
IEOR 265 – Homework 1

Due Thursday, April 2, 2015 in class

In the paper: P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, Modeling wine
preferences by data mining from physicochemical properties, Decision Support Systems, vol.
47, no. 4:547-553, the authors considered the problem of modeling wine preferences. Wine
can be evaluated by experts who give a subjective score, and the question the authors of this
paper considered was how to build a model that relates objective features of the wine (e.g.,
pH values) to its rated quality. For this homework, we will use the data set available at:
http://ieor.berkeley.edu/~ieor265/homeworks/winequality-red.csv

Use the following methods to identify the coefficients of a linear model relating wine quality
to different features of the wine: (1) ordinary least squares (OLS), (2) ridge regression (RR),
(3) lasso regression, (4) exterior derivative estimation (EDE) estimator. Make sure to include
a constant (intercept) term in your model, and choose the tuning parameters using cross-
validation. You may use any programming language you would like to. For your solutions,
please include (i) plots of tuning parameters versus cross-validation error, (ii) coefficients
(labeled by the feature) computed by each method, (iii) the minimum cross-validation error
for each method, and (iv) the source code used to generate the plots and coefficients. Some
hints are below:
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• RR, lasso have one tuning parameter, while EDE has two tuning parameters

• RR (with an intercept term) can be formulated as[
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where µ is a tuning parameter.

• EDE (with an intercept term) can be formulated as[
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Here, µ is a tuning parameter and Π = V2V
′
2 , where the singular value decomposition

(SVD) of X is

X = US
[
V1 V2

]′
with V1 ∈ Rp×d, V2 ∈ Rp×(p−d), and the singular values in S are listed in decreasing
order.
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