose that we do not measure x_{n}. Instead, consider a model in which we measure u_{n} and

$$
y_{n}=C x_{n}+D u_{n}
$$

where $C \in \mathbb{R}^{m \times p}$ and $D \in \mathbb{R}^{m \times q}$; this equation is often called a read-out equation. Note that we assume that $A \in \mathbb{R}^{p \times p}, B \in \mathbb{R}^{p \times q}, C \in \mathbb{R}^{m \times p}$, and $D \in \mathbb{R}^{m \times q}$ are known. We have two related definitions. The LTI system with pair (C, A) is:

1. observable if and only if given values of u_{n} and y_{n} for $n=0, \ldots, p-1$, we can uniquely determine x_{0};
2. detectable if and only if given values of u_{n} and y_{n} for $n=0, \ldots, p-1$, we can determine an estimate \hat{x}_{n} such that $\left\|x_{n}-\hat{x}_{n}\right\| \rightarrow 0$.

These definitions are related because if an LTI system is observable, then it is also detectable. The converse is not true: There are detectable LTI systems that are not observable. Also not that we made these definitions only with respect to the pair (C, A) and not B or D. We can remove the effect of D by considering a model $\check{y}_{n}=y_{n}-D u_{n}=C x_{n}$. And because $x_{n}=A^{n} x_{0}+\sum_{k=0}^{n-1} A^{n-k-1} B u_{k}$, we can subtract out the B by defining $\bar{y}_{n}=\check{y}_{n}-$ $C \sum_{k=0}^{n-1} A^{n-k-1} B u_{k}=C A^{n} x_{0}$. Lastly, note that these definitions do not say anything about boundedness of the states. We could in fact have that $\left\|x_{n}\right\| \rightarrow \infty$.

2 Conditions

There is a duality between controllability (stabilizability) and observability (detectability). A pair (C, A) is observable if and only if the pair $\left(A^{\prime}, C^{\prime}\right)$ is controllable. Similarly, a pair (C, A) is detectable if and only if the pair $\left(A^{\prime}, C^{\prime}\right)$ is stabilizable.

3 Linear Observer

The concepts of observability and detectability are important because of the following result: An LTI system (C, A) is detectable if and only if there exists a constant matrix $L \in \mathbb{R}^{p \times m}$ such that $A+L C$ is stable. To understand why this is relevant, suppose that we choose the following estimate

$$
\begin{aligned}
\hat{x}_{n+1} & =A \hat{x}_{n}+B u_{n}+L\left(\hat{y}_{n}-y\right), \quad \hat{x}_{0}=\phi \\
\hat{y}_{n} & =C \hat{x_{n}}+D u_{n} .
\end{aligned}
$$

Now if we define the estimation error as $e_{n}=\hat{x}_{n}-x_{n}$, then we have

$$
\begin{aligned}
e_{n+1} & =\hat{x}_{n+1}-x_{n+1}=A \hat{x}_{n}+B u_{n}+L\left(C \hat{x_{n}}+D u_{n}-C x_{n}-D u_{n}\right)-A x_{n}-B u_{n} \\
& =(A+L C)\left(\hat{x}_{n}-x_{n}\right)=(A+L C) e_{n},
\end{aligned}
$$

meaning that $\left\|e_{n}\right\|=\left\|\hat{x}_{n}-x_{n}\right\| \rightarrow 0$ because $A+L C$ is stable.
The condition of observability is even more powerful. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p} \in \mathbb{C}$ be fixed complex numbers. If (C, A) is observable, then there exists an L such that the eigenvalues of $A+L C$ are precisely the $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ that were chosen.

4 Steady State Kalman Filter

Consider the following LTI system with noise:

$$
\begin{aligned}
x_{n+1} & =A x_{n}+v_{n} \\
y_{n} & =C x_{n}+w_{n}
\end{aligned}
$$

where $v_{n} \sim \mathcal{N}(0, Q)$ is process noise (or state noise) and $w_{n} \sim \mathcal{N}(0, R)$ is measurement noise. The initial condition to this system is $x_{0} \sim \mathcal{N}\left(\mu, \Sigma_{0}\right)$. For simplicity, we will assume that $Q>0$ and $R>0$.

Based on this system, consider the following optimization problem

$$
\left.\begin{array}{rl}
\lim _{n \rightarrow \infty} \min & \mathbb{E}\left[\left(\hat{x}_{n+1}-x_{n+1}\right)^{\prime}\left(\hat{x}_{n+1}-x_{n+1}\right)\right] \\
\text { s.t. } & x_{k+1}=A x_{k}+v_{k} \\
& y_{k}=C x_{k}+w_{k} \\
& v_{k} \sim \mathcal{N}(0, Q) \\
& w_{k}
\end{array}\right) \mathcal{N}(0, R)
$$

Note that this minimum may not be finite unless we impose additional restrictions.
In particular, suppose that (C, A) is detectible. Then the minimizer is given by $\hat{x}_{n+1}=$ $A \hat{x}_{n}+L\left(\hat{y}_{n}-y\right)$ (i.e., linear observer with constant gain), where

$$
L=-A P C^{\prime}\left(R+C P C^{\prime}\right)^{-1}
$$

and $P>0$ is the unique solution to the discrete time algebraic Riaccati equation (DARE)

$$
P=Q+A\left(P-P C^{\prime}\left(R+C P C^{\prime}\right)^{-1} C P\right) A^{\prime}
$$

If K is the feedback gain for the infinite horizon LQR problem with pair $\left(A^{\prime}, C^{\prime}\right)$, then we actually have that $K=L^{\prime}$; in other words, there is a duality between the infinite horizon LQR problem and the steady-state Kalman filter gain.

5 Separation Principle

Suppose we have an LTI system in which (A, B) is stabilizable and (C, A) is detectable. And imagine that we do not have access to measurements of x_{n}, rather we only measure u_{n} and y_{n}. An interesting question to what happens if we use an observer to produce estimates \hat{x}_{n}, and then uses these estimates with a linear feedback to control the system? Is the resulting closed-loop system stable? It turns out that the answer is yes, and the answer lets us separate the observer design from the controller design.

In particular, consider an output-feedback controller

$$
\begin{aligned}
\hat{x}_{n+1} & =A \hat{x}_{n}+B u_{n}+L\left(C \hat{x}_{n}+D u_{n}-y_{n}\right) \\
u_{n} & =K \hat{x}_{n},
\end{aligned}
$$

where K, L are any matrices such that $(A+B K)$ and $(A+L C)$ are stable. Note that the closed-loop system is given by

$$
\left[\begin{array}{l}
x_{n+1} \\
\hat{x}_{n+1}
\end{array}\right]=\left[\begin{array}{cc}
A & B K \\
-L C & A+B K+L C
\end{array}\right]\left[\begin{array}{l}
x_{n} \\
\hat{x}_{n}
\end{array}\right] .
$$

Next consider a change of variables

$$
\left[\begin{array}{l}
x_{n} \\
e_{n}
\end{array}\right]=\left[\begin{array}{cc}
\mathbb{I} & 0 \\
-\mathbb{I} & \mathbb{I}
\end{array}\right]\left[\begin{array}{l}
x_{n} \\
\hat{x}_{n}
\end{array}\right] .
$$

Then the dynamics in this new coordinate system are given by

$$
\begin{aligned}
{\left[\begin{array}{l}
x_{n+1} \\
e_{n+1}
\end{array}\right] } & =\left[\begin{array}{cc}
\mathbb{I} & 0 \\
-\mathbb{I} & \mathbb{I}
\end{array}\right]\left[\begin{array}{cc}
A & B K \\
-L C & A+B K+L C
\end{array}\right]\left(\left[\begin{array}{cc}
\mathbb{I} & 0 \\
-\mathbb{I} & \mathbb{I}
\end{array}\right]\right)^{-1}\left[\begin{array}{l}
x_{n} \\
e_{n}
\end{array}\right] \\
& =\left[\begin{array}{cc}
A & B K \\
-L C-A & A+L C
\end{array}\right]\left[\begin{array}{ll}
\mathbb{I} & 0 \\
\mathbb{I} & \mathbb{I}
\end{array}\right]\left[\begin{array}{l}
x_{n} \\
e_{n}
\end{array}\right] \\
& =\left[\begin{array}{cc}
A+B K & B K \\
0 & A+L C
\end{array}\right]\left[\begin{array}{l}
x_{n} \\
e_{n}
\end{array}\right]
\end{aligned}
$$

The eigenvalues of this block matrix are precisely the eigenvalues of $A+B K$ and $A+L C$, and so the closed-loop system as long as $A+B K$ and $A+L C$ are both individually stable.

